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ABSTRACT ARTICLE INFO

Covering arrays of strength two have been widely studied as
combinatorial models of software interaction test suites for
pairwise testing. While numerous algorithmic techniques
have been developed for the generation of covering arrays
with few columns (factors), the construction of covering ar-
rays with many factors and few tests by these techniques is
problematic. Random generation techniques can overcome
these computational difficulties, but for strength two do not
appear to yield a number of tests that is competitive with
the fewest known. Consequently, effective construction of
covering arrays with many factors and few tests relies on
recursive construction techniques.
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1 Abstract continued

Among these, a standard direct product has been particularly effective. Necessarily, any recursive
method results in substantial duplication of coverage of pairs; by reducing this duplication when pos-
sible, the number of tests can sometimes be reduced. In orderto reduce duplication, two key features
of a covering array are exploited: the number of disjoint rows, and its profile (the distribution of
flexible positions). First, the direct product construction is extended to employ different numbers of
disjoint rows and different profiles. Then combinatorial and computational constructions for covering
arrays with different profiles are developed. Finally some applications of the generalized direct prod-
uct, with the various profiles so produced, are examined. Of key importance is that, quite frequently,
the covering array with fewest tests does not arise as a product of ingredients with the fewest tests;
rather, the utility of the ingredient depends in a crucial way on its profile.

2 Covering Arrays

Let N , k, t, andv be positive integers. LetC be anN × k array with entries from an alphabetΣ
of sizev; we typically takeΣ = {0, . . . , v − 1}. When(ν1, . . . , νt) is a t-tuple with νi ∈ Σ for
1 ≤ i ≤ t, (c1, . . . , ct) is a tuple oft column indices (ci ∈ {1, . . . , k}), andci 6= cj wheneverνi 6= νj ,
the t-tuple {(ci, νi) : 1 ≤ i ≤ t} is a t-way interaction. The arraycoversthe t-way interaction
{(ci, νi) : 1 ≤ i ≤ t} if, in at least one rowρ of C, the entry in rowρ and columnci is νi for 1 ≤ i ≤ t.
Array C is acovering arrayCA(N ; t, k, v) of strengtht when everyt-way interaction is covered.
Suppose that theith factor takes values from a setΣi of sizevi, not containing the special value⋆. A
mixed covering array, MCA(N ; t, k, v1v2 · · · vk), is a collection ofN rows such that for anyt distinct
column indices,i1, i2, · · · , it, everyt-tuple fromΣi1 ×Σi2 ×· · ·×Σit occurs in columnsi1, i2, · · · , it
in at least one of theN rows.
Covering arrays are employed in numerous testing applications in which experimental factors interact
to detect the presence of faults (see [16, 28] and referencestherein), and in many related applications
(see [19] for a recent list). Applications to interaction testing, in particular to testing component-based
software, have driven much recent research; see [9, 10, 13, 15, 38, 53]. In applications in testing,
columns of the array correspond to experimentalfactors, and the symbols in the column formvalues
or levelsfor the factor. Each row specifies the values to which to set the factors for an experimental
run. The array is ‘covering’ in the sense that everyt-way interaction appears in at least one run. Figure
1 gives an example of a covering array withN = 26 rows, 15 factors having four levels each, and
strength two. Consider, for example, the 2-way interaction{(1, 2), (2, 0)}; it is covered in the seventh
and eighth rows. The reader can check that all of the42

(

15
2

)

= 1680 2-way interactions are covered.
The⋆ entry can be replaced by any symbol, and the result is aCA(26;2,15,4).
Testing cost is incurred for every test to be run, so a primaryobjective is to produce a test suite
(covering array) with as few tests as possible. At the same time, if interactions are the sources of
faults in the system, complete coverage of the interactionsis important. When the number of factors
is small, between 5 and 50, one can rely on powerful computational methods. But as the number
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2 2 0 0 3 3 1 0 1 3 2 3 3 0 0
0 3 0 2 1 0 1 1 2 3 3 0 1 2 2
1 1 3 3 0 0 2 3 2 3 1 3 3 0 2
0 0 3 1 2 3 2 2 1 1 0 3 1 2 2
1 3 2 1 0 2 3 0 3 1 0 3 2 1 1
1 0 1 2 3 1 0 2 0 0 3 3 3 3 3
2 0 2 2 1 1 3 2 3 3 0 1 2 0 2
2 0 3 2 1 1 0 3 2 1 1 2 3 1 1
3 1 2 2 0 3 0 0 1 2 3 0 2 2 0
3 2 1 1 3 0 3 3 2 2 0 2 1 3 0
2 1 2 3 0 0 1 2 3 0 0 2 1 2 3
3 3 2 1 2 2 3 1 3 0 0 0 3 3 2
3 3 0 0 2 1 2 2 3 2 1 1 1 1 0
3 0 3 3 1 2 1 1 0 2 2 3 0 1 0
2 3 1 1 2 2 0 1 0 3 3 1 1 3 1
3 2 1 0 3 3 2 1 0 1 3 2 2 0 1
0 2 1 3 0 1 0 0 3 3 2 2 0 1 2
0 1 0 3 2 0 1 3 1 0 2 ⋆ 2 1 1
1 3 0 1 2 2 3 0 1 2 2 2 1 0 3
0 1 2 0 3 2 3 3 0 2 1 1 3 2 2
0 1 0 3 0 0 1 1 1 1 2 1 0 3 3
1 2 3 0 1 3 2 0 2 0 1 1 2 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 2 0
2 2 2 2 2 2 2 2 2 2 2 0 0 2 1
3 3 3 3 3 3 3 3 3 3 3 0 0 1 3

Figure 1:CA(26;2,15,4)
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of factors increases to hundreds or thousands, these computational methods either consume too much
execution time, or fail to find covering arrays of competitive size. We advocate a different strategy, that
develops powerful recursive constructions to make covering arrays with many factors from ingredient
arrays with fewer. While stated in this paper as theorems, each has a constructive proof that yields
an easy algorithm to produce a large covering array and to verify that it is one. These constructive
techniques enable us to adapt computational methods to findbettersmall ingredient arrays, letting the
recursive method exploit these to make large arrays as needed. In order to pursue this, we adopt a
combinatorial viewpoint, and rely heavily on that literature. Therefore we discuss background in the
combinatorics of covering arrays next.
We denote byCAN(t, k, v) the minimumN for which aCA(N ; t, k, v) exists, because fewer rows
means fewer tests to be run. BecauseCAN(1, k, v) = v, CAN(t, k, v) = vt when k < t, and
CAN(t, k, 1) = 1, we generally assume thatk ≥ t ≥ 2 andv ≥ 2. Nevertheless, the definition
employed herein allowst, k, andv to be arbitrary positive integers.
The determination ofCAN(t, k, v) has been the subject of much research; see [8, 16, 28, 29] for survey
material. For fixedt andv, only CAN(2, k, 2) has been determined exactly [32, 33, 41]. In fact, an
explicit construction of covering arrays with the fewest rows whent = v = 2 is given there. Beyond
this, whent andv are fixed, exact numbers are known only for a few small values of k (see [20],
for example). Therefore most effort has focussed on constructions of covering arrays that have ‘few’
rows, that is, on upper bounds forCAN(t, k, v). Asymptotic results can be used to determine the
growth rate ofCAN(t, k, v) for fixed t andv as a function ofk (see [23, 24] fort = 2 and [26] in
general, for example). Nevertheless the explicit construction of covering arrays is required for many
of the applications mentioned. In this paper, we concentrate on existence for strengtht = 2.
Random techniques, while easily implemented, do not appearto be competitive with combinatorial
and computational methods [19]. Orthogonal arrays providea number of specific examples [30]; a
covering arrayCA(v2; 2, k, v) is anorthogonal arrayof strength two and index one. In [18, 46], the
structure of the finite field leads to a projection technique that reduces the number of symbols while
increasing the number of columns. Computational methods produce many more arrays. For example,
simulated annealing [14, 20, 25, 44, 45], tabu search [39], backtracking [52], integer programming
[6, 43], and constraint satisfaction [31] have proved successful. Local optimization can often reduce
the number of rows required [37]. However, the most prevalent are greedy methods. One basic
strategy adds one test at a time [5, 9, 51]; when a suitable test is chosen, it provides a strong theoretical
guarantee on the size of the test suite produced [3, 4], and itprovides a natural method to prioritize
tests [2]. A second greedy strategy adds one factor at a time [22, 34, 48]. Assuming the presence of
certain automorphisms also can reduce the difficulty of computational search [7, 18, 35, 36].
An extensive amount of research has concentrated on recursive methods. We focus on strength two
here (for higher strengths, see [19] and references therein). Cut-and-paste (or Roux-type, after Roux
[42]) constructions operate by juxtaposing copies of smaller covering arrays. For strength two, the
prototypical method of this type is given in [21], and a smallextension is described in [19]. These
methods rely on the presence of “nearly disjoint” rows in thearray, and hence exploit the structure of
the ingredient arrays in an essential manner. The direct product, in its simplest form, does not exploit
the structure of the ingredient arrays. Consequently it rarely outperforms the Roux-type methods [21].
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However, as we shall see, controlling the structure of the ingredients in the direct product can not only
make it competitive, it provides consistent and useful improvements on all other available techniques.
The remainder of the paper is organized as follows. In Section 3, required definitions are intro-
duced. In Section 4, the generalized direct product is developed. Section 5 examines the profiles
of arrays produced by generalized direct product, and by thecut–and–paste method. In Section 6,
direct construction of covering arrays with different profiles is explored, adapting a variety of known
constructions. In Section 7, computational constructionsof covering arrays with different profiles are
developed, using simulated annealing and a post-optimization method. Finally, in Section 8, conse-
quences for the existence of covering arrays are briefly considered.

