

Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Profiles of covering arrays of strength two

Charles J. Colbourn $^{\ast 1,2}$ and Jose Torres-Jimenez $^{\dagger 3}$

¹Arizona State University, P.O. Box 878809, , Tempe, AZ 85287-8809, U.S.A. ²State Key Laboratory of Software Development Environment,, Beihang University, Beijing 100191, China. ³CINVESTAV-Tamaulipas, Information Technology Laboratory,, Km. 6 Carretera Victoria-Monterrey,, 87276

Victoria Tamps., Mexico

ABSTRACT

Covering arrays of strength two have been widely studied as combinatorial models of software interaction test suites for pairwise testing. While numerous algorithmic techniques have been developed for the generation of covering arrays with few columns (factors), the construction of covering arrays with many factors and few tests by these techniques is problematic. Random generation techniques can overcome these computational difficulties, but for strength two do not appear to yield a number of tests that is competitive with the fewest known. Consequently, effective construction of covering arrays with many factors and few tests relies on recursive construction techniques.

ARTICLE INFO

Article history: Received June 10, 2013 Received in revised form October 20, 2013 Accepted November, 15, 2013 Available online December, 01, 2013

Keyword: covering array, interaction testing, direct product, simulated annealing.

AMS subject Classification: 05C38.

*Corresponding author:Charles J. Colbourn.

E-mail: charles.colbourn@asu.edu

[†]E-mail: jtj@cinvestav.mx

1 Abstract continued

Among these, a standard direct product has been particularly effective. Necessarily, any recursive method results in substantial duplication of coverage of pairs; by reducing this duplication when possible, the number of tests can sometimes be reduced. In order to reduce duplication, two key features of a covering array are exploited: the number of disjoint rows, and its profile (the distribution of flexible positions). First, the direct product construction is extended to employ different numbers of disjoint rows and different profiles. Then combinatorial and computational constructions for covering arrays with different profiles are developed. Finally some applications of the generalized direct product, with the various profiles so produced, are examined. Of key importance is that, quite frequently, the covering array with fewest tests does not arise as a product of ingredients with the fewest tests; rather, the utility of the ingredient depends in a crucial way on its profile.

2 Covering Arrays

Let N, k, t, and v be positive integers. Let C be an $N \times k$ array with entries from an alphabet Σ of size v; we typically take $\Sigma = \{0, \ldots, v - 1\}$. When (ν_1, \ldots, ν_t) is a t-tuple with $\nu_i \in \Sigma$ for $1 \le i \le t, (c_1, \ldots, c_t)$ is a tuple of t column indices $(c_i \in \{1, \ldots, k\})$, and $c_i \ne c_j$ whenever $\nu_i \ne \nu_j$, the t-tuple $\{(c_i, \nu_i) : 1 \le i \le t\}$ is a t-way interaction. The array covers the t-way interaction $\{(c_i, \nu_i) : 1 \le i \le t\}$ if, in at least one row ρ of C, the entry in row ρ and column c_i is ν_i for $1 \le i \le t$. Array C is a covering array CA(N; t, k, v) of strength t when every t-way interaction is covered.

Suppose that the *i*th factor takes values from a set Σ_i of size v_i , not containing the special value \star . A *mixed covering array*, MCA $(N; t, k, v_1v_2 \cdots v_k)$, is a collection of N rows such that for any t distinct column indices, i_1, i_2, \cdots, i_t , every t-tuple from $\Sigma_{i_1} \times \Sigma_{i_2} \times \cdots \times \Sigma_{i_t}$ occurs in columns i_1, i_2, \cdots, i_t in at least one of the N rows.

Covering arrays are employed in numerous testing applications in which experimental factors interact to detect the presence of faults (see [16, 28] and references therein), and in many related applications (see [19] for a recent list). Applications to interaction testing, in particular to testing component-based software, have driven much recent research; see [9, 10, 13, 15, 38, 53]. In applications in testing, columns of the array correspond to experimental *factors*, and the symbols in the column form *values* or *levels* for the factor. Each row specifies the values to which to set the factors for an experimental *run*. The array is 'covering' in the sense that every *t*-way interaction appears in at least one run. Figure 1 gives an example of a covering array with N = 26 rows, 15 factors having four levels each, and strength two. Consider, for example, the 2-way interaction $\{(1,2), (2,0)\}$; it is covered in the seventh and eighth rows. The reader can check that all of the $4^2 {\binom{15}{2}} = 1680$ 2-way interactions are covered. The \star entry can be replaced by any symbol, and the result is a CA(26;2,15,4).

Testing cost is incurred for every test to be run, so a primary objective is to produce a test suite (covering array) with as few tests as possible. At the same time, if interactions are the sources of faults in the system, complete coverage of the interactions is important. When the number of factors is small, between 5 and 50, one can rely on powerful computational methods. But as the number

2	2	0	0	3	3	1	0	1	3	2	3	3	0	0
0	3	0	2	1	0	1	1	2	3	3	0	1	2	2
1	1	3	3	0	0	2	3	2	3	1	3	3	0	2
0	0	3	1	2	3	2	2	1	1	0	3	1	2	2
1	3	2	1	0	2	3	0	3	1	0	3	2	1	1
1	0	1	2	3	1	0	2	0	0	3	3	3	3	3
2	0	2	2	1	1	3	2	3	3	0	1	2	0	2
2	0	3	2	1	1	0	3	2	1	1	2	3	1	1
3	1	2	2	0	3	0	0	1	2	3	0	2	2	0
3	2	1	1	3	0	3	3	2	2	0	2	1	3	0
2	1	2	3	0	0	1	2	3	0	0	2	1	2	3
3	3	2	1	2	2	3	1	3	0	0	0	3	3	2
3	3	0	0	2	1	2	2	3	2	1	1	1	1	0
3	0	3	3	1	2	1	1	0	2	2	3	0	1	0
2	3	1	1	2	2	0	1	0	3	3	1	1	3	1
3	2	1	0	3	3	2	1	0	1	3	2	2	0	1
0	2	1	3	0	1	0	0	3	3	2	2	0	1	2
0	1	0	3	2	0	1	3	1	0	2	*	2	1	1
1	3	0	1	2	2	3	0	1	2	2	2	1	0	3
0	1	2	0	3	2	3	3	0	2	1	1	3	2	2
0	1	0	3	0	0	1	1	1	1	2	1	0	3	3
1	2	3	0	1	3	2	0	2	0	1	1	2	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	0	0	2	0
2	2	2	2	2	2	2	2	2	2	2	0	0	2	1
3	3	3	3	3	3	3	3	3	3	3	0	0	1	3

Figure 1: CA(26;2,15,4)

of factors increases to hundreds or thousands, these computational methods either consume too much execution time, or fail to find covering arrays of competitive size. We advocate a different strategy, that develops powerful recursive constructions to make covering arrays with many factors from ingredient arrays with fewer. While stated in this paper as theorems, each has a constructive proof that yields an easy algorithm to produce a large covering array and to verify that it is one. These constructive techniques enable us to adapt computational methods to find *better* small ingredient arrays, letting the recursive method exploit these to make large arrays as needed. In order to pursue this, we adopt a combinatorial viewpoint, and rely heavily on that literature. Therefore we discuss background in the combinatorics of covering arrays next.

We denote by CAN(t, k, v) the minimum N for which a CA(N; t, k, v) exists, because fewer rows means fewer tests to be run. Because CAN(1, k, v) = v, $CAN(t, k, v) = v^t$ when k < t, and CAN(t, k, 1) = 1, we generally assume that $k \ge t \ge 2$ and $v \ge 2$. Nevertheless, the definition employed herein allows t, k, and v to be arbitrary positive integers.

The determination of CAN(t, k, v) has been the subject of much research; see [8, 16, 28, 29] for survey material. For fixed t and v, only CAN(2, k, 2) has been determined exactly [32, 33, 41]. In fact, an explicit construction of covering arrays with the fewest rows when t = v = 2 is given there. Beyond this, when t and v are fixed, exact numbers are known only for a few small values of k (see [20], for example). Therefore most effort has focussed on constructions of covering arrays that have 'few' rows, that is, on upper bounds for CAN(t, k, v). Asymptotic results can be used to determine the growth rate of CAN(t, k, v) for fixed t and v as a function of k (see [23, 24] for t = 2 and [26] in general, for example). Nevertheless the explicit construction of covering arrays is required for many of the applications mentioned. In this paper, we concentrate on existence for strength t = 2.

Random techniques, while easily implemented, do not appear to be competitive with combinatorial and computational methods [19]. Orthogonal arrays provide a number of specific examples [30]; a covering array $CA(v^2; 2, k, v)$ is an *orthogonal array* of strength two and index one. In [18, 46], the structure of the finite field leads to a projection technique that reduces the number of symbols while increasing the number of columns. Computational methods produce many more arrays. For example, simulated annealing [14, 20, 25, 44, 45], tabu search [39], backtracking [52], integer programming [6, 43], and constraint satisfaction [31] have proved successful. Local optimization can often reduce the number of rows required [37]. However, the most prevalent are greedy methods. One basic strategy adds one test at a time [5, 9, 51]; when a suitable test is chosen, it provides a strong theoretical guarantee on the size of the test suite produced [3, 4], and it provides a natural method to prioritize tests [2]. A second greedy strategy adds one factor at a time [22, 34, 48]. Assuming the presence of certain automorphisms also can reduce the difficulty of computational search [7, 18, 35, 36].

An extensive amount of research has concentrated on recursive methods. We focus on strength two here (for higher strengths, see [19] and references therein). Cut-and-paste (or Roux-type, after Roux [42]) constructions operate by juxtaposing copies of smaller covering arrays. For strength two, the prototypical method of this type is given in [21], and a small extension is described in [19]. These methods rely on the presence of "nearly disjoint" rows in the array, and hence exploit the structure of the ingredient arrays in an essential manner. The direct product, in its simplest form, does not exploit the structure of the ingredient arrays. Consequently it rarely outperforms the Roux-type methods [21].

However, as we shall see, controlling the structure of the ingredients in the direct product can not only make it competitive, it provides consistent and useful improvements on all other available techniques. The remainder of the paper is organized as follows. In Section 3, required definitions are introduced. In Section 4, the generalized direct product is developed. Section 5 examines the profiles of arrays produced by generalized direct product, and by the cut–and–paste method. In Section 6, direct construction of covering arrays with different profiles is explored, adapting a variety of known constructions. In Section 7, computational constructions of covering arrays with different profiles are developed, using simulated annealing and a post-optimization method. Finally, in Section 8, consequences for the existence of covering arrays are briefly considered.

3 Properties of covering arrays

In order to extend the direct product construction, we develop some further definitions and notation. First we extend the definition of covering arrays to permit a symbol that is not used for coverage, as follows: An $N \times k$ array, each cell of which contains one of v distinct symbols or a different symbol \star , is a *covering array* CA(N; t, k, v) of *strength* t when, for every way to select t columns, each of the v^t possible tuples containing no \star arises in at least one row.

3.1 Compatibility

A CA $(M; 2, \ell, v)$ B and a CA $(M'; 2, \ell', v)$ B' are (L, r)-compatible if for every $0 \le \sigma < r, 1 \le j \le \ell$, and $1 \le j' \le \ell'$, there exists a ρ with $1 \le \rho \le L$ so that the entry in cell (ρ, j) of B is σ and the entry in cell (ρ, j') of B' is σ .

