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1 Abstract continued

Among these, a standard direct product has been partigidéidctive. Necessarily, any recursive
method results in substantial duplication of coverage ofphay reducing this duplication when pos-
sible, the number of tests can sometimes be reduced. Intardeduce duplication, two key features
of a covering array are exploited: the number of disjointspand its profile (the distribution of
flexible positions). First, the direct product construatis extended to employ different numbers of
disjoint rows and different profiles. Then combinatoriaflaomputational constructions for covering
arrays with different profiles are developed. Finally somppli@ations of the generalized direct prod-
uct, with the various profiles so produced, are examined.e@fikaportance is that, quite frequently,
the covering array with fewest tests does not arise as a pradungredients with the fewest tests;
rather, the utility of the ingredient depends in a cruciaywa its profile.

2 Covering Arrays

Let N, k, t, andv be positive integers. Lef be anN x k array with entries from an alphabgt

of sizew; we typically takeX = {0,...,v — 1}. When(vy,...,1;) is at-tuple withy; € X for
1<i<t (e,...,c)lis atuple oft columnindicesd; € {1,...,k}), andc; # ¢; whenevew; # v;,
the t-tuple {(¢;, ;) : 1 < ¢ < t} is at-way interaction The arraycoversthe t-way interaction
{(c;,v3) - 1 <4 < t}if, in atleast one row of C, the entry in rowp and columry; isv; for 1 < i <.
Array C is acovering arrayCA (N t, k, v) of strengtht when every-way interaction is covered.
Suppose that thah factor takes values from a S8t of sizewv;, not containing the special value A
mixed covering arrayMCA(N; ¢, k, vivs - - - vy, IS a collection of NV rows such that for angdistinct
column indicesiy, is, - - - , iy, €Veryt-tuple fromx;, x 3;, x --- x 3J;, occurs in columns, , is, - - - 4,

in at least one of th&/ rows.

Covering arrays are employed in numerous testing appdiegin which experimental factors interact
to detect the presence of faults (see [16, 28] and refergheesin), and in many related applications
(see [19] for a recent list). Applications to interactiostteg, in particular to testing component-based
software, have driven much recent research; see [9, 10,5138l 53]. In applications in testing,
columns of the array correspond to experimefdators and the symbols in the column forvalues

or levelsfor the factor. Each row specifies the values to which to sefdhtors for an experimental
run. The array is ‘covering’ in the sense that evefyay interaction appears in at least one run. Figure
1 gives an example of a covering array with= 26 rows, 15 factors having four levels each, and
strength two. Consider, for example, the 2-way interacfidn2), (2, 0)}; it is covered in the seventh
and eighth rows. The reader can check that all of4ﬂ(é25) = 1680 2-way interactions are covered.
Thex entry can be replaced by any symbol, and the resulti&@6;2,15,4).

Testing cost is incurred for every test to be run, so a printdojective is to produce a test suite
(covering array) with as few tests as possible. At the same,tif interactions are the sources of
faults in the system, complete coverage of the interaci®important. When the number of factors
is small, between 5 and 50, one can rely on powerful commurtatimethods. But as the number
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Figure 1:CA(26;2,15,4)
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of factors increases to hundreds or thousands, these catigma methods either consume too much
execution time, or fail to find covering arrays of compegtsize. We advocate a different strategy, that
develops powerful recursive constructions to make cogeanays with many factors from ingredient
arrays with fewer. While stated in this paper as theoremd) &as a constructive proof that yields
an easy algorithm to produce a large covering array and ffywbat it is one. These constructive
techniques enable us to adapt computational methods toditidrsmall ingredient arrays, letting the
recursive method exploit these to make large arrays as deddeorder to pursue this, we adopt a
combinatorial viewpoint, and rely heavily on that litenaguTherefore we discuss background in the
combinatorics of covering arrays next.

We denote byCAN(t, k, v) the minimumN for which aCA(N;t, k,v) exists, because fewer rows
means fewer tests to be run. BecaWdeN(1, k,v) = v, CAN(t, k,v) = o' whenk < ¢, and
CAN(t,k,1) = 1, we generally assume that> ¢t > 2 andv > 2. Nevertheless, the definition
employed herein allows &, andv to be arbitrary positive integers.

The determination ofAN(t, k, v) has been the subject of much research; see [8, 16, 28, 29irias
material. For fixed andv, only CAN(2, k, 2) has been determined exactly [32, 33, 41]. In fact, an
explicit construction of covering arrays with the fewesvsowvhent = v = 2 is given there. Beyond
this, whent andv are fixed, exact numbers are known only for a few small valdées (@ee [20],
for example). Therefore most effort has focussed on coctsbns of covering arrays that have ‘few’
rows, that is, on upper bounds f@AN(t, k, v). Asymptotic results can be used to determine the
growth rate ofCAN(¢, k, v) for fixed ¢t andv as a function ofc (see [23, 24] fort = 2 and [26] in
general, for example). Nevertheless the explicit consitvo®f covering arrays is required for many
of the applications mentioned. In this paper, we concemwatexistence for strength= 2.

Random techniques, while easily implemented, do not apjelae competitive with combinatorial
and computational methods [19]. Orthogonal arrays prosigdmber of specific examples [30]; a
covering arrayCA(v?; 2, k, v) is anorthogonal arrayof strength two and index one. In [18, 46], the
structure of the finite field leads to a projection technicheg teduces the number of symbols while
increasing the number of columns. Computational methooldyme many more arrays. For example,
simulated annealing [14, 20, 25, 44, 45], tabu search [33ktracking [52], integer programming
[6, 43], and constraint satisfaction [31] have proved sssftd. Local optimization can often reduce
the number of rows required [37]. However, the most prevadéea greedy methods. One basic
strategy adds one test at a time [5, 9, 51]; when a suitalilestelsosen, it provides a strong theoretical
guarantee on the size of the test suite produced [3, 4], godvides a natural method to prioritize
tests [2]. A second greedy strategy adds one factor at a 8&e3@, 48]. Assuming the presence of
certain automorphisms also can reduce the difficulty of astiaponal search [7, 18, 35, 36].

An extensive amount of research has concentrated on reeursthods. We focus on strength two
here (for higher strengths, see [19] and references ther€irt-and-paste (or Roux-type, after Roux
[42]) constructions operate by juxtaposing copies of senalbvering arrays. For strength two, the
prototypical method of this type is given in [21], and a snedtension is described in [19]. These
methods rely on the presence of “nearly disjoint” rows indhay, and hence exploit the structure of
the ingredient arrays in an essential manner. The direciyatoin its simplest form, does not exploit
the structure of the ingredient arrays. Consequently@yasutperforms the Roux-type methods [21].
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However, as we shall see, controlling the structure of tgeadients in the direct product can not only
make it competitive, it provides consistent and useful imvpments on all other available techniques.
The remainder of the paper is organized as follows. In Sediorequired definitions are intro-
duced. In Section 4, the generalized direct product is dgesl. Section 5 examines the profiles
of arrays produced by generalized direct product, and byctiteand—paste method. In Section 6,
direct construction of covering arrays with different pkediis explored, adapting a variety of known
constructions. In Section 7, computational constructarovering arrays with different profiles are
developed, using simulated annealing and a post-optimrzatethod. Finally, in Section 8, conse-
guences for the existence of covering arrays are brieflyidered.

3 Properties of covering arrays

In order to extend the direct product construction, we dgvebme further definitions and notation.
First we extend the definition of covering arrays to permiyiigol that is not used for coverage, as
follows: An N x k array, each cell of which contains onewfdlistinct symbols or a different symbol
*, is acovering arrayCA(N t, k, v) of strengtht when, for every way to sele¢tcolumns, each of the
v’ possible tuples containing Roarises in at least one row.

3.1 Compatibility

A CA(M;2,¢,v) Band aCA(M'; 2,0, v) B" are(L, r)-compatibleif for every0 < o < r,1 < j </,
andl < j' < ¢, there exists @ with 1 < p < L so that the entry in cellp, 7) of B is ¢ and the entry
incell (p, ;') of B'is 0.

3.2 Constant Rows

Two rows of aCA(N; t, k, v) aredisjointif, in each column, either they do not agree or both contain
*. A set ofr rows in which every two are disjoint is@artial parallel classon r rows; two partial
parallel classes adisjointif they have no rows in common. parallel classis a partial parallel class
onwv rows. A row isconstantf, for some symbol/, every entry in the row is either or x. A row

is pureif it contains nox. A row is pure constantf it is constant and pure. Because symbols within
each column can be permuted independently, one has:

Observation 3.1 Ifa CA(N; t, k, v) exists having rows that are pairwise disjoint, there iIS&A(N; ¢, k, v)
havingp constant rows. These can without loss of generality be asgumbe on any of thev sym-
bols.

In astandardizedA(N; ¢, k,v) one row is constant. AngA(N; ¢, k,v) can be rewritten by choosing
a column, and applying an arbitrary permutation to the syminahe column.

Observation 3.2 If a CA(N; t, k, v) exists, then a standardiz€th\(N; ¢, k, v) exists.
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3.3 Profiles

Theprofile (dy, ..., d;) ofan N x k array is ak-tuple in which the entryl; is the number ok entries
in the ith column. A single covering array can often admit many défe profiles, by filling thex

cells and changing a (possibly different) set of flexibldsce . A profile (di, ..., d;) dominates
profile (e1, ..., ex) Wwhend; > e; for 1 < < k, and we write(d,, ...,dy) > (e1, ..., ex) in this case.