3 Properties of covering arrays

In order to extend the direct product construction, we develop some further definitions and notation.
First we extend the definition of covering arrays to permit a symbol that is not used for coverage, as
follows: AnN × k array, each cell of which contains one ofv distinct symbols or a different symbol
⋆, is acovering arrayCA(N ; t, k, v) of strengtht when, for every way to selectt columns, each of the
vt possible tuples containing no⋆ arises in at least one row.

3.1 Compatibility

A CA(M ; 2, ℓ, v) B and aCA(M ′; 2, ℓ′, v) B′ are(L, r)-compatibleif for every0 ≤ σ < r, 1 ≤ j ≤ ℓ,
and1 ≤ j′ ≤ ℓ′, there exists aρ with 1 ≤ ρ ≤ L so that the entry in cell(ρ, j) of B is σ and the entry
in cell (ρ, j′) of B′ is σ.

3.2 Constant Rows

Two rows of aCA(N ; t, k, v) aredisjoint if, in each column, either they do not agree or both contain
⋆. A set ofr rows in which every two are disjoint is apartial parallel classon r rows; two partial
parallel classes aredisjoint if they have no rows in common. Aparallel classis a partial parallel class
on v rows. A row isconstantif, for some symbolν, every entry in the row is eitherν or ⋆. A row
is pure if it contains no⋆. A row is pure constantif it is constant and pure. Because symbols within
each column can be permuted independently, one has:

Observation 3.1 If a CA(N ; t, k, v) exists havingρ rows that are pairwise disjoint, there is aCA(N ; t, k, v)
havingρ constant rows. These can without loss of generality be assumed to be on anyρ of thev sym-
bols.

In astandardizedCA(N ; t, k, v) one row is constant. AnyCA(N ; t, k, v) can be rewritten by choosing
a column, and applying an arbitrary permutation to the symbols in the column.

Observation 3.2 If a CA(N ; t, k, v) exists, then a standardizedCA(N ; t, k, v) exists.
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3.3 Profiles

Theprofile (d1, . . . , dk) of anN × k array is ak-tuple in which the entrydi is the number of⋆ entries
in the ith column. A single covering array can often admit many different profiles, by filling the⋆
cells and changing a (possibly different) set of flexible cells to ⋆. A profile (d1, . . . , dk) dominates
profile (e1, . . . , ek) whendi ≥ ei for 1 ≤ i ≤ k, and we write(d1, . . . , dk) ≥ (e1, . . . , ek) in this case.

3.4 Flexible positions

In general, somet-way interactions may be covered more than once. Now consider each rowr of a
CA(N ; t, k, v); for every subsetC of t columns, letT be thet-way interaction that is covered in rowr
and the columns ofC. If T is not covered in any other row of the array, each of the cells{(r, c) : c ∈
C} is necessary. All cells that are not necessary in this way areflexible. If we ignore a flexible cell
(r, c) in the computation of coverage, allt-way interactions remain covered. By convention, when
flexible cell (r, c) is to be ignored, we place the entry⋆ (“don’t care” ) in cell (r, c). In general, one
cannot simply convert all flexible cells to⋆, because two flexible cells can each rely on the value in
the other for its flexibility. Nevertheless, one can repeatedly choose any one flexible cell to convert to
⋆, and then recalculate the flexible cells for this modifiedCA, until none remain.

3.5 Examples

Figure 2 gives examples to illustrate the definitions given.Each of the fiveCAs shown is aCA(14;2,7,3)
derived from the first one shown. It has one constant row, the thirteenth; the others are not constant.
Because it has a constant row, it is standardized. Rows 11 and13 are disjoint; indeed interchanging
symbols 0 and 1 in column 7 would make row 11 constant, while keeping row 13 constant. Hence
there is an equivalentCA(14;2,7,3) with two constant rows.
In the second array shown, the flexible entries are shown in boxes, while the necessary ones are
shown without. For example, the six pairs involving the entry in the first row and first column are
all covered in rows 5, 13, or 14; hence this entry is flexible. The entry in the second row and first
column is necessary because the pair with 0 in column 1 and 2 incolumn 4 appears only in this row.
As remarked earlier, we cannot change all flexible positionsto ⋆. If we were to do so, the pair (2,2)
would no longer be covered in the first two columns, for example.
The third, fourth, and fifth arrays are allCA(14;2,7,3)s in which certain flexible positions have been
changed to don’t-care positions, so that there remain no flexible positions. Their profiles are (2,1,2,1,1,1,1),
(2,1,2,1,2,1,1), and (2,2,2,2,2,2,2), respectively. Profile (2,1,2,1,2,1,1) dominates (2,1,2,1,1,1,1), and
is dominated by (2,2,2,2,2,2,2). The fifth array has two rowsthat contain only⋆. These can both be
deleted to form aCA(12;2,7,3). Similarly, a row can be removed immediately from the fourth array
shown, while the third array has no row containing only don’t-care positions.
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2 2 2 2 0 0 1
0 0 2 2 2 2 2
1 1 2 1 2 0 1
0 1 2 0 1 1 0
2 2 1 0 2 0 2
2 1 0 2 1 2 2
1 2 0 0 0 2 0
0 2 1 1 1 2 1
1 0 1 2 1 0 0
2 0 0 1 2 1 0
0 0 0 0 0 0 1
1 1 1 1 0 1 2
2 2 2 2 2 2 2
2 2 2 2 0 1 1

2 2 2 2 0 0 1
0 0 2 2 2 2 2
1 1 2 1 2 0 1
0 1 2 0 1 1 0
2 2 1 0 2 0 2
2 1 0 2 1 2 2
1 2 0 0 0 2 0
0 2 1 1 1 2 1
1 0 1 2 1 0 0
2 0 0 1 2 1 0
0 0 0 0 0 0 1
1 1 1 1 0 1 2
2 2 2 2 2 2 2
2 2 2 2 0 1 1

2 2 2 2 0 0 1
0 0 2 2 2 2 2
1 1 2 1 2 0 1
0 1 2 0 1 1 0
2 ⋆ 1 0 2 0 2
2 1 0 2 1 2 2
1 2 0 0 0 2 0
0 2 1 1 1 2 1
1 0 1 2 1 0 0
2 0 0 1 2 1 0
0 0 0 0 0 0 1
1 1 1 1 0 1 2
⋆ 2 ⋆ ⋆ 2 ⋆ ⋆
⋆ 2 ⋆ 2 ⋆ 1 1

2 2 2 2 0 0 1
0 0 2 2 2 2 2
1 1 2 1 2 0 1
0 1 2 0 1 1 0
2 2 1 0 2 0 2
2 1 0 2 1 2 2
1 2 0 0 0 2 0
0 2 1 1 1 2 1
1 0 1 2 1 0 0
2 0 0 1 2 1 0
0 0 0 0 0 0 1
1 1 1 1 0 1 2
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ 2 ⋆ 2 ⋆ 1 1

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 2 2 2 2 2
1 1 2 1 2 0 1
0 1 2 0 1 1 0
2 2 1 0 2 0 2
2 1 0 2 1 2 2
1 2 0 0 0 2 0
0 2 1 1 1 2 1
1 0 1 2 1 0 0
2 0 0 1 2 1 0
0 0 0 0 0 0 1
1 1 1 1 0 1 2
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
2 2 2 2 0 1 1

Figure 2: Examples of aCA(14;2,7,3)

4 Generalized direct products

In this section, a general recursive construction is developed, along with many specializations. Sec-
tion 5 then develops constructions for ingredients to be used in applying the results. We start with
the simplest direct product, essentially introduced in [11, 40, 47]; we employ an array operation⊗
depicted in Figure 3.

Theorem 4.1 [40] When aCA(N ; 2, k, v) and aCA(M ; 2, ℓ, v) both exist, aCA(N+M ; 2, kℓ, v) also
exists.

Proof. LetA = (aij) be aCA(N ; 2, k, v) and letB = (bij) be aCA(M ; 2, ℓ, v). Form an(N+M)×kℓ
arrayC = (ci,j) = A ⊗ B by settingci,(f−1)k+g = ai,g for 1 ≤ i ≤ N , 1 ≤ f ≤ ℓ, and1 ≤ g ≤ k.
Then setcN+i,(f−1)k+g = bi,f for 1 ≤ i ≤ M , 1 ≤ f ≤ ℓ, and1 ≤ g ≤ k. In essence,k copies of
B = (bij) are being appended toℓ copies ofA = (aij) as shown in Figure 3. Because two different
columns ofC arise either from different columns ofA or from two different columns ofB, the result
is aCA(N +M ; 2, kℓ, v). �

Stevens [45] improved on this by exploiting constant rows. Exploiting both “don’t care” cells and
constant rows is considered in [19, 21]; we develop general mechanisms for doing so here. We suppose
that a factor withv values always takes on values from{0, . . . , v − 1}, and hence the corresponding
column of the array contains only these symbols, and possibly ⋆.

Theorem 4.2 Letv, r1, r2, r3, s1, s2, s3, N,M be positive integers satisfyingr1+ r2 ≤ v, s1 ≤ v− r1,
s2 ≤ r1, andM ≥ s1 + s2 + s3. Suppose that there exist
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a11 a12 · · · a1k · · · a11 a12 · · · a1k
a21 a22 · · · a2k · · · a21 a22 · · · a2k

N rows
... · · ·

...
aN1 aN2 · · · aNk · · · aN1 aN2 · · · aNk
b11 b11 · · · b11 · · · b1ℓ b1ℓ · · · b1ℓ
b21 b21 · · · b21 · · · b2ℓ b2ℓ · · · b2ℓ

M rows
... · · ·

...
bM1 bM1 · · · bM1 · · · bMℓ bMℓ · · · bMℓ

Figure 3: The structure ofA⊗B

• a CA(N ; 2, k, v), A, with profile (d1 + e1, . . . , dk + ek), having two disjoint partial parallel
classes, one onr1 + r2 pure rows and the other onr3 pure rows;

• for each1 ≤ i ≤ k and some0 ≤ δi ≤ v − r1 − s1, aCA(M + di + δi; 2, ℓi, v), Bi, with profile
(γi1, . . . , γiℓi), in which

– the firsts2 rows are pure constant on symbols{0, . . . , s2−1} and the lasts1+ δi rows are
pure constant on symbolsv − s1 − δi, . . . , v − 1;

– rowss2 + 1, . . . , s2 + s3 form a partial parallel class ofs3 pure rows; and

– for every1 ≤ i1 < i2 ≤ k, Bi1 andBi2 are (M − s1, r1)-compatible.