3.2 Constant Rows

Two rows of a CA(N; t, k, v) are *disjoint* if, in each column, either they do not agree or both contain \star . A set of r rows in which every two are disjoint is a *partial parallel class* on r rows; two partial parallel classes are *disjoint* if they have no rows in common. A *parallel class* is a partial parallel class on v rows. A row is *constant* if, for some symbol v, every entry in the row is either v or \star . A row is *pure* if it contains no \star . A row is *pure constant* if it is constant and pure. Because symbols within each column can be permuted independently, one has:

Observation 3.1 If a CA(N; t, k, v) exists having ρ rows that are pairwise disjoint, there is a CA(N; t, k, v) having ρ constant rows. These can without loss of generality be assumed to be on any ρ of the v symbols.

In a *standardized* CA(N; t, k, v) one row is constant. Any CA(N; t, k, v) can be rewritten by choosing a column, and applying an arbitrary permutation to the symbols in the column.

Observation 3.2 If a CA(N; t, k, v) exists, then a standardized CA(N; t, k, v) exists.

3.3 Profiles

The *profile* (d_1, \ldots, d_k) of an $N \times k$ array is a k-tuple in which the entry d_i is the number of \star entries in the *i*th column. A single covering array can often admit many different profiles, by filling the \star cells and changing a (possibly different) set of flexible cells to \star . A profile (d_1, \ldots, d_k) dominates profile (e_1, \ldots, e_k) when $d_i \ge e_i$ for $1 \le i \le k$, and we write $(d_1, \ldots, d_k) \ge (e_1, \ldots, e_k)$ in this case.

3.4 Flexible positions

In general, some t-way interactions may be covered more than once. Now consider each row r of a CA(N; t, k, v); for every subset C of t columns, let T be the t-way interaction that is covered in row r and the columns of C. If T is not covered in any other row of the array, each of the cells $\{(r, c) : c \in C\}$ is *necessary*. All cells that are not necessary in this way are *flexible*. If we ignore a flexible cell (r, c) in the computation of coverage, all t-way interactions remain covered. By convention, when flexible cell (r, c) is to be ignored, we place the entry \star ("don't care") in cell (r, c). In general, one cannot simply convert all flexible cells to \star , because two flexible cells can each rely on the value in the other for its flexibility. Nevertheless, one can repeatedly choose any one flexible cell to convert to \star , and then recalculate the flexible cells for this modified CA, until none remain.

3.5 Examples

Figure 2 gives examples to illustrate the definitions given. Each of the five CAs shown is a CA(14;2,7,3) derived from the first one shown. It has one constant row, the thirteenth; the others are not constant. Because it has a constant row, it is standardized. Rows 11 and 13 are disjoint; indeed interchanging symbols 0 and 1 in column 7 would make row 11 constant, while keeping row 13 constant. Hence there is an equivalent CA(14;2,7,3) with two constant rows.

In the second array shown, the flexible entries are shown in boxes, while the necessary ones are shown without. For example, the six pairs involving the entry in the first row and first column are all covered in rows 5, 13, or 14; hence this entry is flexible. The entry in the second row and first column is necessary because the pair with 0 in column 1 and 2 in column 4 appears only in this row. As remarked earlier, we cannot change all flexible positions to \star . If we were to do so, the pair (2,2) would no longer be covered in the first two columns, for example.

The third, fourth, and fifth arrays are all CA(14;2,7,3)s in which certain flexible positions have been changed to don't-care positions, so that there remain no flexible positions. Their profiles are (2,1,2,1,1,1,1), (2,1,2,1,2,1,1), and (2,2,2,2,2,2,2,2), respectively. Profile (2,1,2,1,2,1,1) dominates (2,1,2,1,1,1,1), and is dominated by (2,2,2,2,2,2,2,2,2). The fifth array has two rows that contain only \star . These can both be deleted to form a CA(12;2,7,3). Similarly, a row can be removed immediately from the fourth array shown, while the third array has no row containing only don't-care positions.

2 2 2 2 0 0 1	2	2	2	2	0	0	1	2	2	2	2	0	0	1	2	2	2	2	0	0	1	*	\star	*	*	*	*	*
0 0 2 2 2 2 2 2	0	0	2	2	2	2	2	0	0	2	2	2	2	2	0	0	2	2	2	2	2	0	0	2	2	2	2	2
1 1 2 1 2 0 1	1	1	2	1	2	0	1	1	1	2	1	2	0	1	1	1	2	1	2	0	1	1	1	2	1	2	0	1
0 1 2 0 1 1 0	0	1	2	0	1	1	0	0	1	2	0	1	1	0	0	1	2	0	1	1	0	0	1	2	0	1	1	0
2 2 1 0 2 0 2	2	2	1	0	2	0	2	2	*	1	0	2	0	2	2	2	1	0	2	0	2	2	2	1	0	2	0	2
2 1 0 2 1 2 2	2	1	0	2	1	2	2	2	1	0	2	1	2	2	2	1	0	2	1	2	2	2	1	0	2	1	2	2
$1 \ 2 \ 0 \ 0 \ 0 \ 2 \ 0$	1	2	0	0	0	2	0	1	2	0	0	0	2	0	1	2	0	0	0	2	0	1	2	0	0	0	2	0
0 2 1 1 1 2 1	0	2	1	1	1	2	1	0	2	1	1	1	2	1	0	2	1	1	1	2	1	0	2	1	1	1	2	1
$1 \ 0 \ 1 \ 2 \ 1 \ 0 \ 0$	1	0	1	2	1	0	0	1	0	1	2	1	0	0	1	0	1	2	1	0	0	1	0	1	2	1	0	0
$2 \ 0 \ 0 \ 1 \ 2 \ 1 \ 0$	2	0	0	1	2	1	0	2	0	0	1	2	1	0	2	0	0	1	2	1	0	2	0	0	1	2	1	0
0000001	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1
1 1 1 1 0 1 2	1	1	1	1	0	1	2	1	1	1	1	0	1	2	1	1	1	1	0	1	2	1	1	1	1	0	1	2
2 2 2 2 2 2 2 2	2	2	2	2	2	2	2	*	2	*	*	2	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
2 2 2 2 0 1 1	2	2	2	2	0	1	1	*	2	*	2	*	1	1	*	2	*	2	*	1	1	2	2	2	2	0	1	1

Figure 2: Examples of a CA(14;2,7,3)

4 Generalized direct products

37

In this section, a general recursive construction is developed, along with many specializations. Section 5 then develops constructions for ingredients to be used in applying the results. We start with the simplest direct product, essentially introduced in [11, 40, 47]; we employ an array operation \otimes depicted in Figure 3.

Theorem 4.1 [40] When a CA(N; 2, k, v) and a $CA(M; 2, \ell, v)$ both exist, a $CA(N+M; 2, k\ell, v)$ also exists.

Proof. Let $A = (a_{ij})$ be a CA(N; 2, k, v) and let $B = (b_{ij})$ be a $CA(M; 2, \ell, v)$. Form an $(N+M) \times k\ell$ array $C = (c_{i,j}) = A \otimes B$ by setting $c_{i,(f-1)k+g} = a_{i,g}$ for $1 \le i \le N$, $1 \le f \le \ell$, and $1 \le g \le k$. Then set $c_{N+i,(f-1)k+g} = b_{i,f}$ for $1 \le i \le M$, $1 \le f \le \ell$, and $1 \le g \le k$. In essence, k copies of $B = (b_{ij})$ are being appended to ℓ copies of $A = (a_{ij})$ as shown in Figure 3. Because two different columns of C arise either from different columns of A or from two different columns of B, the result is a $CA(N + M; 2, k\ell, v)$.

Stevens [45] improved on this by exploiting constant rows. Exploiting both "don't care" cells and constant rows is considered in [19, 21]; we develop general mechanisms for doing so here. We suppose that a factor with v values always takes on values from $\{0, \ldots, v - 1\}$, and hence the corresponding column of the array contains only these symbols, and possibly \star .

Theorem 4.2 Let $v, r_1, r_2, r_3, s_1, s_2, s_3, N, M$ be positive integers satisfying $r_1 + r_2 \le v, s_1 \le v - r_1$, $s_2 \le r_1$, and $M \ge s_1 + s_2 + s_3$. Suppose that there exist

	a_{11}	a_{12}	•••	a_{1k}	•••	a_{11}	a_{12}	•••	a_{1k}
	a_{21}	a_{22}	•••	a_{2k}	• • •	a_{21}	a_{22}	•••	a_{2k}
$N \ {\rm rows}$	÷					÷			
	a_{N1}	a_{N2}	•••	a_{Nk}	• • •	a_{N1}	a_{N2}	•••	a_{Nk}
	b_{11}	b_{11}	• • •	b_{11}	• • •	$b_{1\ell}$	$b_{1\ell}$	•••	$b_{1\ell}$
	b_{21}	b_{21}	•••	b_{21}	• • •	$b_{2\ell}$	$b_{2\ell}$	•••	$b_{2\ell}$
M rows	÷					:			
	b_{M1}	b_{M1}	•••	b_{M1}	• • •	$b_{M\ell}$	$b_{M\ell}$	•••	$b_{M\ell}$

Figure 3: The structure of $A \otimes B$

- a CA(N; 2, k, v), A, with profile ($d_1 + e_1, \ldots, d_k + e_k$), having two disjoint partial parallel classes, one on $r_1 + r_2$ pure rows and the other on r_3 pure rows;
- for each $1 \le i \le k$ and some $0 \le \delta_i \le v r_1 s_1$, a $CA(M + d_i + \delta_i; 2, \ell_i, v)$, B_i , with profile $(\gamma_{i1}, \ldots, \gamma_{i\ell_i})$, in which
 - the first s_2 rows are pure constant on symbols $\{0, \ldots, s_2 1\}$ and the last $s_1 + \delta_i$ rows are pure constant on symbols $v s_1 \delta_i, \ldots, v 1$;
 - rows $s_2 + 1, \ldots, s_2 + s_3$ form a partial parallel class of s_3 pure rows; and
 - for every $1 \le i_1 < i_2 \le k$, B_{i_1} and B_{i_2} are $(M s_1, r_1)$ -compatible.

Let $\mu = \max(1, r_2 + s_2, r_3, s_3)$. Let L be the list with entries $e_i + \gamma_{ij}$ for $1 \le i \le k$ and $1 \le j \le \ell_i$. Then there exists a CA $(N + M - r_1 - s_1; 2, \sum_{i=1}^k \ell_i, v)$ having μ constant rows and profile L.

Proof. Permute symbols and rows of A so that the $r_1 + r_2$ disjoint pure rows form r_1 pure constant rows on $\{0, \ldots, r_1 - 1\}$ as the last r_1 rows and r_2 pure constant rows on $\{v - r_2, \ldots, v - 1\}$ as the first r_2 rows; remove the last r_1 rows to form A' with $N - r_1$ rows.

first r_2 rows; remove the last r_1 rows to form A' with $N - r_1$ rows. Form an array C with $N + M - r_1 - s_1$ rows and $\sum_{i=1}^k \ell_i$ columns, indexing columns as (c, j) for $1 \le c \le k$ and $1 \le j \le \ell_i$. Fill the first $N - r_1$ rows in column (c, j) as a copy of column c of A'. For $c = 1, \ldots, k$, let R_c be the indices of the d_c rows in which A' contains a \star in column c of A. For $1 \le c \le k$, $1 \le j \le \ell_c$, and $1 \le \rho \le M - s_1$ place in row $N - r_1 + \rho$ and column (c, j) of C the entry in cell (ρ, j) of B_i. Then let $\rho_1, \ldots, \rho_{d_c}$ be the entry in cell $(M - s_1 + x, j)$ of B_i.

Consider columns (i_1, j_1) and (i_2, j_2) of the result. When $i_1 = i_2$, all pairs of the form (σ, σ) are covered in the first $N - r_1$ rows excluding those in R_{i_1} . Then in rows R_{i_1} and the last $M - s_1$ rows, all remaining pairs are covered because two different columns of B_{i_1} are selected (and $\delta_i \leq v - r_1 - s_1$). So suppose that $i_1 \neq i_2$. The first $N - r_1$ rows cover all pairs except possibly for (σ, σ) when $0 \leq \sigma < r_1$, which are covered by the remaining rows as a consequence of compatibility.