3.4 Flexible positions

In general, someé-way interactions may be covered more than once. Now conealtgh rowr of a
CA(N;t, k,v); for every subset’ of ¢ columns, letl” be thet-way interaction that is covered in row
and the columns of’. If T"is not covered in any other row of the array, each of the déhisc) : ¢ €

C'} is necessaryAll cells that are not necessary in this way éexible If we ignore a flexible cell
(r,¢) in the computation of coverage, alway interactions remain covered. By convention, when
flexible cell (r, ¢) is to be ignored, we place the entry(“don’t care”) in cell (r, ¢). In general, one
cannot simply convert all flexible cells tg because two flexible cells can each rely on the value in
the other for its flexibility. Nevertheless, one can repéigtehoose any one flexible cell to convert to
*, and then recalculate the flexible cells for this modifigd until none remain.

3.5 Examples

Figure 2 gives examples to illustrate the definitions giEesich of the fiveCAs shown is &£A(14;2,7,3)
derived from the first one shown. It has one constant row,tilmeeenth; the others are not constant.
Because it has a constant row, it is standardized. Rows 112uage disjoint; indeed interchanging
symbols 0 and 1 in column 7 would make row 11 constant, whikpkey row 13 constant. Hence
there is an equivaler@tA(14;2,7,3) with two constant rows.

In the second array shown, the flexible entries are shown xe$jovhile the necessary ones are
shown without. For example, the six pairs involving the gmitr the first row and first column are
all covered in rows 5, 13, or 14; hence this entry is flexiblée Entry in the second row and first
column is necessary because the pair with 0 in column 1 ana@@lirmn 4 appears only in this row.
As remarked earlier, we cannot change all flexible posittons If we were to do so, the pair (2,2)
would no longer be covered in the first two columns, for exampl

The third, fourth, and fifth arrays are &K (14;2,7,3)s in which certain flexible positions have been
changed to don’t-care positions, so that there remain nibfeegositions. Their profiles are (2,1,2,1,1,1,1),
(2,1,2,1,2,1,1), and (2,2,2,2,2,2,2), respectivelyfir¢2,1,2,1,2,1,1) dominates (2,1,2,1,1,1,1), and
is dominated by (2,2,2,2,2,2,2). The fifth array has two rtved contain onlyi. These can both be
deleted to form &A(12;2,7,3). Similarly, a row can be removed immediatelyrfrthe fourth array
shown, while the third array has no row containing only daaite positions.
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Figure 2. Examples of @A(14;2,7,3)

4 Generalized direct products

In this section, a general recursive construction is dgexoalong with many specializations. Sec-
tion 5 then develops constructions for ingredients to bel usepplying the results. We start with
the simplest direct product, essentially introduced in AQ, 47]; we employ an array operation
depicted in Figure 3.

Theorem 4.1 [40] When aCA(N; 2, k,v) and aCA(M; 2, ¢, v) both exist, &CA(N + M; 2, k(, v) also
exists.

Proof. LetA = (a;;) be aCA(N;2,k,v)andletB = (b;;) be aCA(M;2,¢,v). FormanN+M) <kl
arrayC = (¢; ;) = A® B by settinge; (s—1)pg = tigforl <i < N, 1 < f < {,andl < g < k.
Then setcy i (f—1)prg = bipforl <@ < M,1 < f </, andl < g < k. In essencel; copies of

B = (b;;) are being appended tocopies ofA = (a,;) as shown in Figure 3. Because two different
columns ofC arise either from different columns éfor from two different columns oB, the result
isaCA(N + M;2, kL, v). [

Stevens [45] improved on this by exploiting constant rowgplgiting both “don’t care” cells and
constant rows is considered in [19, 21]; we develop geneeahanisms for doing so here. We suppose
that a factor withv values always takes on values frdih . .., v — 1}, and hence the corresponding
column of the array contains only these symbols, and possibl

Theorem 4.2 Letv, ry, o, 3, 51, So, S3, N, M be positive integers satisfying+r, < v, s; < v—ry,
sp < ry,andM > s + s, + s3. Suppose that there exist
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Figure 3: The structure & ® B

e a CA(N;2,k,v), A, with profile (d; + e, ...,d; + ex), having two disjoint partial parallel
classes, one ony + r, pure rows and the other or pure rows;

e foreachl <i < kandsomé <, <v—ry—s;,aCA(M +d; +6;;2,¢;,v), B;, with profile
(i1, - - -, Yie, ), IN Which

— the firsts, rows are pure constant on symbgls . . ., s, — 1} and the last; + ; rows are
pure constant on symbols— s; — d;,...,v — 1;

— rowss, + 1,..., sy + s3 form a partial parallel class of; pure rows; and
— foreveryl <i; <iy, <k, B;, andB,, are (M — sy, r)-compatible.

Let p = max(1, 7 + s9,73, s3). Let L be the list with entries; 4+ v;; for 1 <i < kandl < j < /,.
Then there exists @A(N + M — r| — sq; 2, Zle ¢;,v) havingu constant rows and profilé.

Proof. Permute symbols and rows Afso that the-; + r, disjoint pure rows fornr; pure constant
rows on{0,...,r; — 1} as the last; rows andr, pure constant rows ofw — ry,...,v — 1} as the
first o, rows; remove the last; rows to formA’ with N — r; rows.

Form an arrayC with N + M — r; — s; rows ande:1 ¢; columns, indexing columns &8, j) for
1 <c<kandl < j < /. Fill the first N — 7, rows in column(c, j) as a copy of columi of A’
Forc =1,...,k, let R, be the indices of thé. rows in whichA’ contains a« in columnc of A. For
1<c<k1<j</{,andl <p < M — s place in rowN — r; 4+ p and column(c, j) of C the
entry in cell(p, j) of B;. Then letp,, ..., py, be the entries oR.. Forl < c¢ <k, 1 <j < /., and
1 <z <d,., inrow p, and column(c, j) place the entry in cellAM/ — s, + z, j) of B;.

Consider columnsiy, j;) and (s, jo) Of the result. Wheri; = i,, all pairs of the form(o, o) are
covered in the firstv — r; rows excluding those i®®;,. Then in rowsR;, and the lasf\/ — s, rows, all
remaining pairs are covered because two different colurhBs @re selected (ang) < v — r; — sy).
So suppose thay # i,. The first N — r; rows cover all pairs except possibly fo#, o) when
0 < o < rq, which are covered by the remaining rows as a consequenaergdatibility.
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Consider the largest numbgrof constant rows. By Observation 3.4,> 1. In the result, rows
1,...,ry are constant on symbols— r,,..., v — 1. RowsN —r; +1,..., N — r; + s, are constant
on the symbol9, ..., s, — 1. Sou > ry + s,. Becauseé\ contains a partial parallel class enrows,
and these rows are all pure, they yield a partial paralledsclaC of the same size; henge > r3.
BecauseVl > s; + sy + s3, and eaclB; contains a partial parallel class of sizg C also contains a
partial parallel class of the same size; hence ss;. [ |

Theorem 4.2 is quite general, but consequently it can bdestgahg to verify all of the conditions
required on the ingredients. Therefore we state some eoiedl obtained by specializing the parame-
ters. Usually we take; = s3 = 0, so the disjoint partial parallel classes are not needethgatibility
poses the most severe constraint, so the easiest applieaises when all of théB; } are identical:

Corollary 4.3 If a CA(N; 2, k, v) with r disjoint rows and eCA(M; 2, ¢, v) with s disjoint rows both
exist, then &A(N + M — min(v,r + s); 2, k(,v) exists havingnin(1, r + s — v) constant rows.

Proof. A CA(N;2,k,v) with r disjoint rows yields a&CA(N; 2, k, v) with r pure constant rows; take
r1 = min(r,v—s) andry = r—r;. Takes; = sands, = 0, and write theCA(M; 2, ¢, v) with s disjoint
rows as &CA(M; 2, ¢, v), B, in which the last rows are constant on the symbols- s,...,v —1,in
that order. Take; = ¢; = §; = 0 andB; = Bfor 1 < i < k. Apply Theorem 4.2. li-, = 0, one row
can nonetheless be made constant. [ |

Corollary 4.4 Suppose thak isaCA(N;2, k,v) havingr pure constant rows and profil€y, . . ., dx).
Let0 < s < v be an integer. Further suppose that for each< i < k£ and some) < ¢; <

v — s, there exists &A(M + d; + d;;2,¢;,v), B;, havings + §; constant rows. Then there exists a
CA(N + M — 5,2, | ¢;,v) havingr constant rows.

Proof. Apply Theorem 4.2 using; = 0,7, = r, s = s, ands, = 0. Because; = 0, compatibility
holds trivially. [ |

Corollary 4.5 Suppose that there existSCA(NV; 2, k, v), A, with profile(dy, . . ., dx), havingr; +

pure constant rows. Let, = r; and0 < s; < v — ry. Further suppose that for eadh< i < k£ and
somel) < §; < v —r; — s, there exists £LA(M + d; + 6;;2,¢;,v), B;, havings; + so + §; constant
rows. Then there exists@\ (N + M — r; — s1; 2, Zle ¢;,v) havingrs + s, constant rows.