Letµ = max(1, r2 + s2, r3, s3). LetL be the list with entriesei + γij for 1 ≤ i ≤ k and1 ≤ j ≤ ℓi.
Then there exists aCA(N +M − r1 − s1; 2,

∑k

i=1 ℓi, v) havingµ constant rows and profileL.

Proof. Permute symbols and rows ofA so that ther1 + r2 disjoint pure rows formr1 pure constant
rows on{0, . . . , r1 − 1} as the lastr1 rows andr2 pure constant rows on{v − r2, . . . , v − 1} as the
first r2 rows; remove the lastr1 rows to formA

′ with N − r1 rows.
Form an arrayC with N +M − r1 − s1 rows and

∑k

i=1 ℓi columns, indexing columns as(c, j) for
1 ≤ c ≤ k and1 ≤ j ≤ ℓi. Fill the firstN − r1 rows in column(c, j) as a copy of columnc of A′.
For c = 1, . . . , k, letRc be the indices of thedc rows in whichA′ contains a⋆ in columnc of A. For
1 ≤ c ≤ k, 1 ≤ j ≤ ℓc, and1 ≤ ρ ≤ M − s1 place in rowN − r1 + ρ and column(c, j) of C the
entry in cell(ρ, j) of Bi. Then letρ1, . . . , ρdc be the entries ofRc. For1 ≤ c ≤ k, 1 ≤ j ≤ ℓc, and
1 ≤ x ≤ dc, in row ρx and column(c, j) place the entry in cell(M − s1 + x, j) of Bi.
Consider columns(i1, j1) and (i2, j2) of the result. Wheni1 = i2, all pairs of the form(σ, σ) are
covered in the firstN−r1 rows excluding those inRi1 . Then in rowsRi1 and the lastM−s1 rows, all
remaining pairs are covered because two different columns of Bi1 are selected (andδi ≤ v− r1 − s1).
So suppose thati1 6= i2. The firstN − r1 rows cover all pairs except possibly for(σ, σ) when
0 ≤ σ < r1, which are covered by the remaining rows as a consequence of compatibility.
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Consider the largest numberµ of constant rows. By Observation 3.1,µ ≥ 1. In the result, rows
1, . . . , r2 are constant on symbolsv − r2, . . . , v − 1. RowsN − r1 + 1, . . . , N − r1 + s2 are constant
on the symbols0, . . . , s2 − 1. Soµ ≥ r2 + s2. BecauseA contains a partial parallel class ons3 rows,
and these rows are all pure, they yield a partial parallel class inC of the same size; henceµ ≥ r3.
BecauseM ≥ s1 + s2 + s3, and eachBi contains a partial parallel class of sizes3, C also contains a
partial parallel class of the same size; henceµ ≥ s3. �

Theorem 4.2 is quite general, but consequently it can be challenging to verify all of the conditions
required on the ingredients. Therefore we state some corollaries obtained by specializing the parame-
ters. Usually we taker3 = s3 = 0, so the disjoint partial parallel classes are not needed. Compatibility
poses the most severe constraint, so the easiest application arises when all of the{Bi} are identical:

Corollary 4.3 If a CA(N ; 2, k, v) with r disjoint rows and aCA(M ; 2, ℓ, v) with s disjoint rows both
exist, then aCA(N +M −min(v, r + s); 2, kℓ, v) exists havingmin(1, r + s− v) constant rows.

Proof. A CA(N ; 2, k, v) with r disjoint rows yields aCA(N ; 2, k, v) with r pure constant rows; take
r1 = min(r, v−s) andr2 = r−r1. Takes1 = s ands2 = 0, and write theCA(M ; 2, ℓ, v)with s disjoint
rows as aCA(M ; 2, ℓ, v), B, in which the lasts rows are constant on the symbolsv − s, . . . , v − 1, in
that order. Takedi = ei = δi = 0 andBi = B for 1 ≤ i ≤ k. Apply Theorem 4.2. Ifr2 = 0, one row
can nonetheless be made constant. �

Corollary 4.4 Suppose thatA is aCA(N ; 2, k, v) havingr pure constant rows and profile(d1, . . . , dk).
Let 0 ≤ s ≤ v be an integer. Further suppose that for each1 ≤ i ≤ k and some0 ≤ δi ≤
v − s, there exists aCA(M + di + δi; 2, ℓi, v), Bi, havings + δi constant rows. Then there exists a
CA(N +M − s; 2,

∑k

i=1 ℓi, v) havingr constant rows.

Proof. Apply Theorem 4.2 usingr1 = 0, r2 = r, s1 = s, ands2 = 0. Becauser1 = 0, compatibility
holds trivially. �

Corollary 4.5 Suppose that there exists aCA(N ; 2, k, v), A, with profile(d1, . . . , dk), havingr1 + r2
pure constant rows. Lets2 = r1 and0 ≤ s1 ≤ v − r1. Further suppose that for each1 ≤ i ≤ k and
some0 ≤ δi ≤ v − r1 − s1, there exists aCA(M + di + δi; 2, ℓi, v), Bi, havings1 + s2 + δi constant
rows. Then there exists aCA(N +M − r1 − s1; 2,

∑k

i=1 ℓi, v) havingr2 + s2 constant rows.

Proof. Apply Theorem 4.2. Becauses2 ≥ r1, compatibility holds. �

5 Recursive Constructions

In order to develop applications of Theorem 4.2, we examine profiles of covering arrays. As we
have seen, Theorem 4.2 itself can be used to make a variety of profiles. The other main recursive
construction, the cut–and–paste method, can also be employed.
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Consider aCA(N ; 2, k1+k2, v), shown in Figure 4. The arraysA1,A2, andX are(N−v)×k1, (N−v)×
k2, andv×k2, respectively. ArrayD is av×k1 has a specific structure, namely that every column is a
permutation of{1, . . . , v}. A CA(N ; 2, k1+ k2, v) admitting such a partition is apartitioned covering
arrayPCA(N ; 2, (k1, k2), v). (Figure 1 gives aPCA(26;2,(11,4),4).) Without loss of generalityD can
be assumed to be the matrixP in which each column is the identity permutation. Whenq is a prime
power, an orthogonal array with the maximum number of factors yields anPCA(q2; 2, (q, 1), q).

A1 A2

D X

Figure 4: A partitioned covering array (PCA)

The main cut–and–paste construction for covering arrays ofstrength two is established in [21]; we
give a small extension of it proved in [19]:

Theorem 5.1 If a PCA(N ; 2, (k1, k2), v) and aPCA(M ; 2, (ℓ1, ℓ2); v) both exist, then aPCA(N +
M − v; 2, (k1ℓ1, k1ℓ2 + k2ℓ1), v) also exists.

The construction follows. Take aPCA(N ; 2, (k1, k2), v) with a partition as in Figure 4 intoA1, A2,
D andX; and anPCA(M ; 2, (ℓ1, ℓ2), v) with partitionB1, B2, E, andY. Without loss of generality,
suppose thatD andE consist of column identity permutations, and write each asP. Further suppose
that each of the columns ofX andY has the property that thei+ 1st entry does not exceedi.
Form an array as in Figure 5. In the products of the formAi ⊗ Bj , the firstN − v rows arise fromAi
while the nextM − v arise fromBj , as shown in Figure 3. Hereℓ1X is obtained by repeating the array
X ℓ1 times andk1(Y) is obtained by repeating each column ofY k1 times.P is av × k1ℓ1 matrix of
(column) identity permutations.

A1 ⊗ B1 A2 ⊗ B1 A1 ⊗ B2

P ℓ1X k1(Y)

Figure 5: The product of twoPCAs

Theorem 5.1 does not exploit don’t care positions in either array. In a sense, this is a primary reason
why the generalized direct product is able to make the improvements that we have found. However,
cut–and–paste preserves (and indeed inflates) don’t care positions. Indeed the following employs an
easy analysis of the don’t care positions that must arise in the resulting array:
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Theorem 5.2 Suppose that aPCA(N ; 2, (k1, k2), v) A partitioned into intoA1, A2, D andX exists,
and that there aredi don’t care positions in columni of A1 for 1 ≤ i ≤ k1; di don’t care positions in
columni ofA2 for k1 < i ≤ k1+k2; andei don’t care positions in columni ofX for k1 < i ≤ k1+k2.
Suppose that aPCA(M ; 2, (ℓ1, ℓ2), v) B partitioned into intoB1, B2, E, andY exists, and that there
areδj don’t care positions in columnj ofB1 for 1 ≤ j ≤ ℓ1; δi don’t care positions in columnj ofB2

for ℓ1 < j ≤ ℓ1 + ℓ2; andεi don’t care positions in columnj of X for ℓ1 < j ≤ ℓ1 + ℓ2. Form a listL
of (k1 + k2)(ℓ1 + ℓ2)− k2ℓ2 entries, containingdi + δj for 1 ≤ i ≤ k1 and1 ≤ j ≤ ℓ1; di + ei + δj
for k1 < i ≤ k1 + k2 and1 ≤ j ≤ ℓ1; anddi + δj + εj for 1 ≤ i ≤ k1 andℓ1 < j ≤ ℓ1 + ℓ2. Then a
PCA(N +M − v; 2, (k1ℓ1, k1ℓ2 + k2ℓ1), v) with profileL exists.