Consider the largest number μ of constant rows. By Observation 3.1, $\mu \ge 1$. In the result, rows $1, \ldots, r_2$ are constant on symbols $v - r_2, \ldots, v - 1$. Rows $N - r_1 + 1, \ldots, N - r_1 + s_2$ are constant on the symbols $0, \ldots, s_2 - 1$. So $\mu \ge r_2 + s_2$. Because A contains a partial parallel class on s_3 rows, and these rows are all pure, they yield a partial parallel class in C of the same size; hence $\mu \ge r_3$. Because $M \ge s_1 + s_2 + s_3$, and each B_i contains a partial parallel class of size s_3 , C also contains a partial parallel class of the same size; hence $\mu \ge s_3$.

Theorem 4.2 is quite general, but consequently it can be challenging to verify all of the conditions required on the ingredients. Therefore we state some corollaries obtained by specializing the parameters. Usually we take $r_3 = s_3 = 0$, so the disjoint partial parallel classes are not needed. Compatibility poses the most severe constraint, so the easiest application arises when all of the {B_i} are identical:

Corollary 4.3 If a CA(N; 2, k, v) with r disjoint rows and a CA(M; 2, ℓ , v) with s disjoint rows both exist, then a CA($N + M - \min(v, r + s); 2, k\ell, v$) exists having $\min(1, r + s - v)$ constant rows.

Proof. A CA(N; 2, k, v) with r disjoint rows yields a CA(N; 2, k, v) with r pure constant rows; take $r_1 = \min(r, v-s)$ and $r_2 = r-r_1$. Take $s_1 = s$ and $s_2 = 0$, and write the CA $(M; 2, \ell, v)$ with s disjoint rows as a CA $(M; 2, \ell, v)$, B, in which the last s rows are constant on the symbols $v - s, \ldots, v - 1$, in that order. Take $d_i = e_i = \delta_i = 0$ and $B_i = B$ for $1 \le i \le k$. Apply Theorem 4.2. If $r_2 = 0$, one row can nonetheless be made constant.

Corollary 4.4 Suppose that A is a CA(N; 2, k, v) having r pure constant rows and profile (d_1, \ldots, d_k) . Let $0 \le s \le v$ be an integer. Further suppose that for each $1 \le i \le k$ and some $0 \le \delta_i \le v - s$, there exists a CA($M + d_i + \delta_i; 2, \ell_i, v$), B_i, having $s + \delta_i$ constant rows. Then there exists a CA($N + M - s; 2, \sum_{i=1}^k \ell_i, v$) having r constant rows.

Proof. Apply Theorem 4.2 using $r_1 = 0$, $r_2 = r$, $s_1 = s$, and $s_2 = 0$. Because $r_1 = 0$, compatibility holds trivially.

Corollary 4.5 Suppose that there exists a CA(N; 2, k, v), A, with profile (d_1, \ldots, d_k) , having $r_1 + r_2$ pure constant rows. Let $s_2 = r_1$ and $0 \le s_1 \le v - r_1$. Further suppose that for each $1 \le i \le k$ and some $0 \le \delta_i \le v - r_1 - s_1$, there exists a $CA(M + d_i + \delta_i; 2, \ell_i, v)$, B_i , having $s_1 + s_2 + \delta_i$ constant rows. Then there exists a $CA(N + M - r_1 - s_1; 2, \sum_{i=1}^k \ell_i, v)$ having $r_2 + s_2$ constant rows.

Proof. Apply Theorem 4.2. Because $s_2 \ge r_1$, compatibility holds.

5 Recursive Constructions

In order to develop applications of Theorem 4.2, we examine profiles of covering arrays. As we have seen, Theorem 4.2 itself can be used to make a variety of profiles. The other main recursive construction, the cut–and–paste method, can also be employed.

Consider a CA(N; 2, k_1+k_2 , v), shown in Figure 4. The arrays A₁, A₂, and X are $(N-v) \times k_1$, $(N-v) \times k_2$, and $v \times k_2$, respectively. Array D is a $v \times k_1$ has a specific structure, namely that every column is a permutation of $\{1, \ldots, v\}$. A CA(N; 2, $k_1 + k_2$, v) admitting such a partition is a *partitioned covering array* PCA(N; 2, (k_1, k_2) , v). (Figure 1 gives a PCA(26;2,(11,4),4).) Without loss of generality D can be assumed to be the matrix P in which each column is the identity permutation. When q is a prime power, an orthogonal array with the maximum number of factors yields an PCA(q^2 ; 2, (q, 1), q).

Figure 4: A partitioned covering array (PCA)

The main cut–and–paste construction for covering arrays of strength two is established in [21]; we give a small extension of it proved in [19]:

Theorem 5.1 If a PCA(N; 2, $(k_1, k_2), v$) and a PCA(M; 2, $(\ell_1, \ell_2); v$) both exist, then a PCA($N + M - v; 2, (k_1\ell_1, k_1\ell_2 + k_2\ell_1), v$) also exists.

The construction follows. Take a PCA(N; 2, $(k_1, k_2), v$) with a partition as in Figure 4 into A₁, A₂, D and X; and an PCA(M; 2, $(\ell_1, \ell_2), v$) with partition B₁, B₂, E, and Y. Without loss of generality, suppose that D and E consist of column identity permutations, and write each as P. Further suppose that each of the columns of X and Y has the property that the i + 1st entry does not exceed i.

Form an array as in Figure 5. In the products of the form $A_i \otimes B_j$, the first N - v rows arise from A_i while the next M - v arise from B_j , as shown in Figure 3. Here $\ell_1 X$ is obtained by repeating the array $X \ell_1$ times and $k_1(Y)$ is obtained by repeating each column of $Y k_1$ times. P is a $v \times k_1 \ell_1$ matrix of (column) identity permutations.

$A_1\otimesB_1$	$A_2\otimesB_1$	$A_1\otimesB_2$
Р	$\ell_1 X$	$k_1(Y)$

Figure 5: The product of two PCAs

Theorem 5.1 does not exploit don't care positions in either array. In a sense, this is a primary reason why the generalized direct product is able to make the improvements that we have found. However, cut–and–paste preserves (and indeed inflates) don't care positions. Indeed the following employs an easy analysis of the don't care positions that must arise in the resulting array:

Theorem 5.2 Suppose that a PCA(N; 2, $(k_1, k_2), v$) A partitioned into into A₁, A₂, D and X exists, and that there are d_i don't care positions in column i of A₁ for $1 \le i \le k_1$; d_i don't care positions in column i of A₂ for $k_1 < i \le k_1 + k_2$; and e_i don't care positions in column i of X for $k_1 < i \le k_1 + k_2$. Suppose that a PCA(M; 2, $(\ell_1, \ell_2), v$) B partitioned into into B₁, B₂, E, and Y exists, and that there are δ_j don't care positions in column j of B₁ for $1 \le j \le \ell_1$; δ_i don't care positions in column j of B₂ for $\ell_1 < j \le \ell_1 + \ell_2$; and ε_i don't care positions in column j of X for $\ell_1 < j \le \ell_1 + \ell_2$. Form a list L of $(k_1 + k_2)(\ell_1 + \ell_2) - k_2\ell_2$ entries, containing $d_i + \delta_j$ for $1 \le i \le k_1$ and $1 \le j \le \ell_1$; $d_i + e_i + \delta_j$ for $k_1 < i \le k_1 + k_2$ and $1 \le j \le \ell_1$; and $d_i + \delta_j + \varepsilon_j$ for $1 \le i \le k_1$ and $\ell_1 < j \le \ell_1 + \ell_2$. Then a PCA(N + M - v; 2, $(k_1\ell_1, k_1\ell_2 + k_2\ell_1), v$) with profile L exists.

6 Direct Constructions of Profiles

In order to apply generalized direct products effectively, ingredients are needed that have suitable combinations of constant rows and profiles. Moreover, to make suitable ingredients using a recursive construction, smaller ingredients are then needed. Here we examine some direct constructions to form basic ingredient arrays.

6.1 Fusion

An easy way to form don't care positions is to form a covering array on a larger number of symbols and then omit the 'extra' symbols.

Theorem 6.1 Suppose that an $MCA(N; 2, k, (v_1, ..., v_k))$ exists that

- has profile (d_1, \ldots, d_k) ,
- has $\rho \leq v_c 1$ pure constant rows on symbols $\{0, \ldots, \rho 1\}$, and
- *in which the cth column contains* $r_{\sigma c}$ *occurrences of* σ *for* $\sigma \in \{0, \ldots, v_c 1\}$ *.*

Let $\varepsilon(\sigma) = 1$ if $0 \le \sigma < \rho$, 0 otherwise. Let $\delta_c = \max\{r_{\sigma c} - \varepsilon(\sigma) : \sigma \in \{0, \dots, v_c - 1\}\}$. Then an $MCA(N; 2, k, (v_1, \dots, v_{c-1}, v_c - 1, v_{c+1}, \dots, v_k))$ exists with profile $(d_1, \dots, d_{c-1}, d_c + \delta_c, d_{c+1}, \dots, d_k)$ having ρ pure constant rows on symbols $\{0, \dots, \rho - 1\}$.

Proof. Choose a symbol σ for which $r_{\sigma c} - \varepsilon(\sigma) = \delta_c$. Interchange symbols σ in $v_c - 1$ in column c. Replace all occurrences of $v_c - 1$ in column c by \star . If $\sigma < \rho$, replace the single star in the constant row containing σ by σ to restore the pure constant row.

After each application of Theorem 6.1, additional flexible positions may arise both in column c and in other columns, and converting these to \star may enable additional reduction in a further application. The particular selections made can affect the benefit from this, so we state a conclusion for covering arrays that holds even when additional \star entries are not deduced.

Corollary 6.2 Let A be a CA(N; 2, k, v) on symbol set $\{0, \ldots, v-1\}$ and columns $\{1, \ldots, k\}$, with profile (d_1, \ldots, d_k) , in which symbol i appears in column c exactly r_{ic} times. For $1 \le c \le k$, let ψ_c be a permutation on $\{0, \ldots, v-1\}$ for which $r_{\psi_c(j-1),c} \le r_{\psi_c(j),c}$ for 0 < j < v. Then for $2 \le x < c$, there is a CA(N; 2, k, x) with profile $(d_1 + \sum_{j=x}^{v-1} r_{\psi_1(j),1}, \ldots, d_k + \sum_{j=x}^{v-1} r_{\psi_k(j),k})$.

Proof. Apply Theorem 6.1, taking the CA to have no pure constant rows, to remove v - x symbols from each column.

Corollary 6.3 If a CA(N; 2, k, v) with profile (d_1, \ldots, d_k) exists, then for $2 \le x \le v$, a CA(N; 2, k, x) with profile $(d_1 + \lceil \frac{(v-x)(N-d_1)}{v} \rceil, \ldots, d_k + \lceil \frac{(v-x)(N-d_k)}{v} \rceil)$ also exists.

Proof. For each $c, r_{\psi_c(j-1),c} \leq r_{\psi_c(j),c}$ for 0 < j < v, and $\sum_{j=0}^{v-1} r_{\psi_c(j),c} = N - d_c$. Hence $\sum_{j=x}^{v-1} r_{\psi_c(j),c} \geq (v-x) \frac{N-d_c}{v}$, and the result follows by Corollary 6.2.

This variant of fusion does not remove any rows, unlike the use in [20]. We can remove a row if all entries in the row are changed to \star , and this can be ensured if symbols are renamed so that all but one entry in the row becomes \star . This is the basic operation in the method of post-optimization from [37]; see Section 7.2.