Proof. Apply Theorem 4.2. Becausg > r,, compatibility holds. [ |

5 Recursive Constructions

In order to develop applications of Theorem 4.2, we examnudilps of covering arrays. As we
have seen, Theorem 4.2 itself can be used to make a varietyfiep. The other main recursive
construction, the cut—and—paste method, can also be eatpbloy
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Consider &A(N; 2, ky+ko,v), shownin Figure 4. The arrays, A,, andX are(N —v) x k1, (N —v) X

ko, andv x ko, respectively. Array is av x k; has a specific structure, namely that every column is a
permutation of 1, ..., v}. A CA(N;2, ky + ko, v) admitting such a partition isgartitioned covering
array PCA(N; 2, (ki, k), v). (Figure 1 gives &CA(26;2,(11,4),4).) Without loss of generalifycan

be assumed to be the matixin which each column is the identity permutation. Whgis a prime
power, an orthogonal array with the maximum number of facyields arPCA(¢?; 2, (¢, 1), q).

A, Ao

D X

Figure 4: A partitioned covering arrai? CA)

The main cut—and—paste construction for covering arraygrefhgth two is established in [21]; we
give a small extension of it proved in [19]:

Theorem 5.1 If a PCA(N; 2, (k1, ko), v) and aPCA(M; 2, (¢1,¢5);v) both exist, then &#CA(N +
M — v;2, (kily, k1ly + koly),v) also exists.

The construction follows. Take RCA(N; 2, (ki, k), v) with a partition as in Figure 4 intd., A,

D andX; and anPCA(M; 2, (¢4, ¢5),v) with partition B, B,, E, andY. Without loss of generality,
suppose thab andE consist of column identity permutations, and write eaclR aBurther suppose
that each of the columns &fandY has the property that thet 1st entry does not exceed

Form an array as in Figure 5. In the products of the féyn® B;, the firstN — v rows arise fromA,
while the next)/ — v arise fromB;, as shown in Figure 3. HergX is obtained by repeating the array
X ¢, times andk; (Y) is obtained by repeating each columnYok; times. P is av x k;¢; matrix of
(column) identity permutations.

A; ® By Ay ® By A ® B,

Figure 5: The product of tw8CAs

Theorem 5.1 does not exploit don’t care positions in eithexya In a sense, this is a primary reason
why the generalized direct product is able to make the imgmnts that we have found. However,
cut—and—paste preserves (and indeed inflates) don’t caregms. Indeed the following employs an

easy analysis of the don't care positions that must ariseamesulting array:
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Theorem 5.2 Suppose that 8CA(N; 2, (k1, k2),v) A partitioned into intoA;, A,, D and X exists,
and that there arel; don’t care positions in columhof A; for 1 < i < ky; d; don’t care positions in
columng of A, for ky < i < ky + ko; ande; don't care positions in columinof X for k; < i < ky + k.
Suppose that 8CA(M; 2, (¢4, ¢5),v) B partitioned into intoB,, B,, E, andY exists, and that there
are¢; don'’t care positions in columpof B, for 1 < j < /;; 6; don’t care positions in colum of B,
for /1 < j < {; + {y; ande; don't care positions in columpof X for /1 < j < ¢ + ¢5. Form a listL
of (k1 + ko) (€1 + £3) — kol entries, containingl; + 6; for 1 <i < ky andl < j < {y; d; + e; + 0,
fork; <i¢ <k +kyandl <j < /{;andd; +9;+¢;forl <i<kjandl{; <j </ + /(. Thena
PCA(N + M — v; 2, (/ﬁgl, k1l + kggl), U) with prOﬁIeL exists.

6 Direct Constructions of Profiles

In order to apply generalized direct products effectivatgredients are needed that have suitable
combinations of constant rows and profiles. Moreover, toersktable ingredients using a recursive
construction, smaller ingredients are then needed. Heexamine some direct constructions to form
basic ingredient arrays.

6.1 Fusion

An easy way to form don’t care positions is to form a coveringqyaon a larger number of symbols
and then omit the ‘extra’ symbols.

Theorem 6.1 Suppose that aMCA(N; 2, k, (v, . .., v;)) exists that
e has profile(dy, . . ., dy),
e hasp < v. — 1 pure constant rows on symbds, ..., p — 1}, and
e in which thecth column contains,. occurrences of for o € {0,...,v. — 1}.

Lete(o) = 1if 0 < o < p, 0 otherwise. Leb, = max{r,. —e(o) : 0 € {0,...,v. — 1}}. Then an
MCA(N;2,k, (v1,. .., Ve1,Ve—1,Vey1, ..., vx)) EXiSts with profiléd,, ..., d._1, d.+0¢, des 1, - . ., d)
havingp pure constant rows on symbds, ..., p — 1}.

Proof. Choose a symbat for whichr,. — (o) = 4. Interchange symbolsin v. — 1 in columnec.
Replace all occurrences of — 1 in columnc by x. If o < p, replace the single star in the constant
row containingr by o to restore the pure constant row. [ |

After each application of Theorem 6.1, additional flexibtesspions may arise both in columnand

in other columns, and converting thesextmay enable additional reduction in a further application.
The particular selections made can affect the benefit fras) $lo we state a conclusion for covering
arrays that holds even when additiorantries are not deduced.
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Corollary 6.2 LetA be aCA(N;2, k,v) on symbol sef0,...,v — 1} and columnd1, ..., k}, with

profile (dy, . .., d), in which symbol appears in columia exactlyr;. times. Forl < ¢ < k, lety, be
a permutation o0, ..., v — 1} for whichry, ;_1). < 7y, for 0 < j < v. Thenfor2 < z < ¢,
there is aCA(N; 2, k, z) with profile (dy + 3070 7y, )15 - Ak + D i—s Poy)-

Proof. Apply Theorem 6.1, taking th€A to have no pure constant rows, to remave = symbols
from each column. [ |

Corollary 6.3 Ifa CA(N; 2, k,v) with profile(d, . . ., dx) exists, then fo? < z < v,aCA(N;2,k, z)

with profile (d, + [0 g 4 (Lt WTd) ) glso exists.
Proof. For eache, 7y,(j-1)c < Ty fOr 0 < j < v, andy 7~ o Teere = N —d.. Hence
Z;;i Ty = (v — )= and the result follows by Corollary 6.2. [

This variant of fusion does not remove any rows, unlike threeing20]. We can remove a row if all
entries in the row are changed#pand this can be ensured if symbols are renamed so that ahbut
entry in the row becomes This is the basic operation in the method of post-optinozrefrom [37];

see Section 7.2.

In applying Corollary 6.2 or 6.3, the result cannot be gutsad to have a pure row, and hence Obser-
vation 3.1 need not lead to a pure constant row unless thdgi®fthanged. This can be effectively
addressed.

Lemma 6.4 If a CA(N; 2, k,v) with profile (dy, . . ., di) havingp pure rows exists, then f@& < x <
v, a CA(N; 2, k, z) with profile (d, + [@=2WN=d=pl) g, 4 [Py having min(p, =)
pure constant rows also exists.

Proof. Permute so that the pure rows are pure constant on symbals, p — 1. Then, in each
columne, select they — = elements that appear the most frequently in dhe- d. — p other rows.
Permute symbols in columnso that these symbols are named z, . . . , v — 1, ensuring that none of
0,...,p—1lisrenamed unless it appears amonguthe chosen symbols. Now change all occurrences
ofv—x,...,v— 1incolumncto , except in any row that was pure constant; if one appearscim su
a row, make it again pure constant. [ |

Lemma 6.5 Suppose that there existsCA(N'; 2, k, v) in which at least one symbol occurs exactly
v times in one of the columns. (This always holds witert N’ < v(v + 1).) Then there exists a
CA(N'—1;2,k,v— 1) having profile(v — 1)*, and aCA(N’ — 1; 2, k, v — 1) with v — 1 pure constant
rows having profilgv — 1)*~101.

Proof. Without loss of generality there is@(N’; 2, k, v) with a pure constant row of symbol- 1,

so that symbol — 1 occurs exactly times in the last column. Delete this constant row and change
all occurrences of symbel — 1 to x to form aCA(N’ — 1;2, k,v — 1) having profile(v — 1)*. (It

may have more entries in columns other than the last, but its profile domeis@ — 1)*.) Replace
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thev — 1 % entries in the final column by entri@s. .., v — 2, using each symbol exactly once. Then
thev — 1 corresponding rows are pairwise disjoint, and the res@Ga (N’ — 1;2, k,v — 1) having
v — 1 pure constant rows, and profile — 1)*~101. [ ]

Lemma 6.6 Suppose that there existsA (¢*; 2, ¢ + 1, ¢) with ¢ odd. Then there exists@A(q¢? —
2:2,q + 1,q — 1) having profile((¢ — 1)/2)%(q — 2)!, and aCA(¢® — 2;2,q + 1, ¢ — 1) with profile
((g — 1)/2)%0" havingg — 2 pure constant rows.

Proof. Permute symbols so that theows in whichg — 1 appears in the last column are constant on
columnsl, ..., q. Delete the pure constant row containipg 1, and replace all other — 1 entries

by x. Next delete the constant row containipg- 2. Select an arbitrary tournamehton vertices
1,...,q thatis in- and out-regular of degrée — 1)/2. Whenever(z,y) is an arc of7’, locate the
row that contains in columnx andq — 2 in columny, and replace the by ¢ — 2. The result is a
CA(¢*> — 2;2,q+1,q — 1) with ((¢ — 1)/2) = entries in each of the firgtcolumns and; — 2 in the
last. Extending each of the— 2 constant rows to be pure constant yields the secohd [ |

Using these constructions, we obtain the following:

Lemma 6.7 Suppose that there exist£a (N’; 2, k, v) in which for some symbel and some column
¢, o appears exactly times in columne. Suppose further that there existCA(M’;2, (1, v — 1)
havings constant rows.