6 Direct Constructions of Profiles

In order to apply generalized direct products effectively,ingredients are needed that have suitable
combinations of constant rows and profiles. Moreover, to make suitable ingredients using a recursive
construction, smaller ingredients are then needed. Here weexamine some direct constructions to form
basic ingredient arrays.

6.1 Fusion

An easy way to form don’t care positions is to form a covering array on a larger number of symbols
and then omit the ‘extra’ symbols.

Theorem 6.1 Suppose that anMCA(N ; 2, k, (v1, . . . , vk)) exists that

• has profile(d1, . . . , dk),

• hasρ ≤ vc − 1 pure constant rows on symbols{0, . . . , ρ− 1}, and

• in which thecth column containsrσc occurrences ofσ for σ ∈ {0, . . . , vc − 1}.

Let ε(σ) = 1 if 0 ≤ σ < ρ, 0 otherwise. Letδc = max{rσc − ε(σ) : σ ∈ {0, . . . , vc − 1}}. Then an
MCA(N ; 2, k, (v1, . . . , vc−1, vc−1, vc+1, . . . , vk)) exists with profile(d1, . . . , dc−1, dc+δc, dc+1, . . . , dk)
havingρ pure constant rows on symbols{0, . . . , ρ− 1}.

Proof. Choose a symbolσ for which rσc − ε(σ) = δc. Interchange symbolsσ in vc − 1 in columnc.
Replace all occurrences ofvc − 1 in columnc by ⋆. If σ < ρ, replace the single star in the constant
row containingσ by σ to restore the pure constant row. �

After each application of Theorem 6.1, additional flexible positions may arise both in columnc and
in other columns, and converting these to⋆ may enable additional reduction in a further application.
The particular selections made can affect the benefit from this, so we state a conclusion for covering
arrays that holds even when additional⋆ entries are not deduced.
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Corollary 6.2 LetA be aCA(N ; 2, k, v) on symbol set{0, . . . , v − 1} and columns{1, . . . , k}, with
profile (d1, . . . , dk), in which symboli appears in columnc exactlyric times. For1 ≤ c ≤ k, letψc be
a permutation on{0, . . . , v − 1} for whichrψc(j−1),c ≤ rψc(j),c for 0 < j < v. Then for2 ≤ x < c,
there is aCA(N ; 2, k, x) with profile(d1 +

∑v−1
j=x rψ1(j),1, . . . , dk +

∑v−1
j=x rψk(j),k).

Proof. Apply Theorem 6.1, taking theCA to have no pure constant rows, to removev − x symbols
from each column. �

Corollary 6.3 If a CA(N ; 2, k, v)with profile(d1, . . . , dk) exists, then for2 ≤ x ≤ v, aCA(N ; 2, k, x)

with profile(d1 + ⌈ (v−x)(N−d1)
v

⌉, . . . , dk + ⌈ (v−x)(N−dk)
v

⌉) also exists.

Proof. For eachc, rψc(j−1),c ≤ rψc(j),c for 0 < j < v, and
∑v−1

j=0 rψc(j),c = N − dc. Hence
∑v−1

j=x rψc(j),c ≥ (v − x)N−dc
v

, and the result follows by Corollary 6.2. �

This variant of fusion does not remove any rows, unlike the use in [20]. We can remove a row if all
entries in the row are changed to⋆, and this can be ensured if symbols are renamed so that all butone
entry in the row becomes⋆. This is the basic operation in the method of post-optimization from [37];
see Section 7.2.
In applying Corollary 6.2 or 6.3, the result cannot be guaranteed to have a pure row, and hence Obser-
vation 3.1 need not lead to a pure constant row unless the profile is changed. This can be effectively
addressed.

Lemma 6.4 If a CA(N ; 2, k, v) with profile(d1, . . . , dk) havingρ pure rows exists, then for2 ≤ x ≤

v, a CA(N ; 2, k, x) with profile (d1 + ⌈ (v−x)(N−d1−ρ)
v

⌉, . . . , dk + ⌈ (v−x)(N−dk−ρ)
v

⌉) havingmin(ρ, x)
pure constant rows also exists.

Proof. Permute so that the pure rows are pure constant on symbols0, . . . , ρ − 1. Then, in each
columnc, select thev − x elements that appear the most frequently in theN − dc − ρ other rows.
Permute symbols in columnc so that these symbols are namedv−x, . . . , v−1, ensuring that none of
0, . . . , ρ−1 is renamed unless it appears among thev−x chosen symbols. Now change all occurrences
of v − x, . . . , v − 1 in columnc to ⋆, except in any row that was pure constant; if one appears in such
a row, make it again pure constant. �

Lemma 6.5 Suppose that there exists aCA(N ′; 2, k, v) in which at least one symbol occurs exactly
v times in one of the columns. (This always holds whenv2 ≤ N ′ < v(v + 1).) Then there exists a
CA(N ′−1; 2, k, v−1) having profile(v−1)k, and aCA(N ′−1; 2, k, v−1) with v−1 pure constant
rows having profile(v − 1)k−101.

Proof. Without loss of generality there is aCA(N ′; 2, k, v) with a pure constant row of symbolv− 1,
so that symbolv − 1 occurs exactlyv times in the last column. Delete this constant row and change
all occurrences of symbolv − 1 to ⋆ to form aCA(N ′ − 1; 2, k, v − 1) having profile(v − 1)k. (It
may have more⋆ entries in columns other than the last, but its profile dominates(v − 1)k.) Replace
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thev − 1 ⋆ entries in the final column by entries0, . . . , v − 2, using each symbol exactly once. Then
thev − 1 corresponding rows are pairwise disjoint, and the result isaCA(N ′ − 1; 2, k, v − 1) having
v − 1 pure constant rows, and profile(v − 1)k−101. �

Lemma 6.6 Suppose that there exists aCA(q2; 2, q + 1, q) with q odd. Then there exists aCA(q2 −
2; 2, q + 1, q − 1) having profile((q − 1)/2)q(q − 2)1, and aCA(q2 − 2; 2, q + 1, q − 1) with profile
((q − 1)/2)q01 havingq − 2 pure constant rows.

Proof. Permute symbols so that theq rows in whichq − 1 appears in the last column are constant on
columns1, . . . , q. Delete the pure constant row containingq − 1, and replace all otherq − 1 entries
by ⋆. Next delete the constant row containingq − 2. Select an arbitrary tournamentT on vertices
1, . . . , q that is in- and out-regular of degree(q − 1)/2. Whenever(x, y) is an arc ofT , locate the
row that contains⋆ in columnx andq − 2 in columny, and replace the⋆ by q − 2. The result is a
CA(q2 − 2; 2, q + 1, q − 1) with ((q − 1)/2) ⋆ entries in each of the firstq columns andq − 2 in the
last. Extending each of theq − 2 constant rows to be pure constant yields the secondCA. �

Using these constructions, we obtain the following:

Lemma 6.7 Suppose that there exists aCA(N ′; 2, k, v) in which for some symbolσ and some column
c, σ appears exactlyv times in columnc. Suppose further that there exists aCA(M ′; 2, ℓ1, v − 1)
havings constant rows.

1. If aCA(M ′−(v−1); 2, ℓ2, v) havings constant rows exists, there exists aCA((M ′−s)+(N ′−
v); 2, (k − 1)ℓ1 + ℓ2, v − 1) havingv − 1 constant rows.

2. IfM ′ ≥ v(v − 1), there exists aCA((M ′ − s) + (N ′ − v); 2, (k − 1)ℓ+ 2, v − 1) havingv − 1
constant rows.

3. There always exists aCA((M ′ − s) + (N ′ − v); 2, (k − 1)ℓ + 1, v − 1) havingv − 1 constant
rows.

Proof. Takingℓ2 = 2 andℓ1 = ℓ in the first statement implies the second, because aCA(M ′ − (v −
1); 2, 2, v) exists withv − 1 disjoint rows whenM ′ − (v − 1) ≥ (v − 1)2. Takingℓ2 = 1 andℓ1 = ℓ
in the first statement implies the third. So we establish the first statement. By Lemma 6.5, there is a
CA(N ′ − 1; 2, k, v − 1) with v − 1 pure constant rows having profile(v − 1)k−101 Apply Corollary
4.5 withr1 = s2 = s, r2 = v − 1− s, s1 = 0,N = N ′ − 1, andM =M ′ − (v − 1). �

Lemma 6.8 Suppose that there exists aCA(N ′; 2, k, v) that contains a pure constant row on symbol
σ, and symbolσ appears exactlyv times in columns1, . . . , v− 1 andk. If there exist aCA(M ′ − (v−
2); 2, ℓ2, v − 1), aCA(M ′; 2, ℓ1, v − 1), and aCA(M ′ − (v − 1); 2, ℓ3, v − 1) each havings constant
rows, then aCA((M ′ − s) + (N ′ − 1); 2, vℓ1 + (k − v)ℓ2 + ℓ3, v − 1) havingv − 1 constant rows.



44 C. J. Colbourn / Journal of Algorithms and Computation 44 (2013) PP. 31 - 60

Proof. By Lemma 6.13, aCA(N − 1; 2, k + 1, v − 1) exists having profile1v−1(v − 1)k−v+101(N −
v(v−1))1 and havingv−1 pure constant rows. Apply Corollary 4.5 withr1 = s2 = s, r2 = v−1−s,
s1 = 0,N = N ′ − 1, andM =M ′ − (v − 1). �

Lemma 6.9 Suppose that there exists aCA((z−1)(v−1)+ v; 2, z, v) in which symbolv−1 appears
exactlyv times in each column. Let1 ≤ α < v. Suppose that there is aCA(M ; 2, ℓ, v−α) containing
v − α constant rows and a disjoint set ofv − α rows containingγ permutation columns. Then there
is aPCA((z − 1)(v − 1) +M − (α− 1)z − (v − α); 2, (zℓ, (z − 1)ℓ+ γ), v − α).