In applying Corollary 6.2 or 6.3, the result cannot be guaranteed to have a pure row, and hence Observation 3.1 need not lead to a pure constant row unless the profile is changed. This can be effectively addressed.

Lemma 6.4 If a CA(N; 2, k, v) with profile (d_1, \ldots, d_k) having ρ pure rows exists, then for $2 \le x \le v$, a CA(N; 2, k, x) with profile $(d_1 + \lceil \frac{(v-x)(N-d_1-\rho)}{v} \rceil, \ldots, d_k + \lceil \frac{(v-x)(N-d_k-\rho)}{v} \rceil)$ having min (ρ, x) pure constant rows also exists.

Proof. Permute so that the pure rows are pure constant on symbols $0, \ldots, \rho - 1$. Then, in each column c, select the v - x elements that appear the most frequently in the $N - d_c - \rho$ other rows. Permute symbols in column c so that these symbols are named $v - x, \ldots, v - 1$, ensuring that none of $0, \ldots, \rho - 1$ is renamed unless it appears among the v - x chosen symbols. Now change all occurrences of $v - x, \ldots, v - 1$ in column c to \star , except in any row that was pure constant; if one appears in such a row, make it again pure constant.

Lemma 6.5 Suppose that there exists a CA(N'; 2, k, v) in which at least one symbol occurs exactly v times in one of the columns. (This always holds when $v^2 \le N' < v(v+1)$.) Then there exists a CA(N'-1; 2, k, v-1) having profile $(v-1)^k$, and a CA(N'-1; 2, k, v-1) with v-1 pure constant rows having profile $(v-1)^{k-1}0^1$.

Proof. Without loss of generality there is a CA(N'; 2, k, v) with a pure constant row of symbol v - 1, so that symbol v - 1 occurs exactly v times in the last column. Delete this constant row and change all occurrences of symbol v - 1 to \star to form a CA(N' - 1; 2, k, v - 1) having profile $(v - 1)^k$. (It may have more \star entries in columns other than the last, but its profile dominates $(v - 1)^k$.) Replace

the $v - 1 \star$ entries in the final column by entries $0, \ldots, v - 2$, using each symbol exactly once. Then the v - 1 corresponding rows are pairwise disjoint, and the result is a CA(N' - 1; 2, k, v - 1) having v - 1 pure constant rows, and profile $(v - 1)^{k-1}0^1$.

Lemma 6.6 Suppose that there exists a $CA(q^2; 2, q + 1, q)$ with q odd. Then there exists a $CA(q^2 - 2; 2, q + 1, q - 1)$ having profile $((q - 1)/2)^q(q - 2)^1$, and a $CA(q^2 - 2; 2, q + 1, q - 1)$ with profile $((q - 1)/2)^q 0^1$ having q - 2 pure constant rows.

Proof. Permute symbols so that the q rows in which q - 1 appears in the last column are constant on columns $1, \ldots, q$. Delete the pure constant row containing q - 1, and replace all other q - 1 entries by \star . Next delete the constant row containing q - 2. Select an arbitrary tournament T on vertices $1, \ldots, q$ that is in- and out-regular of degree (q - 1)/2. Whenever (x, y) is an arc of T, locate the row that contains \star in column x and q - 2 in column y, and replace the \star by q - 2. The result is a $CA(q^2 - 2; 2, q + 1, q - 1)$ with $((q - 1)/2) \star$ entries in each of the first q columns and q - 2 in the last. Extending each of the q - 2 constant rows to be pure constant yields the second CA.

Using these constructions, we obtain the following:

Lemma 6.7 Suppose that there exists a CA(N'; 2, k, v) in which for some symbol σ and some column c, σ appears exactly v times in column c. Suppose further that there exists a $CA(M'; 2, \ell_1, v - 1)$ having s constant rows.

- 1. If a $CA(M'-(v-1); 2, \ell_2, v)$ having s constant rows exists, there exists a $CA((M'-s)+(N'-v); 2, (k-1)\ell_1+\ell_2, v-1)$ having v-1 constant rows.
- 2. If $M' \ge v(v-1)$, there exists a $CA((M'-s) + (N'-v); 2, (k-1)\ell + 2, v-1)$ having v-1 constant rows.
- 3. There always exists a $CA((M'-s) + (N'-v); 2, (k-1)\ell + 1, v 1)$ having v 1 constant rows.

Proof. Taking $\ell_2 = 2$ and $\ell_1 = \ell$ in the first statement implies the second, because a CA(M' - (v - 1); 2, 2, v) exists with v - 1 disjoint rows when $M' - (v - 1) \ge (v - 1)^2$. Taking $\ell_2 = 1$ and $\ell_1 = \ell$ in the first statement implies the third. So we establish the first statement. By Lemma 6.5, there is a CA(N' - 1; 2, k, v - 1) with v - 1 pure constant rows having profile $(v - 1)^{k-1}0^1$ Apply Corollary 4.5 with $r_1 = s_2 = s$, $r_2 = v - 1 - s$, $s_1 = 0$, N = N' - 1, and M = M' - (v - 1).

Lemma 6.8 Suppose that there exists a CA(N'; 2, k, v) that contains a pure constant row on symbol σ , and symbol σ appears exactly v times in columns $1, \ldots, v - 1$ and k. If there exist a $CA(M' - (v - 2); 2, \ell_2, v - 1)$, a $CA(M'; 2, \ell_1, v - 1)$, and a $CA(M' - (v - 1); 2, \ell_3, v - 1)$ each having s constant rows, then a $CA((M' - s) + (N' - 1); 2, v\ell_1 + (k - v)\ell_2 + \ell_3, v - 1)$ having v - 1 constant rows.

Proof. By Lemma 6.13, a CA(N-1; 2, k+1, v-1) exists having profile $1^{v-1}(v-1)^{k-v+1}0^1(N-v(v-1))^1$ and having v-1 pure constant rows. Apply Corollary 4.5 with $r_1 = s_2 = s$, $r_2 = v-1-s$, $s_1 = 0$, N = N'-1, and M = M' - (v-1).

Lemma 6.9 Suppose that there exists a CA((z-1)(v-1)+v; 2, z, v) in which symbol v-1 appears exactly v times in each column. Let $1 \le \alpha < v$. Suppose that there is a $CA(M; 2, \ell, v - \alpha)$ containing $v - \alpha$ constant rows and a disjoint set of $v - \alpha$ rows containing γ permutation columns. Then there is a $PCA((z-1)(v-1) + M - (\alpha - 1)z - (v - \alpha); 2, (z\ell, (z-1)\ell + \gamma), v - \alpha)$.

Proof. Suppose that the rows of the CA((z-1)(v-1) + v; 2, z, v) that contain v - 1 in column z are otherwise constant. Replace all entries of $v - 1, \ldots, v - \alpha$ by \star and delete the α rows that contain only \star , leaving an $((z-1)(v-1) + v - \alpha) \times z$ array A. Then A has $(\alpha - 1)(z-1) + (v-1) \star$ entries in the first z - 1 columns, and $(\alpha - 1)z + (v - \alpha)$ in column z, so has profile $(v - 1 + (\alpha - 1)(z - 1))^z$. Let B be the $CA(M; 2, \ell, v - \alpha)$, with B₁ being the $v - \alpha$ constant rows, B₂ being the $v - \alpha$ rows containing γ permutation columns, B₃ being a further set of $(\alpha - 1)z$ rows, and B₄ being the remaining $M - (\alpha - 1)z - 2(v - \alpha)$ rows. Let C be $A \otimes B_4$. Column z of A leads to a $(v - \alpha) \times \ell$ block of \star entries in the first $v - \alpha$ rows. Replace this block with B₂, so that the first $v - \alpha$ rows now have $(z - 1)\ell + \gamma$ permutation columns. The remaining \star entries in column z yield $(\alpha - 1)z$ rows, in which we place the rows of B₃. For each of the remaining columns, the \star entries form a $((\alpha - 1)(z - 1) + (v - 1)) \times \ell$ block of \star entries, which we replace with the rows of B₂ and B₃.

The verification parallels the proof of Theorem 4.2, but we must verify that all constant pairs are covered, because the first $v - \alpha$ rows may not be pure constant. This is routine, however, because every constant pair is covered in A.

In the absence of other information, Lemma 6.9 can always be applied with $\gamma = 2$. When the $CA(M; 2, \ell, v - \alpha)$ is known to have two disjoint parallel classes, the resulting PCA in fact has a parallel class.

In certain situations, the manner in which the \star positions are used can be varied to ensure the presence of many disjoint parallel classes. We pursue this next.

Theorem 6.10 Suppose that there exists a CA(N + 1; 2, k, v + 1) with $k \ge v$ in which some row covers pairs, none of which are covered in another row. Suppose further that there is a $CA(M; 2, \ell_1, v)$ containing a parallel class and a $CA(M; 2, \ell_2, v)$ containing two disjoint parallel classes. Then there exists a $CA(N + M - 2v; 2, v\ell_2 + (k - v)\ell_1 + 1, v)$. When $N + 1 = (v + 1)^2$, for $1 \le \alpha \le k$, there also exists a $CA(N + M - 2v; 2, (k - \alpha)\ell_1 + \alpha\ell_2, v)$ having α disjoint parallel classes, and a $CA(N + M - 2v; 2, (k - \alpha)\ell_1 + \alpha\ell_2, v)$ having $\alpha - v$ disjoint parallel classes when $\alpha \ge v$.

Proof. Let A be the CA(N; 2, k, v) obtained from the CA(N + 1; 2, k, v + 1) by making the row in which every pair is uniquely covered constant on symbol v + 1, deleting this row, and changing all remaining occurrences of v + 1 to \star . Every row of A contains at most one \star . In the $CA(M; 2, \ell_2, v)$, make one parallel class contain constant rows, and then delete these rows. Let D₂ be the v rows of the second parallel class, and the remaining M - 2v rows be B₂. In the $CA(M; 2, \ell_1, v)$, make one

parallel class contain constant rows, and then delete these rows. Let D_1 be any v remaining rows, and the remaining M - 2v rows be B_1 .

Choose α so that $0 \leq \alpha \leq k$. Form an $(N + M - 2v) \times ((k - \alpha)\ell_1 + \alpha\ell_2)$ matrix C as follows. In the first N rows, replicate α columns of A ℓ_2 times each, then the remaining $k - \alpha$ columns of A ℓ_1 times each. Each of the first α columns of A contains at least $v \star$ entries and hence forms a $v \times \ell_2$ subarray containing only \star entries in the first N rows of C; replace this subarray with D₂. Each of the last $k - \alpha$ columns of A contains at least $v \star$ entries and hence forms a $v \times \ell_1$ subarray containing only \star entries in the first N rows of C; replace this subarray with D₁. In the remaining M - 2v rows of C, concatenate α copies of B₂ followed by $k - \alpha$ copies of B₁.

Then C is a $CA(N + M - 2v; 2, v\ell_2 + (k - v)\ell_1, v)$, but we can say more. Suppose that $1 \le c \le \min(\alpha, v)$. Consider the rows of A that contain \star in column c. Adjoin a new column to C, and place symbol c in the added column in each of these rows. This ensures that symbol c in the added column appears with each symbol in each other column. Hence taking $\alpha = v$, we obtain a $CA(N + M - 2v; 2, v\ell_2 + (k - v)\ell_1 + 1, v)$.

Now consider cases when $N + 1 = (v + 1)^2$. Then every column c of A contains exactly $v \star$ entries, and the rows containing these \star entries yield a parallel class in C whenever $1 \le c \le \alpha$. When $\alpha \ge v$, a new column can again be added, placing \star in the rows arising from parallel classes with c > v. Then $\alpha - v$ parallel classes remain in the extended covering array.