1. IfaCA(M'—(v—1);2, ¢y, v) havings constant rows exists, there exist€&((M' —s)+ (N’ —
v);2,(k — 1)¢; + ¢3,v — 1) havingv — 1 constant rows.

2. If M’ > v(v — 1), there exists £A((M' —s) + (N —v);2,(k — 1){ +2,v — 1) havingv — 1
constant rows.

3. There always exists@A((M' — s) + (N’ —v);2,(k — 1) + 1,v — 1) havingv — 1 constant
rows.

Proof. Taking/, = 2 and/; = ¢ in the first statement implies the second, becausa@/’ — (v —
1);2,2,v) exists withv — 1 disjoint rows when\/’ — (v — 1) > (v — 1)2. Takingl, = 1 and¢; = ¢
in the first statement implies the third. So we establish tis¢ $tatement. By Lemma 6.5, there is a
CA(N' —1;2,k,v — 1) with v — 1 pure constant rows having profile — 1)~10* Apply Corollary
45withr; =sy=s,19=v—-1-5,=0,N=N —1,andM = M’ — (v —1). [ |

Lemma 6.8 Suppose that there exist<A(N’; 2, k, v) that contains a pure constant row on symbol
o, and symbob appears exactly times in columng, ... v — 1 andk. If there exist &CA(M' — (v —
2);2,0y,v —1),aCA(M’;2,¢,,v— 1), and aCA(M’ — (v — 1); 2, ¢3,v — 1) each havings constant
rows, then &CA((M' — s) + (N' — 1); 2,01 + (k — v)ly + ¢3,v — 1) havingv — 1 constant rows.
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Proof. By Lemma 6.13, £A(N — 1;2,k + 1,v — 1) exists having profile*~!(v — 1)**+10}(N —
v(v—1))! and having) — 1 pure constant rows. Apply Corollary 4.5 with = sy = 5,75 = v—1—3s,
s;=0,N=N'—1,andM = M — (v —1). [ |

Lemma 6.9 Suppose that there exist€a ((z — 1)(v— 1) +wv; 2, z,v) in which symbob — 1 appears
exactlyv times in each column. Lét< o < v. Suppose that there is@\ (M 2, ¢, v — «) containing

v — a constant rows and a disjoint set of— o rows containingy permutation columns. Then there
isaPCA((z—1D(v—1)+M—-(a—1)z— (v—0a);2,(2l,(z — 1)l +7),v — ).

Proof. Suppose that the rows of tl&\((z — 1)(v — 1) + v; 2, z,v) that contairv — 1 in columnz
are otherwise constant. Replace all entries of1, ..., v — a by x and delete the: rows that contain
only x, leavingan((z —1)(v— 1) + v —a) x z arrayA. ThenA has(a —1)(z — 1) + (v — 1) % entries
in the firstz — 1 columns, anda — 1)z + (v — «) in columnz, so has profilgv — 1+ (a—1)(z —1))>.
Let B be theCA(M;2,¢,v — «), with B; being thev — o constant rowsB, being thev — « rows
containingy permutation column$3; being a further set afv— 1)z rows, andB, being the remaining
M —(a—1)z—2(v—a) rows. LetC beA®B,. Columnz of A leads to gv — «) x ¢ block of x entries
in the firstv — o rows. Replace this block witB,, so that the first — « rows now havez — 1)¢ + v
permutation columns. The remainirgentries in columre yield (o — 1)z rows, in which we place
the rows ofB;. For each of the remaining columns, thentries form g(a—1)(z —1)+(v—1)) x ¢
block of x entries, which we replace with the rows®f andB;.

The verification parallels the proof of Theorem 4.2, but westnerify that all constant pairs are
covered, because the first— o rows may not be pure constant. This is routine, however, useca
every constant pair is coveredAn [ |

In the absence of other information, Lemma 6.9 can alwaysppéieal withy = 2. When the
CA(M;2,¢,v — «) is known to have two disjoint parallel classes, the resglfi€A in fact has a
parallel class.

In certain situations, the manner in which thpositions are used can be varied to ensure the presence
of many disjoint parallel classes. We pursue this next.

Theorem 6.10 Suppose that there exists@G(N + 1;2,k,v + 1) with & > v in which some row
covers pairs, none of which are covered in another row. Seefarther that there is 8A(M; 2, (4, v)
containing a parallel class and @A(M; 2, {5, v) containing two disjoint parallel classes. Then there
exists aCA(N + M — 2v;2,vly + (k — v)l; + 1,v). WhenN + 1 = (v + 1)?, for1 < a < k,
there also exists &A(N + M — 2v;2, (k — o)ty + aly, v) havinga disjoint parallel classes, and a
CA(N + M —2v;2,(k — a)ly + aly + 1,v) havinga — v disjoint parallel classes whem > v.

Proof. Let A be theCA(N; 2, k,v) obtained from theCA(N + 1;2, k,v + 1) by making the row in
which every pair is uniquely covered constant on symbel 1, deleting this row, and changing all
remaining occurrences of+ 1 to . Every row ofA contains at most one In theCA(M;2, (5, v),
make one parallel class contain constant rows, and thetedélese rows. LebD, be thev rows of
the second parallel class, and the remainiiig- 2v rows beB,. In the CA(M; 2, ¢;,v), make one
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parallel class contain constant rows, and then delete these LetD, be anyv remaining rows, and
the remainingV/ — 2v rows beB;.

Choosenr so that) < o < k. Form an(N + M — 2v) x ((k — a)¢; + als) matrix C as follows. In
the first V rows, replicatex columns ofA /, times each, then the remainitg— o columns ofA /¢,
times each. Each of the firat columns ofA contains at least x entries and hence formswax ¢
subarray containing onby entries in the firstV rows of C; replace this subarray with,. Each of the
lastk — o columns ofA contains at least = entries and hence formswax ¢; subarray containing
only x entries in the firstV rows of C; replace this subarray with,. In the remaining\/ — 2v rows
of C, concatenate copies ofB, followed by k — a copies ofB;.

ThenCis aCA(N + M — 2v;2,vly + (k — v)ly,v), but we can say more. Suppose that ¢ <
min(«, v). Consider the rows oA that containk in columne. Adjoin a new column taC, and place
symbolc in the added column in each of these rows. This ensures thdidy: in the added column
appears with each symbol in each other column. Hence takirgwv, we obtain aCA(N + M —
20;2, vl + (k — v)ly + 1,v).

Now consider cases whe¥ + 1 = (v + 1)2. Then every columa of A contains exactly « entries,
and the rows containing theseentries yield a parallel class (hwheneverl < ¢ < o. Whena > v,
a new column can again be added, placimgthe rows arising from parallel classes with- v. Then
«a — v parallel classes remain in the extended covering array. [ |

6.2 Projection of orthogonal arrays

Projection was introduced in [46] and generalized in [18]e 8yply it here to a specific family of
orthogonal arrays.

Theorem 6.11 Let ¢ be a prime power. Let be an integer with) < = < ¢. Then there is a

1. with profile0?* (¢ — 1)} (¢ — 1)'(2(¢ — 1))* whenz = 1;

2. with profile 2971792 (g)(2q — 2)*(2q — 3)'(3¢ — 4)> whenz = 2, whenever(a;,a;) €
{(47 O)7 (27 1)7 <07 2)} andal + as S q;

3. with profile6?~* %279 (g 4 3)*(2¢)*(3q — 3)**(3¢ — 3)'(4¢ — 6)® whenz = 3, whenever
(a1, as, a3) € {(9,0,0),(7,1,0),(6,0,1),(5,2,0),(4,1,1),(3,3,0),(3,0,2),(2,2,1), (1,4, 0),
(1,1,2),(0,3,1),(0,0,3)} anda; + ay + a3 < g.

There is also &€A(¢*> — ;2,q + 1 + z,q — x) havingg — x pure constant rows
1. with profile17*(¢ — 1)'0'(¢ — 1)* whenz = 1;

2. with profile49=1792(¢+1)% (2¢g—2)*¢' (2g—2)*> whenz = 2, wheneveta,, a,) € {(4,0),(2,1),(0,2)}
anda; +ax < ¢,
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3. with profile99—a1—a2=as(
(a1, a2,a3) € {(9,0,0), (
(1,1,2),(0,3,1),(0,0,3

q+5)"(2qg + 1)2(3q — 3)*(2¢)' (3¢ — 3)®> whenz = 3, whenever
7.1,0),(6,0,1), (5,2,0), (4,1,1),(3,3,0), (3,0,2), (2,2,1), (1,4, 0),
) anda1+a2+a3 <gq.

Proof. Letq be a power of a prime, and |&f, be the finite field ory elements, with multiplicatiom®
and additionp. We form ag® x ¢+ 1 arrayA that is aCA(¢?; 2, ¢+ 1, q) as follows. Rows are indexed
by polynomials of degree less than two o¥er We refer to the elements &, as{0,...,q¢ — 1},
where0®z = z®0 = 0 for z € F,. Index columns by, ..., ¢—1 andoo in that order. For, b € I,

in the row indexed by.z + b and the column indexed by, place the entrya ® z;) @ b. In the row
indexed byax + b and the column indexed by, place the entry, — 1 mod ¢. Theg rows arising
from polynomials of the forn®z 4 b arenear-constant rowecause they are constant on the fjrst
columns (and have entry— 1 in the column headed by). The remaining rows artgansverse rows
Forz > 1 we ‘project’ to form an arrayh, as follows. First delete the near-constant rows friothat
contain symbolg — y for y < z, in the process removingrows. Then adjoirr additional columns
indexed by,, . ..,00;. Placex in each of these new columns in each near-constant row.