Proof. Suppose that the rows of theCA((z − 1)(v − 1) + v; 2, z, v) that containv − 1 in columnz
are otherwise constant. Replace all entries ofv− 1, . . . , v−α by ⋆ and delete theα rows that contain
only ⋆, leaving an((z−1)(v−1)+ v−α)× z arrayA. ThenA has(α−1)(z−1)+ (v−1) ⋆ entries
in the firstz−1 columns, and(α−1)z+(v−α) in columnz, so has profile(v−1+(α−1)(z−1))z.
Let B be theCA(M ; 2, ℓ, v − α), with B1 being thev − α constant rows,B2 being thev − α rows
containingγ permutation columns,B3 being a further set of(α−1)z rows, andB4 being the remaining
M−(α−1)z−2(v−α) rows. LetC beA⊗B4. Columnz of A leads to a(v−α)×ℓ block of⋆ entries
in the firstv− α rows. Replace this block withB2, so that the firstv− α rows now have(z − 1)ℓ+ γ
permutation columns. The remaining⋆ entries in columnz yield (α − 1)z rows, in which we place
the rows ofB3. For each of the remaining columns, the⋆ entries form a((α−1)(z−1)+ (v−1))× ℓ
block of⋆ entries, which we replace with the rows ofB2 andB3.
The verification parallels the proof of Theorem 4.2, but we must verify that all constant pairs are
covered, because the firstv − α rows may not be pure constant. This is routine, however, because
every constant pair is covered inA. �

In the absence of other information, Lemma 6.9 can always be applied with γ = 2. When the
CA(M ; 2, ℓ, v − α) is known to have two disjoint parallel classes, the resulting PCA in fact has a
parallel class.
In certain situations, the manner in which the⋆ positions are used can be varied to ensure the presence
of many disjoint parallel classes. We pursue this next.

Theorem 6.10 Suppose that there exists aCA(N + 1; 2, k, v + 1) with k ≥ v in which some row
covers pairs, none of which are covered in another row. Suppose further that there is aCA(M ; 2, ℓ1, v)
containing a parallel class and aCA(M ; 2, ℓ2, v) containing two disjoint parallel classes. Then there
exists aCA(N + M − 2v; 2, vℓ2 + (k − v)ℓ1 + 1, v). WhenN + 1 = (v + 1)2, for 1 ≤ α ≤ k,
there also exists aCA(N +M − 2v; 2, (k − α)ℓ1 + αℓ2, v) havingα disjoint parallel classes, and a
CA(N +M − 2v; 2, (k − α)ℓ1 + αℓ2 + 1, v) havingα− v disjoint parallel classes whenα ≥ v.

Proof. Let A be theCA(N ; 2, k, v) obtained from theCA(N + 1; 2, k, v + 1) by making the row in
which every pair is uniquely covered constant on symbolv + 1, deleting this row, and changing all
remaining occurrences ofv + 1 to ⋆. Every row ofA contains at most one⋆. In theCA(M ; 2, ℓ2, v),
make one parallel class contain constant rows, and then delete these rows. LetD2 be thev rows of
the second parallel class, and the remainingM − 2v rows beB2. In theCA(M ; 2, ℓ1, v), make one
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parallel class contain constant rows, and then delete theserows. LetD1 be anyv remaining rows, and
the remainingM − 2v rows beB1.
Chooseα so that0 ≤ α ≤ k. Form an(N +M − 2v) × ((k − α)ℓ1 + αℓ2) matrixC as follows. In
the firstN rows, replicateα columns ofA ℓ2 times each, then the remainingk − α columns ofA ℓ1
times each. Each of the firstα columns ofA contains at leastv ⋆ entries and hence forms av × ℓ2
subarray containing only⋆ entries in the firstN rows ofC; replace this subarray withD2. Each of the
lastk − α columns ofA contains at leastv ⋆ entries and hence forms av × ℓ1 subarray containing
only ⋆ entries in the firstN rows ofC; replace this subarray withD1. In the remainingM − 2v rows
of C, concatenateα copies ofB2 followed byk − α copies ofB1.
ThenC is aCA(N +M − 2v; 2, vℓ2 + (k − v)ℓ1, v), but we can say more. Suppose that1 ≤ c ≤
min(α, v). Consider the rows ofA that contain⋆ in columnc. Adjoin a new column toC, and place
symbolc in the added column in each of these rows. This ensures that symbol c in the added column
appears with each symbol in each other column. Hence takingα = v, we obtain aCA(N +M −
2v; 2, vℓ2 + (k − v)ℓ1 + 1, v).
Now consider cases whenN + 1 = (v + 1)2. Then every columnc of A contains exactlyv ⋆ entries,
and the rows containing these⋆ entries yield a parallel class inC whenever1 ≤ c ≤ α. Whenα ≥ v,
a new column can again be added, placing⋆ in the rows arising from parallel classes withc > v. Then
α− v parallel classes remain in the extended covering array. �

6.2 Projection of orthogonal arrays

Projection was introduced in [46] and generalized in [18]. We apply it here to a specific family of
orthogonal arrays.

Theorem 6.11 Let q be a prime power. Letx be an integer with0 < x < q. Then there is a
CA(q2 − x; 2, q + 1 + x, q − x)

1. with profile0q−1(q − 1)1(q − 1)1(2(q − 1))1 whenx = 1;

2. with profile2q−a1−a2(q)a1(2q − 2)a2(2q − 3)1(3q − 4)2 whenx = 2, whenever(a1, a2) ∈
{(4, 0), (2, 1), (0, 2)} anda1 + a2 ≤ q;

3. with profile6q−a1−a2−a3(q + 3)a1(2q)a2(3q − 3)a3(3q − 3)1(4q − 6)3 whenx = 3, whenever
(a1, a2, a3) ∈ {(9, 0, 0), (7, 1, 0), (6, 0, 1), (5, 2, 0), (4, 1, 1), (3, 3, 0), (3, 0, 2), (2, 2, 1), (1, 4, 0),
(1, 1, 2), (0, 3, 1), (0, 0, 3)} anda1 + a2 + a3 ≤ q.

There is also aCA(q2 − x; 2, q + 1 + x, q − x) havingq − x pure constant rows

1. with profile1q−1(q − 1)101(q − 1)1 whenx = 1;

2. with profile4q−a1−a2(q+1)a1(2q−2)a2q1(2q−2)2 whenx = 2, whenever(a1, a2) ∈ {(4, 0), (2, 1), (0, 2)}
anda1 + a2 ≤ q;
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3. with profile9q−a1−a2−a3(q + 5)a1(2q + 1)a2(3q − 3)a3(2q)1(3q − 3)3 whenx = 3, whenever
(a1, a2, a3) ∈ {(9, 0, 0), (7, 1, 0), (6, 0, 1), (5, 2, 0), (4, 1, 1), (3, 3, 0), (3, 0, 2), (2, 2, 1), (1, 4, 0),
(1, 1, 2), (0, 3, 1), (0, 0, 3)} anda1 + a2 + a3 ≤ q.

Proof. Let q be a power of a prime, and letFq be the finite field onq elements, with multiplication⊗
and addition⊕. We form aq2×q+1 arrayA that is aCA(q2; 2, q+1, q) as follows. Rows are indexed
by polynomials of degree less than two overFq. We refer to the elements ofFq as{0, . . . , q − 1},
where0⊗z = z⊗0 = 0 for z ∈ Fq. Index columns by0, . . . , q−1 and∞ in that order. Fora, b ∈ Fq,
in the row indexed byax + b and the column indexed byzi, place the entry(a ⊗ zi) ⊕ b. In the row
indexed byax + b and the column indexed by∞, place the entrya − 1 mod q. Theq rows arising
from polynomials of the form0x + b arenear-constant rows, because they are constant on the firstq
columns (and have entryq− 1 in the column headed by∞). The remaining rows aretransverse rows.
Forx ≥ 1 we ‘project’ to form an arrayAx as follows. First delete the near-constant rows fromA that
contain symbolsq − y for y ≤ x, in the process removingx rows. Then adjoinx additional columns
indexed by∞x, . . . ,∞1. Place⋆ in each of these new columns in each near-constant row.
For each1 ≤ y ≤ x, choose a permutationπy of {0, . . . , q− 1}. In every transverse row, each symbol
occurs exactly once in columns0, . . . , q− 1. Then for1 ≤ y ≤ x, if in transverse rowρ we findq− y
in columnπy(a) anda < q−x, placea in column∞y in that row. For each0 ≤ a < q−x, among the
q − 1 transverse rows havingq − y in columnπy(a) place the symbols{0, . . . , q − x− 1} in column
πy(a) once each and set the remainder to⋆. Replace all remaining entries from{q− x, . . . , q− 1} by
⋆. The resulting arrayAx is aCA(q2 − x; 2, q + 1+ x, q − x) [18], and so the issue is to determine its
profile.
Column∞ hasq − x ⋆ entries on the near-constant rows, and(x− 1)q on the transverse rows. Each
of columns∞y for 1 ≤ y ≤ x hasq − x ⋆ entries on the near-constant rows, andx(q − 1) on
the transverse rows. Columni for 0 ≤ i < q has no⋆ entries on the near-constant rows, and has
αi(q − 1) + (x − αi)(x − 1) ⋆ entries on the transverse rows, whereαi = |{y : πy(i) ≥ q − x, 1 ≤
y ≤ x}|. By choosing the permutations{πy : 1 ≤ y ≤ x} appropriately, we can select any integers
α0, . . . , αq−1 that satisfy0 ≤ αi ≤ x and

∑q−1
i=0 αi = x2.