6.2 **Projection of orthogonal arrays**

Projection was introduced in [46] and generalized in [18]. We apply it here to a specific family of orthogonal arrays.

Theorem 6.11 Let q be a prime power. Let x be an integer with 0 < x < q. Then there is a $CA(q^2 - x; 2, q + 1 + x, q - x)$

- 1. with profile $0^{q-1}(q-1)^1(q-1)^1(2(q-1))^1$ when x = 1;
- 2. with profile $2^{q-a_1-a_2}(q)^{a_1}(2q-2)^{a_2}(2q-3)^1(3q-4)^2$ when x = 2, whenever $(a_1, a_2) \in \{(4,0), (2,1), (0,2)\}$ and $a_1 + a_2 \leq q$;
- 3. with profile $6^{q-a_1-a_2-a_3}(q+3)^{a_1}(2q)^{a_2}(3q-3)^{a_3}(3q-3)^1(4q-6)^3$ when x = 3, whenever $(a_1, a_2, a_3) \in \{(9, 0, 0), (7, 1, 0), (6, 0, 1), (5, 2, 0), (4, 1, 1), (3, 3, 0), (3, 0, 2), (2, 2, 1), (1, 4, 0), (1, 1, 2), (0, 3, 1), (0, 0, 3)\}$ and $a_1 + a_2 + a_3 \leq q$.

There is also a $CA(q^2 - x; 2, q + 1 + x, q - x)$ having q - x pure constant rows

- 1. with profile $1^{q-1}(q-1)^1 0^1 (q-1)^1$ when x = 1;
- 2. with profile $4^{q-a_1-a_2}(q+1)^{a_1}(2q-2)^{a_2}q^1(2q-2)^2$ when x = 2, whenever $(a_1, a_2) \in \{(4, 0), (2, 1), (0, 2)\}$ and $a_1 + a_2 \leq q$;

46

3. with profile $9^{q-a_1-a_2-a_3}(q+5)^{a_1}(2q+1)^{a_2}(3q-3)^{a_3}(2q)^1(3q-3)^3$ when x = 3, whenever $(a_1, a_2, a_3) \in \{(9, 0, 0), (7, 1, 0), (6, 0, 1), (5, 2, 0), (4, 1, 1), (3, 3, 0), (3, 0, 2), (2, 2, 1), (1, 4, 0), (1, 1, 2), (0, 3, 1), (0, 0, 3)\}$ and $a_1 + a_2 + a_3 \leq q$.

Proof. Let q be a power of a prime, and let \mathbb{F}_q be the finite field on q elements, with multiplication \otimes and addition \oplus . We form a $q^2 \times q + 1$ array A that is a $CA(q^2; 2, q + 1, q)$ as follows. Rows are indexed by polynomials of degree less than two over \mathbb{F}_q . We refer to the elements of \mathbb{F}_q as $\{0, \ldots, q - 1\}$, where $0 \otimes z = z \otimes 0 = 0$ for $z \in \mathbb{F}_q$. Index columns by $0, \ldots, q - 1$ and ∞ in that order. For $a, b \in \mathbb{F}_q$, in the row indexed by ax + b and the column indexed by z_i , place the entry $(a \otimes z_i) \oplus b$. In the row indexed by ax + b and the column indexed by ∞ , place the entry $a - 1 \mod q$. The q rows arising from polynomials of the form 0x + b are *near-constant rows*, because they are constant on the first q columns (and have entry q - 1 in the column headed by ∞). The remaining rows are *transverse rows*. For $x \ge 1$ we 'project' to form an array A_x as follows. First delete the near-constant rows from A that contain symbols q - y for $y \le x$, in the process removing x rows. Then adjoin x additional columns indexed by $\infty_x, \ldots, \infty_1$. Place \star in each of these new columns in each near-constant row.

For each $1 \le y \le x$, choose a permutation π_y of $\{0, \ldots, q-1\}$. In every transverse row, each symbol occurs exactly once in columns $0, \ldots, q-1$. Then for $1 \le y \le x$, if in transverse row ρ we find q-y in column $\pi_y(a)$ and a < q-x, place a in column ∞_y in that row. For each $0 \le a < q-x$, among the q-1 transverse rows having q-y in column $\pi_y(a)$ place the symbols $\{0, \ldots, q-x-1\}$ in column $\pi_y(a)$ once each and set the remainder to \star . Replace all remaining entries from $\{q-x, \ldots, q-1\}$ by \star . The resulting array A_x is a $CA(q^2 - x; 2, q+1+x, q-x)$ [18], and so the issue is to determine its profile.

Column ∞ has $q - x \star$ entries on the near-constant rows, and (x - 1)q on the transverse rows. Each of columns ∞_y for $1 \leq y \leq x$ has $q - x \star$ entries on the near-constant rows, and x(q - 1) on the transverse rows. Column *i* for $0 \leq i < q$ has no \star entries on the near-constant rows, and has $\alpha_i(q-1) + (x - \alpha_i)(x-1) \star$ entries on the transverse rows, where $\alpha_i = |\{y : \pi_y(i) \geq q - x, 1 \leq y \leq x\}|$. By choosing the permutations $\{\pi_y : 1 \leq y \leq x\}$ appropriately, we can select any integers $\alpha_0, \ldots, \alpha_{q-1}$ that satisfy $0 \leq \alpha_i \leq x$ and $\sum_{i=0}^{q-1} \alpha_i = x^2$.

For x = 1, column ∞ has $q - 1 \star$ entries and column ∞_1 has 2(q - 1). One of columns $\{0, \ldots, q - 1\}$ has q - 1, and the rest have 0. For x = 2, column ∞ has 2q - 3 and columns ∞_1 and ∞_2 have 3q - 4. For columns $\{0, \ldots, q - 1\}$, we can choose the $\{\alpha_i\}$ values to get different results. Taking two of them to be 2, we get two columns with 2q - 2 and q - 2 with 2. Taking one to be 2 and two to be 1, we get one column with 2q - 2, two with q, and q - 3 with 2. Taking four to be 1, we get four columns with q and q - 4 with 2.

For x = 3, column ∞ has 3q - 3 and columns ∞_1, ∞_2 , and ∞_3 have 4q - 6. When $\alpha_i = 3$, column *i* has $3q - 3 \star$ entries; when $\alpha_i = 2$, it has 2q; when $\alpha_i = 1$, it has q + 3; and when $\alpha_i = 0$ it has 6.

Pure constant rows in A_x could be formed by making each of the near-constant rows constant. However, one can then form further \star positions, as follows. Suppose that q - y appears in column $\pi_y(a)$ and a < q - x. Once the near-constant rows are made constant, the placement of a in column $\pi_y(a)$ to replace q - y is no longer needed, and can be changed to \star . Now we adjust the counts of \star entries appropriately. Column ∞ has $(x - 1)q \star$ entries on the transverse rows. Each of columns ∞_y for $1 \le y \le x$ has $x(q-1) \star$ entries on the transverse rows. Column *i* for $0 \le i < q$ has $\alpha_i(q-1) + (x - \alpha_i)x \star$ entries on the transverse rows, where $\alpha_i = |\{y : \pi_y(i) \ge q - x, 1 \le y \le x\}|$. Then a similar analysis establishes the results stated.

We can also use projection to construct arrays with multiple disjoint parallel classes:

Theorem 6.12 Let q be a prime power. Let x be an integer with 0 < x < q. Then there is a $CA(q^2 - x; 2, q + 1 + x, q - x)$ having x + 1 disjoint parallel classes.

Proof. Let A be the $CA(q^2; 2, q+1, q)$ formed in Theorem 6.11. Form B by first adjoining x columns to A, indexed by $\infty_x, \ldots, \infty_1$, changing all entries in transverse rows in column ∞ that belong to $\{q-x, \ldots, q-1\}$ to \star . Then delete the x near-constant rows containing symbols from $\{q-x, \ldots, q-1\}$, and make the remaining near-constant rows pure constant (by extending the value in columns $0, \ldots, q-1$ through columns $\{\infty, \infty_x, \ldots, \infty_1\}$. For $1 \leq y \leq x$, whenever symbol q-y appears in column c of a row, place c in column ∞_y of that row if c < q-x. All entries of columns $\infty_1, \ldots, \infty_x$ not so determined are set to \star .

The $q^2 - q$ transverse rows are partitioned into classes as follows: class W_i contains the q - 1 row indices of rows in which q - 1 appears in column *i*. We partition W_i arbitrarily into two sets, R_i containing q - x row indices and S_i containing x - 1. For $0 \le c < q - x$, place a permutation of symbols $\{0, \ldots, q - x - 1\}$ in the cells of column *c* in the rows of R_c and place \star in those of the rows of S_c . For $q - x \le c < q$, place \star in the cells of column *c* in each row of W_c .

Now for $2 \le y \le x$, we proceed differently. For $q-x \le c < q$, when q-y appears in column c, simply replace it by \star . For $0 \le c < q-x$, let T be the set of row indices in which q-y appears in column c. Now $T \cap W_j$ contains one row index when $c \ne j$, and none otherwise. Therefore $T \cap (\bigcup_{j=0}^{q-x-1} W_j)$ contains q-x-1 row indices, so in column c place a permutation of $\{0, \ldots, q-x-1\} \setminus \{c\}$ in the corresponding rows. (Note that the pair containing c in column c and c in column ∞_y appears in a pure constant row.) Place a \star in the columns of the remaining x rows of T.

Now we recover the parallel classes. By construction, one is the set of pure constant rows. The remaining x parallel classes are those indexed by R_c for $q - x \le c < q$. Indeed, no replacement of an element of any row of W_{q-x}, \ldots, W_{q-1} is made except for replacement of entries by \star . The rows of W_c initially agreed only in having q - 1 in column c, and hence no two rows of W_c (for $c \ge q - x$) agree in any position except for the entry \star .

6.3 **Projection and cover starters**

In [18, 35, 36], covering arrays are produced that admit a sharply transitive group action on k - 1 columns, and a second sharply transitive group action on v - 1 symbols. In [35], this is generalized to allow a sharply transitive group action on v - f symbols, fixing the remaining f. The basic device is to produce a single row, a (v, k, f)-cover starter, to be developed under the action of the two chosen groups. As discussed in [35], when the cover starter itself contains a don't-care position, covering arrays with many (predictable) profiles result. We pursue a different avenue here, focussing on the case when f = 1.

Cover starters for f = 1 produce a CA(k(v - 1) + 1; 2, k, v) with the property that there is a pure constant row (containing only the fixed symbol), and every other row contains the fixed symbol in exactly one position. This property is precisely what is needed to apply projection [18].

Lemma 6.13 If a CA(N; 2, k, v) exists that contains a pure constant row on symbol σ , and symbol σ appears exactly v times in columns 1,..., v - 1 and k, then a CA(N - 1; 2, k + 1, v - 1) exists having profile $1^{v-1}(v-1)^{k-v}0^1(N-1-v(v-1))^1$ and having v - 1 pure constant rows. In particular, if a (v, k, 1)-cover starter exists, then a CA(k(v-1); 2, k + 1, v - 1) exists having profile $1^{v-1}(v-1)^{k-v}0^1((k-v+1)(v-1))^1$ and having v - 1 pure constant rows.