For eachl <y < z, choose a permutatian, of {0, ...,¢—1}. In every transverse row, each symbol
occurs exactly once in columns. .., ¢ — 1. Then forl <y < z, if in transverse rov we findq — y

in columnr,(a) anda < g — x, placea in columnoo, in that row. For each < a < ¢—x, among the

q — 1 transverse rows having— y in columnr,(a) place the symbol$0,...,¢ — = — 1} in column
m,(a) once each and set the remaindext®eplace all remaining entries frofg — z,..., ¢ — 1} by

x. The resulting arra\, is aCA(¢*> — z;2,q¢ + 1 + =, ¢ — ) [18], and so the issue is to determine its
profile.

Columnoo hasg — x x entries on the near-constant rows, amd- 1)q on the transverse rows. Each
of columnsoco, for 1 < y < z hasq — x » entries on the near-constant rows, ar(@ — 1) on
the transverse rows. Columirfor 0 < i < ¢ has nox entries on the near-constant rows, and has
a;(¢ — 1) + (z — a;)(z — 1) % entries on the transverse rows, where= |{y : m,(i) > ¢ —z,1 <

y < z}|. By choosing the permutatior{s, : 1 < y < z} appropriately, we can select any integers
Qo, - .., a1 that satisfy0 < o; <z andzq o i = a2

Forz = 1, columnoo hasg — 1 x entries and columno1 has2(q—1). One of columng0, ...,¢—1}
hasqg — 1, and the rest have 0. For= 2, columnoc has2¢ — 3 and columnsx; andoo, have3q — 4.
For columns{0,...,q — 1}, we can choose théy;} values to get different results. Taking two of
them to be 2, we get two columns wizh — 2 andq — 2 with 2. Taking one to be 2 and two to be 1, we
get one column witl2qg — 2, two with ¢, andq — 3 with 2. Taking four to be 1, we get four columns
with ¢ andq — 4 with 2.

Forz = 3, columnoo has3q — 3 and columnsco,, ooy, andoos havedq — 6. Whena; = 3, column;
has3qg — 3 x entries; wheny; = 2, it has2q; whena; = 1, it hasq + 3; and wheny; = 0 it has 6.

Pure constant rows iA, could be formed by making each of the near-constant rowstaonsHow-
ever, one can then form furtherpositions, as follows. Suppose that- y appears in columm, (a)
anda < ¢ — z. Once the near-constant rows are made constant, the platefmein columnm,(a)

to replaceq — y is no longer needed, and can be changed.tdNow we adjust the counts of
entries appropriately. Columso has(x — 1)g » entries on the transverse rows. Each of columns
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oo, for 1 < y < z hasz(q — 1) * entries on the transverse rows. Columfor 0 < i < ¢ has
a;(¢ — 1)+ (z — a;)x * entries on the transverse rows, whete= [{y : m,(i) > ¢—z,1 <y < z}|.
Then a similar analysis establishes the results stated. [ |

We can also use projection to construct arrays with multieint parallel classes:

Theorem 6.12 Let ¢ be a prime power. Let be an integer with) < =z < ¢. Then there is a
CA(¢*> — x;2,q + 1 + x,q — z) havingz + 1 disjoint parallel classes.

Proof. LetA be theCA(¢?; 2, ¢+ 1, ¢) formed in Theorem 6.11. For by first adjoiningz columns
to A, indexed byco,, ..., 001, changing all entries in transverse rows in columnthat belong to
{¢—=,...,q—1} to*. Then delete the near-constant rows containing symbols frm-z, . .., q—
1}, and make the remaining near-constant rows pure constaréx@iending the value in columns
0,...,q — 1through columng oo, co,, ...,001}. Forl <y < z, whenever symba} — y appears in
columnc of a row, place: in columnoo, of that row ifc < g — z. All entries of columnsx;, . .., 0o,
not so determined are set#o

The ¢*> — ¢ transverse rows are partitioned into classes as follovesstl; contains the; — 1 row
indices of rows in which; — 1 appears in column. We partitionV; arbitrarily into two setsR;
containingg — z row indices andS; containingx — 1. For0 < ¢ < ¢ — z, place a permutation of
symbols{0,...,q¢—x — 1} in the cells of columr in the rows ofR. and placex in those of the rows
of S.. Forqg — x < ¢ < ¢, placex in the cells of column: in each row ofiV...

Now for2 < y < x, we proceed differently. Fer—z < ¢ < ¢, wheng—y appears in columa, simply
replace it byx. For0 < ¢ < q — z, let’T" be the set of row indices in which— y appears in column
c. NowT'N W; contains one row index when# j, and none otherwise. Therefdfen ( 5;5*1 W;)
containsg — = — 1 row indices, so in column place a permutation of0,...,q — z — 1} \ {c} in
the corresponding rows. (Note that the pair containimgcolumnc andc in columnoo, appears in
a pure constant row.) Place-an the columns of the remainingrows of 7.

Now we recover the parallel classes. By construction, ortbasset of pure constant rows. The
remaininge parallel classes are those indexedihyfor ¢ — x < ¢ < ¢. Indeed, no replacement of an

element of any row ofV,_,, ..., W,_; is made except for replacement of entriesxbyl he rows of
W, initially agreed only in having — 1 in columne¢, and hence no two rows V. (for ¢ > ¢ — z)
agree in any position except for the entry [ |

6.3 Projection and cover starters

In [18, 35, 36], covering arrays are produced that admit apdharansitive group action ok — 1
columns, and a second sharply transitive group actiom-ert symbols. In [35], this is generalized to
allow a sharply transitive group action en- f symbols, fixing the remaining. The basic device is

to produce a single row, @, k, f)-cover starterto be developed under the action of the two chosen
groups. As discussed in [35], when the cover starter itsmitains a don’t-care position, covering
arrays with many (predictable) profiles result. We pursuéfardnt avenue here, focussing on the
case wherf = 1.
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Cover starters foif = 1 produce aCA(k(v — 1) + 1;2, k, v) with the property that there is a pure
constant row (containing only the fixed symbol), and eveheotow contains the fixed symbol in
exactly one position. This property is precisely what isdezkto apply projection [18].

Lemma 6.13 If a CA(N; 2, k,v) exists that contains a pure constant row on symbohnd symbol
o appears exactly times in columnd,...,v — 1 and k, then aCA(N — 1;2,k + 1,v — 1) exists

having profile1v=!(v — 1)**0Y(N — 1 — v(v — 1))! and havingv — 1 pure constant rows. In
particular, if a (v, k, 1)-cover starter exists, then@A(k(v — 1);2, k + 1,v — 1) exists having profile
1Yo — 1)*0'((k — v+ 1)(v — 1))! and havingy — 1 pure constant rows.

Proof. Form theCA(N;2, k, v) so that the pure constant row is on symbel 1, and every other row
contains (at most) one— 1 among columngl1,....v — 2} U {k}. Rename symbols in each column,
always fixingv — 1, so that rows are constant on the first- 1 columns and contain— 1 in the last.
Delete the pure constant row on symbaol 1. Add a new column. For < ¢ < k, let R, be the set of
row indices of rows that contain— 1 in columne. Forl < ¢ < v — 1, in each row inR,. placec — 1

in the new column, and place a permutatioq@f...,v — 2,%} \ {¢ — 1} in columnc in the rows of
R.. Forv < ¢ < k, placex in each row ofR. both in columnec and in the new column. Far= k,
extend each row iR, to be pure constant. Then columhs..,v — 1 have 1x entry each; columns
v,...,k — 1 have at least — 1; columnk has none; and the added column as- 1 — v(v — 1).

|

As a construction for covering arrays, Lemma 6.13 is notlibruseful because & + 1,v — 1, 1)-
cover starter typically yields a smaller array. Howeveg, éinray constructed by projection has both a
full set of pure constant rows, and a ‘large’ profile.

6.4 Holey Transversal Designs

Let V' be a set of:n symbols partitioned inte setsV;, . .., V,,, each of sizéw. An ((nh)* —nh?) x k
arrayA is aholey transversal desigiTD(k; nh, h) if every symbol inA is in V/, and for every two
different columnsy, and~, of A and every two symbols € V; andy € Vj, exactly one row oA
containse in column~; andy in column~, if and only ifi # j. Whenx,y € V; for somei, there is
no row of A with x in column-~; andy in column-s.

By placing aCA(N;2, k, h) on the symbols o¥; for eachl < i < n, we obtain aCA((nh)? —
nh?) +nN;2,k, hn). Let us consider an application of this. In [1] it is shownttaaHTD(7; 2¢, 2)
exists whenevey is an odd prime power and< ¢ < 61. Because€CAN(2,7,2) = 6, we obtain that
CAN(2,7,2q) < 4¢® —4q+6q = 4¢*> +2q whenevey is an odd prime power arid< ¢ < 61. In fact,
we can do somewhat better. TH& Ds constructed in [1] have = [, x {0, 1} andV; = {i} x {0, 1}
fori € F,. The additive group of, is an automorphism group acting on the symbols. So choose any
row ((v1, 1), ..., (v7, 7). Under the action ofF,, this row generateg disjoint rows of theHTD.
These; rows use exactly half of the symbols in each column; in fatiemeverv, i) is in one of these
rows, (v, 1 — i) is not in any of them. Then in placing tii&\(6; 2, 7, 2) on symbols inV;, ensure that
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one of the rows uses none of the symbols in ¢lalisjoint rows already produced. In this way, we
produce a further disjoint row for eadh, to establish that there is@\(4¢* + 2¢; 2, 7, 2¢) having2q
disjoint rows.