Forx = 1, column∞ hasq−1 ⋆ entries and column∞1 has2(q−1). One of columns{0, . . . , q−1}
hasq− 1, and the rest have 0. Forx = 2, column∞ has2q− 3 and columns∞1 and∞2 have3q− 4.
For columns{0, . . . , q − 1}, we can choose the{αi} values to get different results. Taking two of
them to be 2, we get two columns with2q−2 andq−2 with 2. Taking one to be 2 and two to be 1, we
get one column with2q − 2, two with q, andq − 3 with 2. Taking four to be 1, we get four columns
with q andq − 4 with 2.
Forx = 3, column∞ has3q− 3 and columns∞1, ∞2, and∞3 have4q− 6. Whenαi = 3, columni
has3q − 3 ⋆ entries; whenαi = 2, it has2q; whenαi = 1, it hasq + 3; and whenαi = 0 it has 6.
Pure constant rows inAx could be formed by making each of the near-constant rows constant. How-
ever, one can then form further⋆ positions, as follows. Suppose thatq − y appears in columnπy(a)
anda < q − x. Once the near-constant rows are made constant, the placement of a in columnπy(a)
to replaceq − y is no longer needed, and can be changed to⋆. Now we adjust the counts of⋆
entries appropriately. Column∞ has(x − 1)q ⋆ entries on the transverse rows. Each of columns
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∞y for 1 ≤ y ≤ x hasx(q − 1) ⋆ entries on the transverse rows. Columni for 0 ≤ i < q has
αi(q− 1) + (x−αi)x ⋆ entries on the transverse rows, whereαi = |{y : πy(i) ≥ q− x, 1 ≤ y ≤ x}|.
Then a similar analysis establishes the results stated. �

We can also use projection to construct arrays with multipledisjoint parallel classes:

Theorem 6.12 Let q be a prime power. Letx be an integer with0 < x < q. Then there is a
CA(q2 − x; 2, q + 1 + x, q − x) havingx+ 1 disjoint parallel classes.

Proof. LetA be theCA(q2; 2, q+1, q) formed in Theorem 6.11. FormB by first adjoiningx columns
to A, indexed by∞x, . . . ,∞1, changing all entries in transverse rows in column∞ that belong to
{q−x, . . . , q−1} to ⋆. Then delete thex near-constant rows containing symbols from{q−x, . . . , q−
1}, and make the remaining near-constant rows pure constant (by extending the value in columns
0, . . . , q − 1 through columns{∞,∞x, . . . ,∞1}. For1 ≤ y ≤ x, whenever symbolq − y appears in
columnc of a row, placec in column∞y of that row ifc < q−x. All entries of columns∞1, . . . ,∞x

not so determined are set to⋆.
The q2 − q transverse rows are partitioned into classes as follows: classWi contains theq − 1 row
indices of rows in whichq − 1 appears in columni. We partitionWi arbitrarily into two sets,Ri

containingq − x row indices andSi containingx − 1. For 0 ≤ c < q − x, place a permutation of
symbols{0, . . . , q− x− 1} in the cells of columnc in the rows ofRc and place⋆ in those of the rows
of Sc. Forq − x ≤ c < q, place⋆ in the cells of columnc in each row ofWc.
Now for2 ≤ y ≤ x, we proceed differently. Forq−x ≤ c < q, whenq−y appears in columnc, simply
replace it by⋆. For0 ≤ c < q − x, let T be the set of row indices in whichq − y appears in column
c. NowT ∩Wj contains one row index whenc 6= j, and none otherwise. ThereforeT ∩ (

⋃q−x−1
j=0 Wj)

containsq − x − 1 row indices, so in columnc place a permutation of{0, . . . , q − x − 1} \ {c} in
the corresponding rows. (Note that the pair containingc in columnc andc in column∞y appears in
a pure constant row.) Place a⋆ in the columns of the remainingx rows ofT .
Now we recover the parallel classes. By construction, one isthe set of pure constant rows. The
remainingx parallel classes are those indexed byRc for q− x ≤ c < q. Indeed, no replacement of an
element of any row ofWq−x, . . . ,Wq−1 is made except for replacement of entries by⋆. The rows of
Wc initially agreed only in havingq − 1 in columnc, and hence no two rows ofWc (for c ≥ q − x)
agree in any position except for the entry⋆. �

6.3 Projection and cover starters

In [18, 35, 36], covering arrays are produced that admit a sharply transitive group action onk − 1
columns, and a second sharply transitive group action onv−1 symbols. In [35], this is generalized to
allow a sharply transitive group action onv − f symbols, fixing the remainingf . The basic device is
to produce a single row, a(v, k, f)-cover starter, to be developed under the action of the two chosen
groups. As discussed in [35], when the cover starter itself contains a don’t-care position, covering
arrays with many (predictable) profiles result. We pursue a different avenue here, focussing on the
case whenf = 1.
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Cover starters forf = 1 produce aCA(k(v − 1) + 1; 2, k, v) with the property that there is a pure
constant row (containing only the fixed symbol), and every other row contains the fixed symbol in
exactly one position. This property is precisely what is needed to apply projection [18].

Lemma 6.13 If a CA(N ; 2, k, v) exists that contains a pure constant row on symbolσ, and symbol
σ appears exactlyv times in columns1, . . . , v − 1 andk, then aCA(N − 1; 2, k + 1, v − 1) exists
having profile1v−1(v − 1)k−v01(N − 1 − v(v − 1))1 and havingv − 1 pure constant rows. In
particular, if a (v, k, 1)-cover starter exists, then aCA(k(v − 1); 2, k + 1, v − 1) exists having profile
1v−1(v − 1)k−v01((k − v + 1)(v − 1))1 and havingv − 1 pure constant rows.

Proof. Form theCA(N ; 2, k, v) so that the pure constant row is on symbolv−1, and every other row
contains (at most) onev− 1 among columns{1, . . . , v− 2}∪ {k}. Rename symbols in each column,
always fixingv−1, so thatv rows are constant on the firstk−1 columns and containv−1 in the last.
Delete the pure constant row on symbolv− 1. Add a new column. For1 ≤ c ≤ k, letRc be the set of
row indices of rows that containv − 1 in columnc. For1 ≤ c ≤ v − 1, in each row inRc placec− 1
in the new column, and place a permutation of{0, . . . , v − 2, ⋆} \ {c− 1} in columnc in the rows of
Rc. For v ≤ c < k, place⋆ in each row ofRc both in columnc and in the new column. Forc = k,
extend each row inRc to be pure constant. Then columns1, . . . , v − 1 have 1⋆ entry each; columns
v, . . . , k − 1 have at leastv − 1; columnk has none; and the added column hasN − 1 − v(v − 1).
�

As a construction for covering arrays, Lemma 6.13 is not terribly useful because a(k + 1, v − 1, 1)-
cover starter typically yields a smaller array. However, the array constructed by projection has both a
full set of pure constant rows, and a ‘large’ profile.

6.4 Holey Transversal Designs

Let V be a set ofhn symbols partitioned inton setsV1, . . . , Vn, each of sizeh. An ((nh)2 − nh2)× k
arrayA is aholey transversal designHTD(k;nh, h) if every symbol inA is in V , and for every two
different columnsγ1 andγ2 of A and every two symbolsx ∈ Vi andy ∈ Vj , exactly one row ofA
containsx in columnγ1 andy in columnγ2 if and only if i 6= j. Whenx, y ∈ Vi for somei, there is
no row ofA with x in columnγ1 andy in columnγ2.
By placing aCA(N ; 2, k, h) on the symbols ofVi for each1 ≤ i ≤ n, we obtain aCA((nh)2 −
nh2) + nN ; 2, k, hn). Let us consider an application of this. In [1] it is shown that anHTD(7; 2q, 2)
exists wheneverq is an odd prime power and7 ≤ q ≤ 61. BecauseCAN(2, 7, 2) = 6, we obtain that
CAN(2, 7, 2q) ≤ 4q2−4q+6q = 4q2+2q wheneverq is an odd prime power and7 ≤ q ≤ 61. In fact,
we can do somewhat better. TheHTDs constructed in [1] haveV = Fq×{0, 1} andVi = {i}×{0, 1}
for i ∈ Fq. The additive group ofFq is an automorphism group acting on the symbols. So choose any
row ((ν1, µ1), . . . , (ν7, µ7)). Under the action ofFq, this row generatesq disjoint rows of theHTD.
Theseq rows use exactly half of the symbols in each column; in fact, whenever(ν, i) is in one of these
rows,(ν, 1− i) is not in any of them. Then in placing theCA(6; 2, 7, 2) on symbols inVi, ensure that
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one of the rows uses none of the symbols in theq disjoint rows already produced. In this way, we
produce a further disjoint row for eachVi, to establish that there is aCA(4q2 + 2q; 2, 7, 2q) having2q
disjoint rows.
Using the construction in [1], in addition to the row((ν1, µ1), . . . , (ν7, µ7)) one can select another
row ((ν ′1, µ

′

1), . . . , (ν
′

7, µ
′

7)) with (µ1, . . . , µ7) 6= (µ′

1, . . . , µ
′

7). By selecting theCA(6;2,7,2) so that
(1− µ1, . . . , 1− µ7) and(1− µ′

1, . . . , 1− µ′

7) are two rows, which can always be done, a second set
of 2q disjoint rows can be found, that is disjoint from the first, toestablish:

Lemma 6.14 There is aCA(4q2 + 2q; 2, 7, 2q) having two disjoint parallel classes wheneverq is an
odd prime power and7 ≤ q ≤ 61.