Proof. Form the CA(N; 2, k, v) so that the pure constant row is on symbol v - 1, and every other row contains (at most) one v - 1 among columns $\{1, \ldots, v - 2\} \cup \{k\}$. Rename symbols in each column, always fixing v - 1, so that v rows are constant on the first k - 1 columns and contain v - 1 in the last. Delete the pure constant row on symbol v - 1. Add a new column. For $1 \le c \le k$, let R_c be the set of row indices of rows that contain v - 1 in column c. For $1 \le c \le v - 1$, in each row in R_c place c - 1 in the new column, and place a permutation of $\{0, \ldots, v - 2, \star\} \setminus \{c - 1\}$ in column c in the rows of R_c . For $v \le c < k$, place \star in each row of R_c both in column c and in the new column. For c = k, extend each row in R_c to be pure constant. Then columns $1, \ldots, v - 1$ have $1 \star$ entry each; columns $v, \ldots, k - 1$ have at least v - 1; column k has none; and the added column has N - 1 - v(v - 1).

As a construction for covering arrays, Lemma 6.13 is not terribly useful because a (k + 1, v - 1, 1)cover starter typically yields a smaller array. However, the array constructed by projection has both a full set of pure constant rows, and a 'large' profile.

6.4 Holey Transversal Designs

Let V be a set of hn symbols partitioned into n sets V_1, \ldots, V_n , each of size h. An $((nh)^2 - nh^2) \times k$ array A is a holey transversal design HTD(k; nh, h) if every symbol in A is in V, and for every two different columns γ_1 and γ_2 of A and every two symbols $x \in V_i$ and $y \in V_j$, exactly one row of A contains x in column γ_1 and y in column γ_2 if and only if $i \neq j$. When $x, y \in V_i$ for some i, there is no row of A with x in column γ_1 and y in column γ_2 .

By placing a CA(N; 2, k, h) on the symbols of V_i for each $1 \le i \le n$, we obtain a $CA((nh)^2 - nh^2) + nN; 2, k, hn)$. Let us consider an application of this. In [1] it is shown that an HTD(7; 2q, 2) exists whenever q is an odd prime power and $7 \le q \le 61$. Because CAN(2, 7, 2) = 6, we obtain that $CAN(2, 7, 2q) \le 4q^2 - 4q + 6q = 4q^2 + 2q$ whenever q is an odd prime power and $7 \le q \le 61$. In fact, we can do somewhat better. The HTDs constructed in [1] have $V = \mathbb{F}_q \times \{0, 1\}$ and $V_i = \{i\} \times \{0, 1\}$ for $i \in \mathbb{F}_q$. The additive group of \mathbb{F}_q is an automorphism group acting on the symbols. So choose any row $((\nu_1, \mu_1), \ldots, (\nu_7, \mu_7))$. Under the action of \mathbb{F}_q , this row generates q disjoint rows of the HTD. These q rows use exactly half of the symbols in each column; in fact, whenever (ν, i) is in one of these rows, $(\nu, 1 - i)$ is not in any of them. Then in placing the CA(6; 2, 7, 2) on symbols in V_i , ensure that

one of the rows uses none of the symbols in the q disjoint rows already produced. In this way, we produce a further disjoint row for each V_i , to establish that there is a $CA(4q^2 + 2q; 2, 7, 2q)$ having 2q disjoint rows.

Using the construction in [1], in addition to the row $((\nu_1, \mu_1), \ldots, (\nu_7, \mu_7))$ one can select another row $((\nu'_1, \mu'_1), \ldots, (\nu'_7, \mu'_7))$ with $(\mu_1, \ldots, \mu_7) \neq (\mu'_1, \ldots, \mu'_7)$. By selecting the CA(6;2,7,2) so that $(1 - \mu_1, \ldots, 1 - \mu_7)$ and $(1 - \mu'_1, \ldots, 1 - \mu'_7)$ are two rows, which can always be done, a second set of 2q disjoint rows can be found, that is disjoint from the first, to establish:

Lemma 6.14 There is a $CA(4q^2 + 2q; 2, 7, 2q)$ having two disjoint parallel classes whenever q is an odd prime power and $7 \le q \le 61$.

Now let A be the HTD(7; 2q, 2) and let A' be the result of interchanging the names of symbols (ν, i) and $(\nu, 1 - i)$ for every $\nu \in \mathbb{F}_q$. Then A \otimes A' is an $(8q^2 - 8q) \times 49$ array with columns indexed by $\{1, \ldots, 7\} \times \{1, \ldots, 7\}$. For every two different columns (γ_1, δ_1) and (γ_2, δ_2) and every two symbols $x \in V_i$ and $y \in V_j$, at least one row of A \otimes A' contains x in column (γ_1, δ_1) and y in column (γ_2, δ_2) when $i \neq j$. When $x, y \in V_i$ for some i, there is no row of A \otimes A' with x in column (γ_1, δ_1) and y in column (γ_2, δ_2) , unless x = y and either $\gamma_1 = \gamma_2$ or $\delta_1 = \delta_2$. There is a 8 \times 70 array F on two symbols $\{\sigma_1, \sigma_2\}$, formed by including as columns each of the $\binom{8}{4}$ vectors containing each symbol exactly four times. For every two columns of F, some row includes (σ_1, σ_2) and some row includes (σ_2, σ_1) . However, the pairs (σ_1, σ_1) and (σ_2, σ_2) are covered if and only if the chosen columns do not differ in each position. For each column of F, exactly one other column differs in each position; call these an *antipodal pair of columns*. Now form an 8×49 array F' as follows: Choose 49 columns of F, and index them by $\{1, \ldots, 7\} \times \{1, \ldots, 7\}$, so that if both columns of an antipodal pair are selected, their column indices (γ_1, δ_1) and (γ_2, δ_2) satisfy $\gamma_1 = \gamma_2$ or $\delta_1 = \delta_2$. For each V_i , place a copy of F' on the symbols of V'. Together with $A \otimes A'$ these form a CA($8q^2; 2, 49, 2q$).

There are 2q(2q-2) rows in A and therefore 4q-4 orbit representatives under \mathbb{F}_q . Thus the rows of $A \otimes A'$ can be partitioned into 4q-4 parallel classes. Add a new column. Suppose that the symbols in $\mathbb{F}_q \times \{0, 1\}$ are $\{\nu_1, \ldots, \nu_{2q}\}$. In the added column, in the rows for the *i*th parallel class, place symbol ν_i . Then in the new column, in the rows for the (2q+1)st parallel class, place each of the symbols ν_1, \ldots, ν_{2q} in one row. For the remaining q(2q-5) rows, place \star in the new column. This establishes:

Lemma 6.15 There is a $CA(8q^2; 2, 50, 2q)$ having 2q pure constant rows and profile $0^{49}(q(2q-5))^1$ whenever q is an odd prime power and $7 \le q \le 61$.

Using these, we obtain:

Lemma 6.16 If $7 \le q \le 61$, q is an odd prime power, and 2q + 1 is a prime power, then there exists a CA $(8q^2 + 2q; 2, 14q + 14, 2q)$ having 2q disjoint rows, and a CA $(8q^2 + 2q + 1; 2, 14q + 14, 2q)$.

Proof. Apply Theorem 6.10 using a $CA((2q + 1)^2; 2, 2q + 2, 2q + 1)$ and a $CA(4q^2 + 2q; 2, 7, 2q)$ having two disjoint parallel classes from Lemma 6.14.

7 Computational Construction of Profiles

As we have discussed, numerous computational methods have been developed for the construction of covering arrays. In each case, the methods have concentrated on minimizing the number of tests (rows), and have typically not been concerned with other metrics. Stevens [45] and Stardom [44] develop simulated annealing methods that seek disjoint (constant) rows, and Cohen [12] employs simulated annealing to construct covering arrays with a specified pattern of "near-constant" rows. Their methods could in principle be extended to consider profiles as well. We instead adapt a simulated annealing method from [50] using a branch-and-bound procedure to find flexible positions from [27].

7.1 Simulated Annealing

The general procedure to obtain different profiles for an specific CA consists of four basic steps. First, make a small number of random changes to a CA, to produce an array of the same dimensions in which a small number of pairs may not be covered. Then, using simulated annealing [50], convert this quasi-CA to a CA. Then, using the exact algorithm reported in [27], detect the profile of the (possibly) new CA. Finally, if not recorded previously, register the new profile. This can be iterated any number of times.

In the implementation, a geometric cooling schedule is used. It starts with an initial temperature of 4.0. This is repeatedly decremented by a factor of α determined by a Markov chain of length $L = (Nkv)^2$. The algorithm terminates when at least of one of the following conditions is met:

- the number of uncovered interactions is zero;
- the temperature reaches 1^{-10} ;
- eleven consecutive Markov chains do not improve the 'best' solution found; or
- a timeout of 4 minutes of computation is reached.

Using this procedure many profiles were detected. Using the CA(42; 2, 8, 6), a grand total of 36 different profiles were detected. Of these, 10 are not dominated by one of the others: $0^{1}1^{7}$, $0^{2}1^{4}2^{2}$, $0^{3}1^{2}2^{3}$, $0^{3}1^{3}3^{2}$, $0^{4}1^{1}2^{1}3^{2}$, $0^{4}1^{2}4^{2}$, $0^{5}1^{1}5^{2}$, $0^{5}2^{1}4^{2}$, $0^{5}3^{3}$, $0^{6}6^{2}$.

7.2 Post-optimization

Nayeri *et al.* [37] adopt a different strategy, using the observations in Section 3.4. They always start with a covering array, and hence their method is designed to optimize a covering array after its construction by another means. Their key idea is to repeatedly fill all don't-care positions with randomly selected values, then to identify the flexible positions, and finally to examine the flexible positions one by one, changing each to a don't-care position if it remains flexible at this point of the computation. In their case, the goal is to construct an entire row of don't care positions, which can then be eliminated. Whether or not the method succeeds in eliminating rows in this way, after each

iteration the specific pattern of don't-care positions may change. By keeping track of the profiles of each intermediate covering array, we have found that a single covering array can lead to many different profiles.

A simple modification of the method in [37] enables one to treat many variants as well. Ensuring that no element in a specific set of rows contains a \star entry or is permitted to have an entry changed to \star , the rows in this set are never changed. In this way we can make a set of rows *forced*, so that every solution produced by the algorithm always contains the forced rows. Hence the method can find a variety of profiles for covering arrays with a specified (minimum) number of constant rows, or a specified (minimum) number of parallel classes, for example. We have employed this primarily in cases when the number of constant rows is the maximum possible.

We provide one example. We again consider the CA(42; 2, 8, 6), but require a specified number c of pure constant rows. Again dominated profiles are not listed. Because a solution for c pure constant rows is also a solution for $c' \le c$ pure constant rows, solutions that are so implied are also omitted.

The simulated annealing method explores a larger search space than does post-optimization, and this may account for its success in finding a richer set of solutions.

7.3 Some Results on Parallel Classes

Of particular importance for applying generalized direct products is the construction of covering arrays with a parallel class, or two disjoint parallel classes. Theorems 6.12 and 6.14 yield some. For example, there is a CA(100;2,4,10) with two parallel classes and there is a CA(120;2,12,10) with profile 10^{12} ; hence there is a CA(200;2,48,10) with a parallel class. But effective application of the constructions requires many small ingredients.