Using the construction in [1], in addition to the roes, 1), . . ., (17, 7)) one can select another
row ((v4, (), .-, (W, ph)) with (p, ..., 7)) # (1, - .., p%). By selecting theCA(6;2,7,2) so that
(1 —p,...,1 —py)and(l — uf, ..., 1 — put) are two rows, which can always be done, a second set

of 2¢ disjoint rows can be found, that is disjoint from the firstegiablish:

Lemma 6.14 There is aCA(4¢* + 2¢; 2,7, 2q) having two disjoint parallel classes whenevgis an
odd prime power and < ¢ < 61.

Now let A be theHTD(7;2q,2) and letA’ be the result of interchanging the names of symiools)
and(v,1 — i) for everyr € F,. ThenA @ A’ is an(8¢* — 8¢) x 49 array with columns indexed by
{1,...,7} x {1,...,7}. For every two different column@y,, J;) and(~s, d,) and every two symbols

x € V; andy € V}, at least one row oA ® A’ containsr in column(yy, 6;) andy in column (v, &)
wheni # j. Whenz,y € V; for somei, there is no row oA ® A" with x in column(v4,6;) andy

in column(vz, d2), unlesst = y and eithery; = v, or 6; = d,. There is & x 70 array F' on two
symbols{o,, 02}, formed by including as columns each of t@ vectors containing each symbol
exactly four times. For every two columns Bf some row include$s;, o,) and some row includes
(09, 01). However, the pairéoy, o;) and(o,, 02) are covered if and only if the chosen columns do not
differ in each position. For each column Bf exactly one other column differs in each position; call
these arantipodal pair of columnsNow form an8 x 49 array F” as follows: Choose 49 columns 6%

and index them byf1,...,7} x {1,...,7}, so that if both columns of an antipodal pair are selected,
their column indicegy,, §;) and (1, &) satisfyy, = 4, or §; = d,. For each;, place a copy of”

on the symbols of/’. Together withA @ A’ these form &CA(8¢?; 2, 49, 2q).

There are2q(2q — 2) rows inA and thereforeq — 4 orbit representatives undgy. Thus the rows of

A ® A’ can be partitioned intéq — 4 parallel classes. Add a new column. Suppose that the syritbols
F,x{0,1} are{v,...,1,}. Inthe added column, in the rows for tftl parallel class, place symbol
v;. Then in the new column, in the rows for ti@; + 1)st parallel class, place each of the symbols
V1, ..., inONe row. For the remaining2q — 5) rows, placex in the new column. This establishes:

Lemma 6.15 There is aCA(8¢?; 2, 50, 2¢) having2q pure constant rows and profil&°(¢(2¢ — 5))!
whenevey; is an odd prime power and < ¢ < 61.

Using these, we obtain:

Lemma6.16 If 7 < g < 61, ¢ is an odd prime power, an2ly + 1 is a prime power, then there exists
a CA(8¢% + 2q; 2, 14q + 14, 2q) having2q disjoint rows, and aCA(8¢* + 2q + 1;2, 14q + 14, 2q).

Proof. Apply Theorem 6.10 using 8A((2q + 1)%2,2q + 2,2q + 1) and aCA(4¢* + 2q;2,7,2q)
having two disjoint parallel classes from Lemma 6.14. [ |
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7 Computational Construction of Profiles

As we have discussed, numerous computational methods leaved®veloped for the construction
of covering arrays. In each case, the methods have contsthtsa minimizing the number of tests

(rows), and have typically not been concerned with otherioget Stevens [45] and Stardom [44]

develop simulated annealing methods that seek disjoimts{ent) rows, and Cohen [12] employs
simulated annealing to construct covering arrays with aifipd pattern of “near-constant” rows.

Their methods could in principle be extended to consideiilpsoas well. We instead adapt a simulated
annealing method from [50] using a branch-and-bound praeet find flexible positions from [27].

7.1 Simulated Annealing

The general procedure to obtain different profiles for arcgigeCA consists of four basic steps. First,
make a small number of random changes 643 to produce an array of the same dimensions in
which a small number of pairs may not be covered. Then, usmglated annealing [50], convert this
quasi€A to aCA. Then, using the exact algorithm reported in [27], deteeftiofile of the (possibly)
new CA. Finally, if not recorded previously, register the new geofirhis can be iterated any number
of times.

In the implementation, a geometric cooling schedule is ugetiarts with an initial temperature 0.
This is repeatedly decremented by a factor.afetermined by a Markov chain of length= (Nkv)?.
The algorithm terminates when at least of one of the follgnanditions is met:

e the number of uncovered interactions is zero;

¢ the temperature reach&s'’;

e eleven consecutive Markov chains do not improve the ‘bedtiteon found; or
e atimeout of 4 minutes of computation is reached.

Using this procedure many profiles were detected. UsingCth@2; 2, 8, 6), a grand total of 36
different profiles were detected. Of these, 10 are not dot@ihy one of the others)'17, 021422,
031223, 031332, 04112132, 01242, 0°1'52, 0°2'42, 0°32, 0°62.

7.2 Post-optimization

Nayeri et al. [37] adopt a different strategy, using the observationsentiSn 3.4. They always
start with a covering array, and hence their method is desida optimize a covering array after
its construction by another means. Their key idea is to repdafill all don’t-care positions with

randomly selected values, then to identify the flexible pass, and finally to examine the flexible
positions one by one, changing each to a don’t-care positiboremains flexible at this point of the
computation. In their case, the goal is to construct anemtiw of don’t care positions, which can
then be eliminated. Whether or not the method succeedsmirglting rows in this way, after each
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iteration the specific pattern of don’t-care positions mhasirge. By keeping track of the profiles of
each intermediate covering array, we have found that asscwylering array can lead to many different
profiles.

A simple modification of the method in [37] enables one tottreany variants as well. Ensuring
that no element in a specific set of rows containsemtry or is permitted to have an entry changed
to x, the rows in this set are never changed. In this way we can raaeat of rowsforced so that
every solution produced by the algorithm always contairsftiiced rows. Hence the method can
find a variety of profiles for covering arrays with a specifiedrimum) number of constant rows, or
a specified (minimum) number of parallel classes, for examyle have employed this primarily in
cases when the number of constant rows is the maximum pessibl

We provide one example. We again consider@Aé42; 2, 8, 6), but require a specified numbeaf
pure constant rows. Again dominated profiles are not lisBetause a solution far pure constant
rows is also a solution far' < ¢ pure constant rows, solutions that are so implied are alstienn

Profiles
0216, 031%21, 041222, 0°1'2131, 0°23, 0632

041321

0315

051122, 073!
00112t

0*1*

OO WNEFE OO

The simulated annealing method explores a larger searde $pan does post-optimization, and this
may account for its success in finding a richer set of solstion

7.3 Some Results on Parallel Classes

Of particular importance for applying generalized direducts is the construction of covering ar-
rays with a parallel class, or two disjoint parallel class€seorems 6.12 and 6.14 yield some. For
example, there is &A(100;2,4,10) with two parallel classes and there 8§A4120;2,12,10) with
profile 10'2; hence there is 8A(200;2,48,10) with a parallel class. But effective apylima of the
constructions requires many small ingredients.

Tables 1, 2, and 3 give the best current upper bavp@dn CAN(2, &, v) for covering arrays withe
parallel classes fab < ¢ < 2,7 < v < 25, and3 < k£ < 50. We do not attempt to give detailed
authorities for each entry. When data for a specific valuk isf omitted, employ the results for the
next larger value ok. When an entry forV, is left blank, it can be determined by adding- 1 to the
value given forV;. The majority of the values given are computed using siredlannealing [50] or
post-optimization [37] on arrays from orthogonal array8][®rojection [18], cover starters [35], and
direct products. Arrays are available on request from thlecas.
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v| k No Ny NoJ k Ng Ni Na| k Nog Ni No| kK Ng Ny Ny

71 7 49 49 49 55 61 9 59 61 63 10 61 63 63
11 65 67 71 72 7313 71 76 81 14 76 79 84
15 79 84 82 86 8317 82 87 90 18 85 88 90
19 86 88 87 83 9022 83 88 90 23 90 90 90
26 90 90 91 91 9

8| 8 64 64 64 71 7810 76 77 8 78 79 80
13 84 88 96 101 10315 96 102 10 102 108 112
18 104 110 107 112 11220 108 112 11 112 112 113
22 112 113 113 113 11324 113 113 11 114 114 115
26 114 115 115 115 11928 115 118 12 119 119 120
72 120 120

9/ 9 81 81 81 89 9711 102 102 10 105 105 111
13 105 110 112 112 11415 118 123 12 118 125
17 125 133 129 136 14320 132 139 14 139 143 143
22 141 144 142 144 15025 144 144 15 145 145 152
28 146 151 147 151 15330 148 151 15 152 153 153
90 153 153

10| 4 100 100 102 102 102 6 102 105 108 113 114 116
8 115 115 115 116 11710 116 116 117 116 117 118
12 117 118 120 120 12014 127 136 14% 136 145 149
16 145 149 149 150 151 150 158 167 155 163 172
21 162 170 166 174 181 171 179 178 186 191
25 178 187 185 190 19127 190 190 19 190 191 191
30 190 191 191 191 19 191 192 19 198 199 200
39 199 199 200 200 20049 200 200 202 202 202 202