Now letA be theHTD(7; 2q, 2) and letA′ be the result of interchanging the names of symbols(ν, i)
and(ν, 1 − i) for everyν ∈ Fq. ThenA ⊗ A

′ is an(8q2 − 8q) × 49 array with columns indexed by
{1, . . . , 7} × {1, . . . , 7}. For every two different columns(γ1, δ1) and(γ2, δ2) and every two symbols
x ∈ Vi andy ∈ Vj, at least one row ofA ⊗ A

′ containsx in column(γ1, δ1) andy in column(γ2, δ2)
wheni 6= j. Whenx, y ∈ Vi for somei, there is no row ofA ⊗ A

′ with x in column(γ1, δ1) andy
in column(γ2, δ2), unlessx = y and eitherγ1 = γ2 or δ1 = δ2. There is a8 × 70 arrayF on two
symbols{σ1, σ2}, formed by including as columns each of the

(

8
4

)

vectors containing each symbol
exactly four times. For every two columns ofF , some row includes(σ1, σ2) and some row includes
(σ2, σ1). However, the pairs(σ1, σ1) and(σ2, σ2) are covered if and only if the chosen columns do not
differ in each position. For each column ofF , exactly one other column differs in each position; call
these anantipodal pair of columns. Now form an8×49 arrayF ′ as follows: Choose 49 columns ofF ,
and index them by{1, . . . , 7} × {1, . . . , 7}, so that if both columns of an antipodal pair are selected,
their column indices(γ1, δ1) and(γ2, δ2) satisfyγ1 = γ2 or δ1 = δ2. For eachVi, place a copy ofF ′

on the symbols ofV ′. Together withA⊗ A
′ these form aCA(8q2; 2, 49, 2q).

There are2q(2q − 2) rows inA and therefore4q − 4 orbit representatives underFq. Thus the rows of
A⊗A

′ can be partitioned into4q−4 parallel classes. Add a new column. Suppose that the symbolsin
Fq×{0, 1} are{ν1, . . . , ν2q}. In the added column, in the rows for theith parallel class, place symbol
νi. Then in the new column, in the rows for the(2q + 1)st parallel class, place each of the symbols
ν1, . . . , ν2q in one row. For the remainingq(2q−5) rows, place⋆ in the new column. This establishes:

Lemma 6.15 There is aCA(8q2; 2, 50, 2q) having2q pure constant rows and profile049(q(2q − 5))1

wheneverq is an odd prime power and7 ≤ q ≤ 61.

Using these, we obtain:

Lemma 6.16 If 7 ≤ q ≤ 61, q is an odd prime power, and2q + 1 is a prime power, then there exists
a CA(8q2 + 2q; 2, 14q + 14, 2q) having2q disjoint rows, and aCA(8q2 + 2q + 1; 2, 14q + 14, 2q).

Proof. Apply Theorem 6.10 using aCA((2q + 1)2; 2, 2q + 2, 2q + 1) and aCA(4q2 + 2q; 2, 7, 2q)
having two disjoint parallel classes from Lemma 6.14. �
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7 Computational Construction of Profiles

As we have discussed, numerous computational methods have been developed for the construction
of covering arrays. In each case, the methods have concentrated on minimizing the number of tests
(rows), and have typically not been concerned with other metrics. Stevens [45] and Stardom [44]
develop simulated annealing methods that seek disjoint (constant) rows, and Cohen [12] employs
simulated annealing to construct covering arrays with a specified pattern of “near-constant” rows.
Their methods could in principle be extended to consider profiles as well. We instead adapt a simulated
annealing method from [50] using a branch-and-bound procedure to find flexible positions from [27].

7.1 Simulated Annealing

The general procedure to obtain different profiles for an specific CA consists of four basic steps. First,
make a small number of random changes to aCA, to produce an array of the same dimensions in
which a small number of pairs may not be covered. Then, using simulated annealing [50], convert this
quasi-CA to aCA. Then, using the exact algorithm reported in [27], detect the profile of the (possibly)
newCA. Finally, if not recorded previously, register the new profile. This can be iterated any number
of times.
In the implementation, a geometric cooling schedule is used. It starts with an initial temperature of4.0.
This is repeatedly decremented by a factor ofα determined by a Markov chain of lengthL = (Nkv)2.
The algorithm terminates when at least of one of the following conditions is met:

• the number of uncovered interactions is zero;

• the temperature reaches1−10;

• eleven consecutive Markov chains do not improve the ‘best’ solution found; or

• a timeout of 4 minutes of computation is reached.

Using this procedure many profiles were detected. Using theCA(42; 2, 8, 6), a grand total of 36
different profiles were detected. Of these, 10 are not dominated by one of the others:0117, 021422,
031223, 031332, 04112132, 041242, 051152, 052142, 0533, 0662.

7.2 Post-optimization

Nayeri et al. [37] adopt a different strategy, using the observations in Section 3.4. They always
start with a covering array, and hence their method is designed to optimize a covering array after
its construction by another means. Their key idea is to repeatedly fill all don’t-care positions with
randomly selected values, then to identify the flexible positions, and finally to examine the flexible
positions one by one, changing each to a don’t-care positionif it remains flexible at this point of the
computation. In their case, the goal is to construct an entire row of don’t care positions, which can
then be eliminated. Whether or not the method succeeds in eliminating rows in this way, after each



51 C. J. Colbourn / Journal of Algorithms and Computation 44 (2013) PP. 31 - 60

iteration the specific pattern of don’t-care positions may change. By keeping track of the profiles of
each intermediate covering array, we have found that a single covering array can lead to many different
profiles.
A simple modification of the method in [37] enables one to treat many variants as well. Ensuring
that no element in a specific set of rows contains a⋆ entry or is permitted to have an entry changed
to ⋆, the rows in this set are never changed. In this way we can makea set of rowsforced, so that
every solution produced by the algorithm always contains the forced rows. Hence the method can
find a variety of profiles for covering arrays with a specified (minimum) number of constant rows, or
a specified (minimum) number of parallel classes, for example. We have employed this primarily in
cases when the number of constant rows is the maximum possible.
We provide one example. We again consider theCA(42; 2, 8, 6), but require a specified numberc of
pure constant rows. Again dominated profiles are not listed.Because a solution forc pure constant
rows is also a solution forc′ ≤ c pure constant rows, solutions that are so implied are also omitted.

c Profiles
0 0216, 031421, 041222, 05112131, 0523, 0632

1
2 041321

3 0315

4 051122, 0731

5 061121

6 0414

The simulated annealing method explores a larger search space than does post-optimization, and this
may account for its success in finding a richer set of solutions.

7.3 Some Results on Parallel Classes

Of particular importance for applying generalized direct products is the construction of covering ar-
rays with a parallel class, or two disjoint parallel classes. Theorems 6.12 and 6.14 yield some. For
example, there is aCA(100;2,4,10) with two parallel classes and there is aCA(120;2,12,10) with
profile 1012; hence there is aCA(200;2,48,10) with a parallel class. But effective application of the
constructions requires many small ingredients.
Tables 1, 2, and 3 give the best current upper boundNc on CAN(2, k, v) for covering arrays withc
parallel classes for0 ≤ c ≤ 2, 7 ≤ v ≤ 25, and3 ≤ k ≤ 50. We do not attempt to give detailed
authorities for each entry. When data for a specific value ofk is omitted, employ the results for the
next larger value ofk. When an entry forN2 is left blank, it can be determined by addingv− 1 to the
value given forN1. The majority of the values given are computed using simulated annealing [50] or
post-optimization [37] on arrays from orthogonal arrays [30], projection [18], cover starters [35], and
direct products. Arrays are available on request from the authors.
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v k N0 N1 N2 k N0 N1 N2 k N0 N1 N2 k N0 N1 N2

7 7 49 49 49 8 49 55 61 9 59 61 63 10 61 63 63
11 65 67 72 12 71 72 73 13 71 76 81 14 76 79 84
15 79 84 85 16 82 86 88 17 82 87 90 18 85 88 90
19 86 88 90 20 87 88 90 22 88 88 90 23 90 90 90
26 90 90 91 56 91 91 91

8 8 64 64 64 9 64 71 78 10 76 77 80 11 78 79 80
13 84 88 95 14 96 101 103 15 96 102 105 16 102 108 112
18 104 110 11219 107 112 11220 108 112 112 21 112 112 113
22 112 113 11323 113 113 11324 113 113 114 25 114 114 115
26 114 115 11527 115 115 11928 115 118 120 30 119 119 120
72 120 120 120

9 9 81 81 81 10 81 89 97 11 102 102 106 12 105 105 111
13 105 110 11114 112 112 11415 118 123 127 16 118 125
17 125 133 19 129 136 14320 132 139 143 21 139 143 143
22 141 144 15023 142 144 15025 144 144 150 26 145 145 152
28 146 151 15329 147 151 15330 148 151 153 31 152 153 153
90 153 153 153

10 4 100 100 100 5 102 102 102 6 102 105 108 7 113 114 116
8 115 115 116 9 115 116 117 10 116 116 117 11 116 117 118

12 117 118 12013 120 120 12014 127 136 145 15 136 145 149
16 145 149 14917 149 150 15218 150 158 167 20 155 163 172
21 162 170 17822 166 174 18223 171 179 24 178 186 191
25 178 187 19126 185 190 19127 190 190 191 29 190 191 191
30 190 191 19232 191 191 19436 191 192 198 37 198 199 200
39 199 199 20048 200 200 20049 200 200 202 65 202 202 202

11 11 121 121 12112 121 131 14113 153 156 159 14 155 157 159
15 158 160 16016 161 162 16317 171 181 184 18 177 183 191
19 178 187 19620 186 196 20621 192 200 208 22 192 201 210
23 200 209 21824 203 212 22025 204 213 222 26 211 220 226
27 218 222 22628 221 223 22629 224 225 227 30 225 226 231
32 226 229 23133 227 229 23135 229 231 231132 231 231 231

12 6 144 144 144 7 144 147 150 8 162 163 163 9 163 163 164
10 163 164 16511 164 164 16512 164 165 165 13 164 165 166
14 165 166 16815 168 168 16816 188 188 199 17 188 199 210
18 199 210 22119 210 221 22620 221 226 227 21 227 228 229
22 227 237 24523 232 242 24824 232 242 252 25 242 252
27 245 255 28 254 264 29 262 272 276 32 269 276 276
42 276 276 27647 276 276 28249 276 279 282 84 288 288 288

13 13 169 169 16914 169 181 19315 215 217 218 16 217 217 218
17 217 217 22918 217 229 23919 229 240 240 20 241 242 243
21 253 261 26122 262 262 26324 271 282 293 25 280 282 293
27 281 282 29328 282 293 29 291 302 30 299 311
32 301 312 33 309 320 32539 317 325 325182 325 325 325