Tables 1, 2, and 3 give the best current upper bound N_c on CAN(2, k, v) for covering arrays with c parallel classes for $0 \le c \le 2$, $7 \le v \le 25$, and $3 \le k \le 50$. We do not attempt to give detailed authorities for each entry. When data for a specific value of k is omitted, employ the results for the next larger value of k. When an entry for N_2 is left blank, it can be determined by adding v - 1 to the value given for N_1 . The majority of the values given are computed using simulated annealing [50] or post-optimization [37] on arrays from orthogonal arrays [30], projection [18], cover starters [35], and direct products. Arrays are available on request from the authors.

v	k	N_0	N_1	N_2	k	N_0	N_1	N_2	k	N_0	N_1	N_2	k	N_0	N_1	N_2
7	7	49	49	49	8	49	55	61	9	59	61	63	10	61	63	63
	11	65	67	72	12	71	72	73	13	71	76	81	14	76	79	84
	15	79	84	85	16	82	86	88	17	82	87	90	18	85	88	90
	19	86	88	90	20	87	88	90	22	88	88	90	23	90	90	90
	26	90	90	91	56	91	91	91								
8	8	64	64	64	9	64	71	78	10	76	77	80	11	78	79	80
	13	84	88	95	14	96	101	103	15	96	102	105	16	102	108	112
	18	104	110	112	19	107	112	112	20	108	112	112	21	112	112	113
	22	112	113	113	23	113	113	113	24	113	113	114	25	114	114	115
	26	114	115	115	27	115	115	119	28	115	118	120	30	119	119	120
	72	120	120	120												
9	9	81	81	81	10	81	89	97	11	102	102	106	12	105	105	111
	13	105	110	111	14	112	112	114	15	118	123	127	16	118	125	
	17	125	133		19	129	136	143	20	132	139	143	21	139	143	143
	22	141	144	150	23	142	144	150	25	144	144	150	26	145	145	152
	28	146	151	153	29	147	151	153	30	148	151	153	31	152	153	153
	90	153	153	153												
10	4	100	100	100	5	102	102	102	6	102	105	108	7	113	114	116
	8	115	115	116	9	115	116	117	10	116	116	117	11	116	117	118
	12	117	118	120	13	120	120	120	14	127	136	145	15	136	145	149
	16	145	149	149	17	149	150	152	18	150	158	167	20	155	163	172
	21	162	1/0	17/8	22	166	174	182	23	17/1	179	101	24	1/8	186	191
	25	178	18/	191	26	185	190	191	27	190	190	191	29	190	191	191
	30	190	191	192	32	191	191	194	36	191	192	198	37	198	199	200
11	39	199	199	200	48	200	200	200	49	200	200	202	65	202	202	202
11	11	121	121	121	12	121	131	141	13	155	156	159	14	133	157	159
	15	158	160	160	16	101	162	163	1/	1/1	181	184	18	1//	183	191
	19	1/8	18/	190	20	180	190	200	21	192	200	208	22	192	201	210
	23	200	209	218	24	203	212	220	25	204	215	222	20	211	220	220
	27	210	222	220	20	221	223	220	29	224	223	221	122	223	220	231
12	52	220 144	144	231	22	227 144	147	231 150	33	162	201 162	201 162	152	231 162	201 162	231 164
12	10	144	144	144	11	144 164	147 164	150	12	164	165	165	12	105	165	104
	10	165	104	169	11	169	169	169	12	104	100	100	17	104	100	210
	14	100	210	221	10	210	221	226	20	221	226	199	21	100	177	210
	10 22	199 227	210	2/1	23	210	221 2/2	220	$\frac{20}{24}$	221	220	252	21	247	220	229
	22	245	257	245	$\frac{23}{28}$	252	242	240	24 29	252	272	252	32	242	252	276
	42 42	275	255	276	20 47	276	204	282	<i>1</i> 9	202	272	270	84	20)	270	288
13	13	169	169	169	$\frac{1}{14}$	169	181	193	15	215	217	218	16	217	200	200
15	17	217	217	229	18	217	229	239	19	229	240	240	20	241	242	243
	21	253	261	261	22	262	2.62	263	24	271	282	293	25	$\frac{2}{280}$	$\frac{2}{282}$	293
	27	281	282	293	$\frac{22}{28}$	282	293	200	29	291	302	_/5	30	299	311	
	32	301	312	_/5	33	309	320	325	39	317	325	325	182	325	325	325

Table 1: Existence of CA(N; 2, k, v)s with 0, 1, or 2 parallel classes: $7 \le v \le 13, k \le 50$

v	k	N_0	N_1	N_2	k	N_0	N_1	N_2	k	N_0	N_1	N_2	k	N_0	N_1	N_2
14	6	196	196	196	7	210	210	210	8	229	233	237	9	233	236	239
	10	236	239	241	11	238	240	242	12	239	241	243	13	240	242	243
	14	241	243	244	15	242	244	244	16	243	244	245	17	244	245	246
	18	247	248	248	19	248	251	252	20	272	273	274	21	274	276	277
	22	287	300	313	23	300	300	313	24	306	314	322	25	322	322	323
	27	329	339		30	330	342		31	341	353		33	342	354	
	34	351	363		35	360	372	378	36	370	378	378	37	381	391	392
	38	388	391	392	40	391	391	392	42	392	392	392	50	392	392	
15	6	225	225	226	7	246	247	249	8	248	248	250	9	249	249	251
	10	249	250	251	11	250	250	252	13	251	251	252	14	251	252	252
	15	252	252	253	16	252	252	253	17	252	254	255	18	255	255	255
	19	281	282	282	20	285	285	286	21	331	332	332	22	332	332	332
	23	334	335	335	24	335	337	338	25	351	360		26	365	379	
	28	376	387		32	383	396		33	394	407		34	405	418	
	36	406	419		37	418	431		38	428	441	451	39	439	450	451
	40	449	450	451	98	450	450	451								
16	16	256	256	256	17	256	271	286	18	286	287	288	19	288	288	288
	20	342	342	344	21	344	344	346	22	346	347	348	23	350	350	351
	24	376	376		25	376	391		26	406	406		27	406	421	
	28	421	436	40.0	29	436	451	455	30	442	456	456	36	442	456	10.6
	38	466	480	493	39	478	483	493	40	483	483	493	45	490	490	496
17	272	496	496	496	10	200	205	221	10	051	251	051		252	252	252
17	17	289	289	289	18	289	305	321	19	351	351	351	20	352	352	352
	21	354	354	354	22	357	357	358	23	465	465	467	24	467	467	468
	25	469	469	4/0	26	4/1	4/1	4/2	27	4/3	4/3	4/4	28	4/4	4/4	4/5
	29	4//	4//	4//	30	4/9 517	4/9	480	31 40	497	515		32	515	529 550	538
	54 42	551	332 561	JJ0 561	59	560	332 561	561	40	329	344		41	341	330	301
19	42	324	301	201	51	340	301	301	Q	252	252	254	0	255	355	255
10	11	355	324	356	12	355	355	342	16	356	352	354	17	355	355	358
	10	358	358	358	$\frac{12}{20}$	358	350	360	21	360	360	360	$\frac{1}{22}$	<i>AA</i> 2	<i>ЛЛ</i> З	556 151
	23	787	<i>1</i> 87	188	$\frac{20}{24}$	<i>1</i> 87	<i>1</i> 87	/88	$\frac{21}{25}$	/80	/80	/80	26	442 /00	/00	434 /01
	23	491	491	491	28	494	494	494	29	496	496	498	30	545	545	554
	31	545	545	556	32	545	558	562	33	558	558	571	34	579	596	613
	35	593	609	617	40	593	609	626	42	595	611	571	44	603	615	015
	45	615	627	017	46	627	639	648	47	639	648	648	50	647	648	648
19	19	361	361	361	20	361	379	397	21	498	498	498	24	500	500	500
17	25	502	502	502	26	504	504	506	27	507	507	508	28	509	509	511
	29	572	572	573	30	574	574	575	31	576	576	576	32	577	577	579
	33	637	637	640	34	638	638	641	35	640	640	643	36	645	645	647
	45	660	673	691	46	673	686	703	47	686	699	703	50	698	703	703
	1															

Table 2: Existence of $\mathsf{CA}(N;2,k,v)\mathsf{s}$ with 0, 1, or 2 parallel classes: $14 \leq v \leq 19, \, k \leq 50$

v	k	N_0	N_1	N_2	k	N_0	N_1	N_2	k	N_0	N_1	N_2	k	N_0	N_1	N_2
20	6	400	400	401	7	429	433	437	8	463	468	473	9	482	486	488
	10	488	489	491	11	491	492	495	12	493	495	497	13	495	496	499
	14	497	498	500	15	499	500	502	16	500	501	503	17	501	502	504
	18	503	504	505	19	504	504	506	20	505	506	507	21	507	507	508
	22	508	508	509	23	508	508	510	24	511	511	512	25	513	513	515
	26	517	517	519	27	520	520	522	28	588	588	590	29	589	591	592
	30	591	593	594	31	594	596	596	32	659	660	661	33	661	662	664
	34	663	664	665	35	666	668	668	36	679	679	694	37	685	685	700
	38	707	707	722	39	740	740	755	43	754	770		45	755	774	
	47	756	774		49	761	779		50	775	793					
21	6	441	441	441	7	441	446	451	8	499	502	503	9	501	506	507
	10	509	509	509	11	511	511	511	12	512	512	512	13	513	513	513
	15	514	514	514	17	516	516	516	18	517	517	517	21	518	518	518
	22	519	519	519	23	519	519	519	24	521	521	521	25	523	523	523
	26	526	526	527	27	600	600	600	28	603	603	603	29	605	605	606
	30	609	609	610	31	677	677	680	32	680	680	682	33	680	681	684
	34	683	683	685	35	752	753	755	36	754	754	758	37	757	758	761
	38	763	765	765	40	810	810	826	41	838	838	838	42	841	843	843
	54	847	861													
22	5	484	484	485	6	487	488	489	7	506	506	506	8	520	521	521
	9	521	522	522	10	521	523	523	11	522	523	524	12	523	524	524
	13	524	524	524	16	524	525	525	21	525	526	527	23	526	526	527
	24	526	527	528	25	528	528	528	26	609	609	609	27	611	611	611
	28	613	614	614	29	617	617	619	30	691	692	692	31	696	697	697
	32	698	698	700	33	699	700	702	34	777	777	779	35	779	779	781
	36	783	783	784	37	785	785	785	38	857	857	858	39	860	860	861
	40	862	862	862	41	868	868	869	42	905	905	905	43	912	912	912
22	44	925	946 520	520	54	940 520	956	969	25	(1)	(1)	(1)		(1)	(1)	(17
23	23	529	529	529	24	529	221	5/3	25	616	616	616	26	616	616	61/
	27	019 710	019	019	28	622 714	022 714	023	29	700	700	705	30	708	705	708
	31 25	706	700	/12	32	709	/14	/10	27	193 770	193 770	/95 001	34 20	193	195	198
	30	790 870	893	886	30 40	190	002 002	005	37 41	077	0//	001	30 42	0/0	0/9	033
	39 11	1010	1010	1035	40 58	1010	1035	1035	41	922	923	923	42	920	931	933
24	44	576	576	576	30	576	585	1033 50/	10	610	610	610	12	610	610	620
24	13	620	620	620	14	620	505 620	621	17	620	620	622	12	621	621	622
	$\frac{13}{22}$	621	621	623	25	622	622	623	26	622	622	624	10 27	624	624	624
	22	713	713	71/	$\frac{23}{29}$	716	716	717	30	718	718	710	31	727	722	724
	20	808	808	808	33	810	810	×11	3/	×10 812	812	815	35	81 <i>/</i>	81/	810
	36	896	896	900	37	896	896	904	38	904	904	905	30	907	907	909
	30 40	951	951	954	41	955	955	956	72	1128	1128	1128	57	<i>J</i> 07	<i>J</i> 07)0)
25	25	625	625	625	26	625	649	673	28	719	722	722	29	725	725	725
23	30	726	726	727	31	820	820	820	32	823	823	874	33	826	826	827
	34	828	828	830	35	914	914	917	36	917	917	920	37	919	919	922
	38	923	925	925	39	970	970	970	40	970	970	974	50	1181	1200	1215
	20	125		120	~ /	210	210	210	1.0	210	210	> / r	20	1101	1200	1-10

Table 3: Existence of $\mathsf{CA}(N;2,k,v)\mathsf{s}$ with 0, 1, or 2 parallel classes: $20 \leq v \leq 25, k \leq 50$

8 Consequences and Conclusions

In this section, we outline some applications of the constructions of profiles. At [17], covering array numbers are tabulated for strength two when $3 \le v \le 25$, and $3 \le k \le 20000$. (Explicit solutions for many of these can be found at [49].) A majority of the recorded entries arise from the generalized direct products given in this paper. Given the dramatic number of improvements by generalized direct product, it is infeasible to enumerate even a small fraction of them. In Table 4, we provide summary statistics prior to, and after, the application of the constructions developed here.