1111 121 121 121 131 14113 153 156 15¢ 155 157 159
15 158 160 161 162 163 171 181 184 177 183 191
19 178 187 186 196 20 192 200 20 192 201 210
23 200 209 203 212 22025 204 213 222 211 220 226
27 218 222 221 223 22 224 225 227 225 226 231
32 226 229 227 229 23135 229 231 231132 231 231 231

12| 6 144 144 144 147 150 162 163 163 163 163 164
10 163 164 164 164 165 164 165 16% 164 165 166
14 165 166 168 168 16 188 188 19¢ 188 199 210
18 199 210 210 221 22 221 226 227 227 228 229
22 227 237 232 242 24 232 242 252 242 252
27 245 255 254 264 262 272 27 269 276 276
42 276 276 276 276 28 276 279 282 288 288 288

13[13 169 169 169 181 193 215 217 21 217 217 218
17 217 217 217 229 23¢ 229 240 240 241 242 243
21 253 261 262 262 263 271 282 29 280 282 293
27 281 282 282 293 291 302 299 311
32 301 312 309 320 32f 317 325 32f 325 325 325

Table 1: Existence ofA(N; 2, k,v)s with O, 1, or 2 parallel classe®:< v < 13, k < 50
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v| kE Nyg Ni Ny No Ni No| k Ng Ny No| k Nog Ny Ny
14| 6 196 196 196 210 210 210 8 229 233 237 9 233 236 239
10 236 239 24111 238 240 24212 239 241 24313 240 242 243
14 241 243 24 242 244 24416 243 244 24%17 244 245 246
18 247 248 248 248 251 25220 272 273 27421 274 276 277
22 287 300 313 300 300 31324 306 314 32225 322 322 323
27 329 339 330 342 31 341 353 33 342 354

34 351 363 360 372 37836 370 378 37837 381 391 392
38 388 391 391 391 391 39242 392 392 39250 392 392

15| 6 225 225 224 246 247 249 8 248 248 250 9 249 249 251
10 249 250 25111 250 250 25213 251 251 25214 251 252 252
15 252 252 253 252 252 25317 252 254 25518 255 255 255
19 281 282 281 285 285 28621 331 332 33222 332 332 332
23 334 335 334 335 337 33825 351 360 26 365 379

28 376 387 383 396 33 394 407 34 405 418

36 406 419 418 431 38 428 441 45139 439 450 451
40 449 450 45198 450 450 45

16| 16 256 256 25 256 271 28618 286 287 28319 288 288 288
20 342 342 34 344 344 34622 346 347 34823 350 350 351
24 376 376 376 391 26 406 406 27 406 421

28 421 436 436 451 45%30 442 456 45636 442 456

38 466 480 49339 478 483 49340 483 483 49345 490 490 496
272 496 496 49
17| 17 289 289 28 289 305 32119 351 351 35120 352 352 352
21 354 354 35 357 357 35823 465 465 46724 467 467 468
25 469 469 47026 471 471 47227 473 473 47428 474 474 475
29 477 477 47730 479 479 48031 497 513 32 513 529 538
34 517 532 53 517 532 40 529 544 41 541 556 561
42 551 561 56151 560 561 56

18| 5 324 324 328 7 342 342 342 8 352 352 354 9 355 355 355
11 355 355 35 355 355 35716 356 357 35717 357 357 358
19 358 358 35 358 359 36021 360 360 36022 442 443 454
23 484 487 48 487 487 48825 489 489 48926 490 490 491
27 491 491 49128 494 494 49429 496 496 49830 545 545 554
31 545 545 55 545 558 56233 558 558 57134 579 596 613
35 593 609 61740 593 609 62642 595 611 44 603 615

45 615 627 627 639 64847 639 648 64850 647 648 648
19| 19 361 361 36120 361 379 39721 498 498 49824 500 500 500
25 502 502 507 504 504 50627 507 507 50828 509 509 511
29 572 572 573 574 574 57%31 576 576 57632 577 577 579
33 637 637 64034 638 638 64135 640 640 64336 645 645 647
45 660 673 69146 673 686 70347 686 699 70350 698 703 703

Table 2: Existence ofA(N; 2, k,v)s with 0, 1, or 2 parallel classe$d < v < 19,k < 50
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vl E Nyg N Ni Nyl k No Nt Nk Ng Ny Ny

20| 6 400 400 433 437 8 463 468 473 9 482 486 488
10 488 489 492 49512 493 495 49713 495 496 499
14 497 498 500 50216 500 501 50317 501 502 504
18 503 504 504 50620 505 506 50721 507 507 508
22 508 508 508 51024 511 511 51225 513 513 515
26 517 517 520 52228 588 588 59029 589 591 592
30 591 593 596 59632 659 660 66133 661 662 664
34 663 664 668 66836 679 679 69437 685 685 700
38 707 707 740 75543 754 770 45 755 774
47 756 774 779 50 775 793

21| 6 441 441 446 451 8 499 502 503 9 501 506 507
10 509 509 511 51112 512 512 51213 513 513 513
15 514 514 516 51618 517 517 51721 518 518 518
22 519 519 519 51924 521 521 52125 523 523 523
26 526 526 600 60028 603 603 60329 605 605 606
30 609 609 677 68032 680 680 68233 680 681 684
34 683 683 753 75536 754 754 75837 757 758 761
38 763 765 810 82641 838 838 83842 841 843 843
54 847 861

22| 5 484 484 488 506 506 506 8 520 521 521
9 521 522 523 522 523 52412 523 524 524
13 524 524 525 525 526 52723 526 526 527
24 526 527 528 609 609 60927 611 611 611
28 613 614 617 691 692 69231 696 697 697
32 698 698 700 77 777 77935 779 779 781
36 783 783 785 857 857 85839 860 860 861
40 862 862 868 905 905 90%43 912 912 912
44 925 946 956

23|23 529 529 551 616 616 61626 616 616 617
27 619 619 622 706 706 70630 708 708 708
31 712 712 714 793 793 79534 793 795 798
35 79% 799 802 877 877 88138 878 879 883
39 879 883 888 922 925 92542 926 931 933
44 1019 1019 1035

24| 8 576 576 585 619 619 61912 619 619 620
13 620 620 620 620 620 62218 621 621 622
22 621 621 622 622 622 62427 624 624 624
28 713 713 716 718 718 71931 722 722 724
32 808 808 810 812 812 81%35 814 814 819
36 896 896 896 904 904 90%39 907 907 909
40 951 951 955 1128 1128 112

25|25 625 625 649 719 722 72229 725 725 725
30 726 726 820 823 823 82433 826 826 827
34 828 828 914 917 917 92037 919 919 922
38 923 925 970 970 970 97450 1181 1200 1215

Table 3: Existence ofA(N; 2, k,v)s with O, 1, or 2 parallel classe20 < v < 25, k < 50
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8 Conseguences and Conclusions

In this section, we outline some applications of the comsimas of profiles. At [17], covering array
numbers are tabulated for strength two wileg v < 25, and3 < k& < 20000. (Explicit solutions
for many of these can be found at [49].) A majority of the relsat entries arise from the generalized
direct products given in this paper. Given the dramatic nemalbimprovements by generalized direct
product, it is infeasible to enumerate even a small fraabiothem. In Table 4, we provide summary
statistics prior to, and after, the application of the camions developed here.

Type Authority Before After
Computational: Simulated annealing [50] 245 208
Other 22 22
Direct: OAs and Projection [18] 231 231
Cover starter [35] 129 129
Other 7 7
Recursive: Cut-and-paste [21] 777 549
Direct Product 728 228
Generalized Direct Product - 1783
Total 2139 3257

Table 4. Extent of Changes

In principle, in the ranges specified the tables could cargai 19998 entries, but in practice a bound
for CAN(2, k, v) is reported only when it is better than the bound @\ (2, & + 1,v). Authorities
are partitioned into three categories: computationagaljrand recursive. Unfortunately, this division
is somewhat artificial. Results of direct constructionsehaften been improved by a computational
method, but are attributed here to the underlying direcstration. In the ‘after’ column, this oc-
curs in 158 of the cases using post-optimization [37] andi®@g using simulated annealing [50].
Similarly, results of direct and recursive constructioftem provide the initial array used in simulated
annealing, but the result here is attributed to the comyuntak method. Among the ‘other’ computa-
tional results, one finds earlier simulated annealing nuhp2, 20] and tabu search [39, 54], but the
very popular greedy methods do not account for a single bssttr

As expected, the generalized direct product improves up@sitnpler direct product. It also improves
guite often on the cut-and-paste method..Aendk increase, the generalized direct products provide
more improvements. F& < v < 7, cut-and-paste constructions typically remain more éffecand

for £ < 50 and largerw, combinations of direct and computational constructiorswaore effective.

To show the magnitude of the improvements obtained, Figudesplays results with and without
generalized direct product far= 14 and100 < k£ < 20000. Throughout this range, the generalized
direct product makes improvements, sometimes reducinguh®er of rows by 5%.

The success of the generalized direct product at improvmngreviously known bounds results both
from the flexibility of the construction, and the manner inig¥hother constructions can be adapted to
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Figure 6:CAN(2,k,14) for 100 < k£ < 20000

furnish ingredients. However, its most important aspetttasby investing more effort in ensuring that
small ingredients have appropriate profiles and many disjows, the construction can save many
rows in the larger arrays constructed. This compounds & theays are again used as ingredients.
Hence making covering arrays with many factors and few revesmplified by finding ‘better’ small
ingredient arrays. What we have shown is that, in many stnatbetter’ means having the right
profile.