Table 1: Existence ofCA(N ; 2, k, v)s with 0, 1, or 2 parallel classes:7 ≤ v ≤ 13, k ≤ 50
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v k N0 N1 N2 k N0 N1 N2 k N0 N1 N2 k N0 N1 N2

14 6 196 196 196 7 210 210 210 8 229 233 237 9 233 236 239
10 236 239 24111 238 240 24212 239 241 24313 240 242 243
14 241 243 24415 242 244 24416 243 244 24517 244 245 246
18 247 248 24819 248 251 25220 272 273 27421 274 276 277
22 287 300 31323 300 300 31324 306 314 32225 322 322 323
27 329 339 30 330 342 31 341 353 33 342 354
34 351 363 35 360 372 37836 370 378 37837 381 391 392
38 388 391 39240 391 391 39242 392 392 39250 392 392

15 6 225 225 226 7 246 247 249 8 248 248 250 9 249 249 251
10 249 250 25111 250 250 25213 251 251 25214 251 252 252
15 252 252 25316 252 252 25317 252 254 25518 255 255 255
19 281 282 28220 285 285 28621 331 332 33222 332 332 332
23 334 335 33524 335 337 33825 351 360 26 365 379
28 376 387 32 383 396 33 394 407 34 405 418
36 406 419 37 418 431 38 428 441 45139 439 450 451
40 449 450 45198 450 450 451

16 16 256 256 25617 256 271 28618 286 287 28819 288 288 288
20 342 342 34421 344 344 34622 346 347 34823 350 350 351
24 376 376 25 376 391 26 406 406 27 406 421
28 421 436 29 436 451 45530 442 456 45636 442 456
38 466 480 49339 478 483 49340 483 483 49345 490 490 496

272 496 496 496
17 17 289 289 28918 289 305 32119 351 351 35120 352 352 352

21 354 354 35422 357 357 35823 465 465 46724 467 467 468
25 469 469 47026 471 471 47227 473 473 47428 474 474 475
29 477 477 47730 479 479 48031 497 513 32 513 529 538
34 517 532 53839 517 532 40 529 544 41 541 556 561
42 551 561 56151 560 561 561

18 5 324 324 328 7 342 342 342 8 352 352 354 9 355 355 355
11 355 355 35612 355 355 35716 356 357 35717 357 357 358
19 358 358 35820 358 359 36021 360 360 36022 442 443 454
23 484 487 48824 487 487 48825 489 489 48926 490 490 491
27 491 491 49128 494 494 49429 496 496 49830 545 545 554
31 545 545 55632 545 558 56233 558 558 57134 579 596 613
35 593 609 61740 593 609 62642 595 611 44 603 615
45 615 627 46 627 639 64847 639 648 64850 647 648 648

19 19 361 361 36120 361 379 39721 498 498 49824 500 500 500
25 502 502 50226 504 504 50627 507 507 50828 509 509 511
29 572 572 57330 574 574 57531 576 576 57632 577 577 579
33 637 637 64034 638 638 64135 640 640 64336 645 645 647
45 660 673 69146 673 686 70347 686 699 70350 698 703 703

Table 2: Existence ofCA(N ; 2, k, v)s with 0, 1, or 2 parallel classes:14 ≤ v ≤ 19, k ≤ 50
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v k N0 N1 N2 k N0 N1 N2 k N0 N1 N2 k N0 N1 N2

20 6 400 400 401 7 429 433 437 8 463 468 473 9 482 486 488
10 488 489 49111 491 492 49512 493 495 49713 495 496 499
14 497 498 50015 499 500 50216 500 501 50317 501 502 504
18 503 504 50519 504 504 50620 505 506 50721 507 507 508
22 508 508 50923 508 508 51024 511 511 51225 513 513 515
26 517 517 51927 520 520 52228 588 588 59029 589 591 592
30 591 593 59431 594 596 59632 659 660 66133 661 662 664
34 663 664 66535 666 668 66836 679 679 69437 685 685 700
38 707 707 72239 740 740 75543 754 770 45 755 774
47 756 774 49 761 779 50 775 793

21 6 441 441 441 7 441 446 451 8 499 502 503 9 501 506 507
10 509 509 50911 511 511 51112 512 512 51213 513 513 513
15 514 514 51417 516 516 51618 517 517 51721 518 518 518
22 519 519 51923 519 519 51924 521 521 52125 523 523 523
26 526 526 52727 600 600 60028 603 603 60329 605 605 606
30 609 609 61031 677 677 68032 680 680 68233 680 681 684
34 683 683 68535 752 753 75536 754 754 75837 757 758 761
38 763 765 76540 810 810 82641 838 838 83842 841 843 843
54 847 861

22 5 484 484 485 6 487 488 489 7 506 506 506 8 520 521 521
9 521 522 522 10 521 523 52311 522 523 52412 523 524 524

13 524 524 52416 524 525 52521 525 526 52723 526 526 527
24 526 527 52825 528 528 52826 609 609 60927 611 611 611
28 613 614 61429 617 617 61930 691 692 69231 696 697 697
32 698 698 70033 699 700 70234 777 777 77935 779 779 781
36 783 783 78437 785 785 78538 857 857 85839 860 860 861
40 862 862 86241 868 868 86942 905 905 90543 912 912 912
44 925 946 54 940 956 969

23 23 529 529 52924 529 551 57325 616 616 61626 616 616 617
27 619 619 61928 622 622 62329 706 706 70630 708 708 708
31 712 712 71232 714 714 71633 793 793 79534 793 795 798
35 796 799 80036 798 802 80337 877 877 88138 878 879 883
39 879 883 88640 882 888 88841 922 925 92542 926 931 933
44 1019 1019 103558 1019 1035 1035

24 8 576 576 576 9 576 585 594 10 619 619 61912 619 619 620
13 620 620 62014 620 620 62117 620 620 62218 621 621 622
22 621 621 62325 622 622 62326 622 622 62427 624 624 624
28 713 713 71429 716 716 71730 718 718 71931 722 722 724
32 808 808 80833 810 810 81134 812 812 81535 814 814 819
36 896 896 90037 896 896 90438 904 904 90539 907 907 909
40 951 951 95441 955 955 95672 1128 1128 1128

25 25 625 625 62526 625 649 67328 719 722 72229 725 725 725
30 726 726 72731 820 820 82032 823 823 82433 826 826 827
34 828 828 83035 914 914 91736 917 917 92037 919 919 922
38 923 925 92539 970 970 97040 970 970 97450 1181 1200 1215

Table 3: Existence ofCA(N ; 2, k, v)s with 0, 1, or 2 parallel classes:20 ≤ v ≤ 25, k ≤ 50
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8 Consequences and Conclusions

In this section, we outline some applications of the constructions of profiles. At [17], covering array
numbers are tabulated for strength two when3 ≤ v ≤ 25, and3 ≤ k ≤ 20000. (Explicit solutions
for many of these can be found at [49].) A majority of the recorded entries arise from the generalized
direct products given in this paper. Given the dramatic number of improvements by generalized direct
product, it is infeasible to enumerate even a small fractionof them. In Table 4, we provide summary
statistics prior to, and after, the application of the constructions developed here.

Type Authority Before After
Computational: Simulated annealing [50] 245 208

Other 22 22
Direct: OAs and Projection [18] 231 231

Cover starter [35] 129 129
Other 7 7

Recursive: Cut-and-paste [21] 777 549
Direct Product 728 228
Generalized Direct Product - 1783
Total 2139 3257

Table 4: Extent of Changes

In principle, in the ranges specified the tables could contain 23 · 19998 entries, but in practice a bound
for CAN(2, k, v) is reported only when it is better than the bound forCAN(2, k + 1, v). Authorities
are partitioned into three categories: computational, direct, and recursive. Unfortunately, this division
is somewhat artificial. Results of direct constructions have often been improved by a computational
method, but are attributed here to the underlying direct construction. In the ‘after’ column, this oc-
curs in 158 of the cases using post-optimization [37] and 87 times using simulated annealing [50].
Similarly, results of direct and recursive constructions often provide the initial array used in simulated
annealing, but the result here is attributed to the computational method. Among the ‘other’ computa-
tional results, one finds earlier simulated annealing methods [12, 20] and tabu search [39, 54], but the
very popular greedy methods do not account for a single best result.
As expected, the generalized direct product improves upon the simpler direct product. It also improves
quite often on the cut-and-paste method. Asv andk increase, the generalized direct products provide
more improvements. For3 ≤ v ≤ 7, cut-and-paste constructions typically remain more effective; and
for k ≤ 50 and largerv, combinations of direct and computational constructions are more effective.
To show the magnitude of the improvements obtained, Figure6 displays results with and without
generalized direct product forv = 14 and100 ≤ k ≤ 20000. Throughout this range, the generalized
direct product makes improvements, sometimes reducing thenumber of rows by 5%.
The success of the generalized direct product at improving on previously known bounds results both
from the flexibility of the construction, and the manner in which other constructions can be adapted to
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Figure 6:CAN(2,k,14) for100 ≤ k ≤ 20000

furnish ingredients. However, its most important aspect isthat by investing more effort in ensuring that
small ingredients have appropriate profiles and many disjoint rows, the construction can save many
rows in the larger arrays constructed. This compounds as these arrays are again used as ingredients.
Hence making covering arrays with many factors and few rows is simplified by finding ‘better’ small
ingredient arrays. What we have shown is that, in many situation, ‘better’ means having the right
profile.
The practical importance of the generalized direct products developed here is that by investing com-
putational effort in finding ‘good’ small ingredient arrays, straightforward constructions of covering
arrays with the fewest rows of those known can be employed to produce large arrays. This extends
the range of testing problems to ones with many factors, without sacrificing complete coverage, and
reducing both the time to construct and the time to run the corresponding test suite.
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