Туре	Authority	Before	After
Computational:	Simulated annealing [50]	245	208
	Other	22	22
Direct:	OAs and Projection [18]	231	231
	Cover starter [35]	129	129
	Other	7	7
Recursive:	Cut-and-paste [21]	777	549
	Direct Product	728	228
	Generalized Direct Product	-	1783
	Total	2139	3257

Table 4: Extent of Changes

In principle, in the ranges specified the tables could contain $23 \cdot 19998$ entries, but in practice a bound for CAN(2, k, v) is reported only when it is better than the bound for CAN(2, k + 1, v). Authorities are partitioned into three categories: computational, direct, and recursive. Unfortunately, this division is somewhat artificial. Results of direct constructions have often been improved by a computational method, but are attributed here to the underlying direct construction. In the 'after' column, this occurs in 158 of the cases using post-optimization [37] and 87 times using simulated annealing [50]. Similarly, results of direct and recursive constructions often provide the initial array used in simulated annealing, but the result here is attributed to the computational method. Among the 'other' computational results, one finds earlier simulated annealing methods [12, 20] and tabu search [39, 54], but the very popular greedy methods do not account for a single best result.

As expected, the generalized direct product improves upon the simpler direct product. It also improves quite often on the cut-and-paste method. As v and k increase, the generalized direct products provide more improvements. For $3 \le v \le 7$, cut-and-paste constructions typically remain more effective; and for $k \le 50$ and larger v, combinations of direct and computational constructions are more effective.

To show the magnitude of the improvements obtained, Figure 6 displays results with and without generalized direct product for v = 14 and $100 \le k \le 20000$. Throughout this range, the generalized direct product makes improvements, sometimes reducing the number of rows by 5%.

The success of the generalized direct product at improving on previously known bounds results both from the flexibility of the construction, and the manner in which other constructions can be adapted to

Figure 6: CAN(2,k,14) for $100 \le k \le 20000$

furnish ingredients. However, its most important aspect is that by investing more effort in ensuring that small ingredients have appropriate profiles and many disjoint rows, the construction can save many rows in the larger arrays constructed. This compounds as these arrays are again used as ingredients. Hence making covering arrays with many factors and few rows is simplified by finding 'better' small ingredient arrays. What we have shown is that, in many situation, 'better' means having the right profile.

The practical importance of the generalized direct products developed here is that by investing computational effort in finding 'good' small ingredient arrays, straightforward constructions of covering arrays with the fewest rows of those known can be employed to produce large arrays. This extends the range of testing problems to ones with many factors, without sacrificing complete coverage, and reducing both the time to construct and the time to run the corresponding test suite.

References

- [1] R. J. R. Abel, F. E. Bennett, and G. Ge. The existence of four HMOLS with equal sized holes. *Des. Codes Cryptogr.*, 26(1-3):7–31, 2002.
- [2] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pairwise coverage with seeding and avoids. *Information and Software Technology Journal*, 48:960–970, 2006.
- [3] R. C. Bryce and C. J. Colbourn. The density algorithm for pairwise interaction testing. *Software Testing, Verification, and Reliability*, 17:159–182, 2007.

- 57 C. J. Colbourn / Journal of Algorithms and Computation 44 (2013) PP. 31 60
- [4] R. C. Bryce and C. J. Colbourn. A density-based greedy algorithm for higher strength covering arrays. *Software Testing, Verification, and Reliability*, 19:37–53, 2009.
- [5] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A framework of greedy methods for constructing interaction tests. In *Proceedings of the 27th International Conference on Software Engineering* (*ICSE*), pages 146–155, Los Alamitos, CA, 2005. IEEE.
- [6] D. A. Bulutoglu and F. Margot. Classification of orthogonal arrays by integer programming. *Journal of Statistical Planning and Inference*, 138:654–666, 2008.
- [7] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher. Covering arrays of strength 3. Des. Codes Crypt., 16:235–242, 1999.
- [8] M. A. Chateauneuf and D. L. Kreher. On the state of strength-three covering arrays. *J. Combin. Des.*, 10:217–238, 2002.
- [9] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: An approach to testing based on combinatorial design. *IEEE Transactions on Software Engineering*, 23:437–44, 1997.
- [10] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combinatorial design approach to automatic test generation. *IEEE Software*, 13:82–88, 1996.
- [11] D. M. Cohen and M. L. Fredman. New techniques for designing qualitatively independent systems. J. Combin. Des., 6:411–416, 1998.
- [12] M. B. Cohen. *Designing test suites for software interaction testing*. PhD thesis, The University of Auckland, Department of Computer Science, 2004.
- [13] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge. Constructing test suites for interaction testing. In *Proc. Intl. Conf. on Software Engineering (ICSE 2003)*, pages 38–48, Los Alamitos, CA, 2003. IEEE.
- [14] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Constructing strength three covering arrays with augmented annealing. *Discrete Math.*, 308:2709–2722, 2008.
- [15] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for highlyconfigurable systems in the presence of constraints: a greedy approach. *IEEE Transactions* on Software Engineering, 34:633–650, 2008.
- [16] C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche (Catania), 58:121– 167, 2004.
- [17] C. J. Colbourn. Covering array tables, 2005-2013. http://www.public.asu.edu/~ccolbou/src/tabby.

- 58 C. J. Colbourn / Journal of Algorithms and Computation 44 (2013) PP. 31 60
- [18] C. J. Colbourn. Strength two covering arrays: Existence tables and projection. *Discrete Math.*, 308:772–786, 2008.
- [19] C. J. Colbourn. Covering arrays and hash families. In *Information Security and Related Combinatorics*, NATO Peace and Information Security, pages 99–136. IOS Press, 2011.
- [20] C. J. Colbourn, G. Kéri, P. P. Rivas Soriano, and J.-C. Schlage-Puchta. Covering and radiuscovering arrays: Constructions and classification. *Discrete Applied Mathematics*, 158:1158– 1190, 2010.
- [21] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. E. Shasha, G. B. Sherwood, and J. L. Yucas. Products of mixed covering arrays of strength two. J. Combin. Des., 14:124–138, 2006.
- [22] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn. Refining the in-parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stand. Tech., 113:287–297, 2008.
- [23] L. Gargano, J. Körner, and U. Vaccaro. Sperner theorems on directed graphs and qualitative independence. J. Combinat. Theory (A), 61:173–192, 1992.
- [24] L. Gargano, J. Körner, and U. Vaccaro. Sperner capacities. *Graphs and Combinatorics*, 9:31–46, 1993.
- [25] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements to a meta-heuristic search for constrained interaction testing. *Empirical Software Engineering*, 16:61–102, 2011.
- [26] A. P. Godbole, D. E. Skipper, and R. A. Sunley. *t*-covering arrays: upper bounds and Poisson approximations. *Combinatorics, Probability and Computing*, 5:105–118, 1996.
- [27] L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez. An exact approach to maximize the number of wild cards in a covering array. In *Proceedings of 10th Mexican International Conference on Artificial Intelligence, MICAI 2011*, 2011.
- [28] A. Hartman. Software and hardware testing using combinatorial covering suites. In M. C. Golumbic and I. B.-A. Hartman, editors, *Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms*, pages 237–266. Springer, Norwell, MA, 2005.
- [29] A. Hartman and L. Raskin. Problems and algorithms for covering arrays. *Discrete Math.*, 284:149–156, 2004.
- [30] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. *Orthogonal Arrays*. Springer-Verlag, New York, 1999.
- [31] B. Hnich, S. Prestwich, E. Selensky, and B. M. Smith. Constraint models for the covering test problem. *Constraints*, 11:199–219, 2006.

- 59 C. J. Colbourn / Journal of Algorithms and Computation 44 (2013) PP. 31 60
- [32] G. O. H. Katona. Two applications (for search theory and truth functions) of Sperner type theorems. *Periodica Math.*, 3:19–26, 1973.
- [33] D. Kleitman and J. Spencer. Families of k-independent sets. Discrete Math., 6:255–262, 1973.
- [34] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. IPOG/IPOD: Efficient test generation for multi-way software testing. *Software Testing, Verification, and Reliability*, 18:125–148, 2008.
- [35] J. R. Lobb, C. J. Colbourn, P. Danziger, B. Stevens, and J. Torres-Jimenez. Cover starters for strength two covering arrays. *Discrete Mathematics*, 312:943–956, 2012.
- [36] K. Meagher and B. Stevens. Group construction of covering arrays. J. Combin. Des., 13:70–77, 2005.
- [37] P. Nayeri, C. J. Colbourn, and G. Konjevod. Randomized postoptimization of covering arrays. *European Journal of Combinatorics*, 34:91–103, 2013.
- [38] C. Nie and H. Leung. A survey of combinatorial testing. *ACM Computing Surveys*, 43(2):#11, 2011.
- [39] K. Nurmela. Upper bounds for covering arrays by tabu search. *Discrete Applied Mathematics*, 138:143–152, 2004.
- [40] S. Poljak and Z. Tuza. On the maximum number of qualitatively independent partitions. J. Combinat. Theory (A), 51:111–116, 1989.
- [41] A. Réyni. Foundations of Probability. Wiley, New York, 1971.
- [42] G. Roux. *k-Propriétés dans les tableaux de n colonnes: cas particulier de la k-surjectivité et de la k-permutivité.* PhD thesis, Université de Paris, 1987.
- [43] N. J. A. Sloane. Covering arrays and intersecting codes. J. Combin. Des., 1:51–63, 1993.
- [44] J. Stardom. Metaheuristics and the search for covering and packing arrays. Master's thesis, Simon Fraser University, 2001.
- [45] B. Stevens. *Transversal Covers and Packings*. PhD thesis, Mathematics, University of Toronto, 1998.
- [46] B. Stevens, A. C. H. Ling, and E. Mendelsohn. A direct construction of transversal covers using group divisible designs. *Ars Combin.*, 63:145–159, 2002.
- [47] B. Stevens and E. Mendelsohn. New recursive methods for transversal covers. J. Combin. Des., 7:185–203, 1999.

- 60 C. J. Colbourn / Journal of Algorithms and Computation 44 (2013) PP. 31 60
- [48] K. C. Tai and L. Yu. A test generation strategy for pairwise testing. *IEEE Transactions on Software Engineering*, 28:109–111, 2002.
- [49] J. Torres-Jimenez. Covering array tables, 2010-2013. http://www.tamps.cinvestav.mx/~jtj/.
- [50] J. Torres-Jimenez and E. Rodriguez-Tello. New upper bounds for binary covering arrays using simulated annealing. *Information Sciences*, 185(1):137–152, 2012.
- [51] Y. W. Tung and W. S. Aldiwan. Automating test case generation for the new generation mission software system. In *Proc. 30th IEEE Aerospace Conference*, pages 431–437, Los Alamitos, CA, 2000. IEEE.
- [52] J. Yan and J. Zhang. A backtracking search tool for constructing combinatorial test suites. *J. Systems Software*, 81:1681–1693, 2008.
- [53] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for efficient fault characterization in complex configuration spaces. *IEEE Transactions on Software Engineering*, 31:20–34, 2006.
- [54] L. Zekaoui. Mixed covering arrays on graphs and tabu search algorithms. Master's thesis, University of Ottawa, 2006.