The practical importance of the generalized direct pragldeeloped here is that by investing com-
putational effort in finding ‘good’ small ingredient arrgysraightforward constructions of covering
arrays with the fewest rows of those known can be employedddyze large arrays. This extends
the range of testing problems to ones with many factors,omitisacrificing complete coverage, and
reducing both the time to construct and the time to run theesponding test suite.

References

[1] R. J. R. Abel, F. E. Bennett, and G. Ge. The existence of FIMMOLS with equal sized holes.
Des. Codes Cryptogrr6(1-3):7-31, 2002.

[2] R.C. Bryce and C. J. Colbourn. Prioritized interactiesttng for pairwise coverage with seeding
and avoidsInformation and Software Technology Journd8:960-970, 2006.

[3] R. C. Bryce and C. J. Colbourn. The density algorithm fairwise interaction testingsoftware
Testing, Verification, and Reliabilifyt 7:159-182, 2007.



57 C. J. Colbourn / Journal of Algorithms and Computation2Ri3) PP. 31 - 60

[4] R. C. Bryce and C. J. Colbourn. A density-based greedgrélyn for higher strength covering
arrays.Software Testing, Verification, and Reliabilify9:37-53, 2009.

[5] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A frameworlgmfedy methods for constructing
interaction tests. IProceedings of the 27th International Conference on SaéWwagineering
(ICSE) pages 146-155, Los Alamitos, CA, 2005. IEEE.

[6] D. A. Bulutoglu and F. Margot. Classification of orthogdrarrays by integer programming.
Journal of Statistical Planning and InferenckE38:654—-666, 2008.

[7] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher. Cawgarrays of strength es. Codes
Crypt, 16:235-242, 1999.

[8] M. A. Chateauneuf and D. L. Kreher. On the state of strefitee covering arrays.. Combin.
Des, 10:217-238, 2002.

[9] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Pattone NETG system: An approach to
testing based on combinatorial desi¢fa8EE Transactions on Software Engineeri28:437-44,
1997.

[10] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Pattore démbinatorial design approach to
automatic test generatiolfEEE Software13:82—-88, 1996.

[11] D. M. Cohen and M. L. Fredman. New techniques for desigmjualitatively independent sys-
tems.J. Combin. Des6:411-416, 1998.

[12] M. B. Cohen.Designing test suites for software interaction testiRD thesis, The University
of Auckland, Department of Computer Science, 2004.

[13] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mdgd. Constructing test suites for
interaction testing. IfProc. Intl. Conf. on Software Engineering (ICSE 20Q#)ges 38-48, Los
Alamitos, CA, 2003. IEEE.

[14] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Constraogtstrength three covering arrays
with augmented annealin@piscrete Math, 308:2709-2722, 2008.

[15] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing intgian test suites for highly-
configurable systems in the presence of constraints: a graeproach. IEEE Transactions
on Software Engineerin@®4:633—-650, 2008.

[16] C. J. Colbourn. Combinatorial aspects of coveringysrde Matematiche (Cataniap8:121—
167, 2004.

[17] C.J. Colbourn. Covering array tables, 2005-2013.
http://www.public.asu.edw/ccolbou/src/tabby.



58 C. J. Colbourn / Journal of Algorithms and Computation2Ri3) PP. 31 - 60

[18] C. J. Colbourn. Strength two covering arrays: Exiseetables and projectiorDiscrete Math.,
308:772-786, 2008.

[19] C. J. Colbourn. Covering arrays and hash familiednfarmation Security and Related Combi-
natorics NATO Peace and Information Security, pages 99-136. IOSsP2011.

[20] C. J. Colbourn, G. Kéri, P. P. Rivas Soriano, and J.-€hl&e-Puchta. Covering and radius-
covering arrays: Constructions and classificatiddiscrete Applied Mathematic458:1158—
1190, 2010.

[21] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. E. Sha, G. B. Sherwood, and J. L. Yucas.
Products of mixed covering arrays of strength tdoCombin. Des.14:124-138, 2006.

[22] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. KuRefining the in-parameter-order
strategy for constructing covering arrayls.Res. Nat. Inst. Stand. Tech13:287—-297, 2008.

[23] L. Gargano, J. Korner, and U. Vaccaro. Sperner thesremdirected graphs and qualitative
independencel. Combinat. Theory (Ap1:173-192, 1992.

[24] L. Gargano, J. Korner, and U. Vaccaro. Sperner cajgacBraphs and Combinatori¢9:31-46,
1993.

[25] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating irapements to a meta-heuristic
search for constrained interaction testiggnpirical Software Engineerind.6:61-102, 2011.

[26] A. P. Godbole, D. E. Skipper, and R. A. Sunlgycovering arrays: upper bounds and Poisson
approximationsCombinatorics, Probability and Computin§:105-118, 1996.

[27] L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. &avigjdez. An exact approach to maxi-
mize the number of wild cards in a covering arrayPhoceedings of 10th Mexican International
Conference on Artificial Intelligence, MICAI 2012011.

[28] A. Hartman. Software and hardware testing using coioimal covering suites. In M. C.
Golumbic and I. B.-A. Hartman, editorBjterdisciplinary Applications of Graph Theory, Com-
binatorics, and Algorithmspages 237-266. Springer, Norwell, MA, 2005.

[29] A. Hartman and L. Raskin. Problems and algorithms fovetmg arrays. Discrete Math.
284:149-156, 2004.

[30] A. S. Hedayat, N. J. A. Sloane, and J. Stufk@mthogonal Arrays Springer-Verlag, New York,
1999.

[31] B. Hnich, S. Prestwich, E. Selensky, and B. M. Smith. §tcaint models for the covering test
problem.Constraints11:199-219, 2006.



59 C. J. Colbourn / Journal of Algorithms and Computation2Ri3) PP. 31 - 60

[32] G. O. H. Katona. Two applications (for search theory andh functions) of Sperner type
theoremsPeriodica Math, 3:19-26, 1973.

[33] D. Kleitman and J. Spencer. Families of k-independetg.®iscrete Math, 6:255-262, 1973.

[34] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence.OB/IPOD: Efficient test genera-
tion for multi-way software testingSoftware Testing, Verification, and Reliabiliy8:125-148,
2008.

[35] J. R. Lobb, C. J. Colbourn, P. Danziger, B. Stevens, aridides-Jimenez. Cover starters for
strength two covering arrayfiscrete Mathematig312:943-956, 2012.

[36] K. Meagher and B. Stevens. Group construction of coxgarrays.J. Combin. Des.13:70-77,
2005.

[37] P. Nayeri, C. J. Colbourn, and G. Konjevod. Randomizest@ptimization of covering arrays.
European Journal of Combinatoric84:91-103, 2013.

[38] C. Nie and H. Leung. A survey of combinatorial testilgCM Computing Surveyd3(2):#11,
2011.

[39] K. Nurmela. Upper bounds for covering arrays by tabudeaDiscrete Applied Mathematics
138:143-152, 2004.

[40] S. Poljak and Z. Tuza. On the maximum number of qualiedyi independent partitionsJ.
Combinat. Theory (AB1:111-116, 1989.

[41] A. Réyni. Foundations of ProbabilityWiley, New York, 1971.

[42] G. Roux.k-Propriétes dans les tableaux decolonnes: cas particulier de |a-surjectivié et de
la k-permutivie. PhD thesis, Université de Paris, 1987.

[43] N. J. A. Sloane. Covering arrays and intersecting codeSombin. Des.1:51-63, 1993.

[44] J. Stardom. Metaheuristics and the search for coveaimdy packing arrays. Master’s thesis,
Simon Fraser University, 2001.

[45] B. Stevens.Transversal Covers and Packing3hD thesis, Mathematics, University of Toronto,
1998.

[46] B. Stevens, A. C. H. Ling, and E. Mendelsohn. A directstouction of transversal covers using
group divisible designsArs Combin, 63:145-159, 2002.

[47] B. Stevens and E. Mendelsohn. New recursive methodsdnsversal coversl. Combin. Des.
7:185-203, 1999.



60 C. J. Colbourn / Journal of Algorithms and Computation2Ri3) PP. 31 - 60

[48] K. C. Tai and L. Yu. A test generation strategy for paswitesting. IEEE Transactions on
Software Engineerind28:109-111, 2002.

[49] J. Torres-Jimenez. Covering array tables, 2010-201tB://www.tamps.cinvestav. mxjtj/.

[50] J. Torres-Jimenez and E. Rodriguez-Tello. New uppe@nkds for binary covering arrays using
simulated annealingnformation Scienced85(1):137-152, 2012.

[51] Y. W. Tung and W. S. Aldiwan. Automating test case getiersfor the new generation mission
software system. IRroc. 30th IEEE Aerospace Conferenpages 431-437, Los Alamitos, CA,
2000. IEEE.

[52] J. Yan and J. Zhang. A backtracking search tool for aoicsing combinatorial test suitesl.
Systems Softwarg1:1681-1693, 2008.

[53] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays éfficient fault characterization in
complex configuration spacelcEE Transactions on Software Engineeridd.:20-34, 2006.

[54] L. Zekaoui. Mixed covering arrays on graphs and tabudealgorithms. Master’s thesis,
University of Ottawa, 2006.



