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ABSTRACT ARTICLE INFO

A graph of size n is said to be graceful when is possible to

assign distinct integers from {0, 1, . . . , n} to its vertices

and {|f(u)−f(v)| : uv ∈ E(G)} consists of n integers. In

this paper we present broader families of graceful graphs;

these families are obtained via three different operations:

the third power of a caterpillar, the symmetric product

of G and K2 , and the disjoint union of G and Pm,

where G is a special type of graceful graph named α-

graph. Moreover, the majority of the graceful labelings

obtained here correspond to the most restrictive kind,

they are α-labelings. These labelings are in the core

of this research area due to the fact that they can be

used to create other types of graph labelings, almost

independently of the nature of these labelings.
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1 Introduction

A graceful labeling of a graph G of size n is an injective function f : V (G) → {0, 1, . . . , n}

such that when each edge uv of G has assigned the weight |f(u) − f(v)|, all induced

weights are distinct. If G admits a graceful labeling is said to be a graceful graph. Let

f be a graceful labeling of a graph G; suppose that there exists an integer λ such that

for each edge uv of G, either f(u) ≤ λ < f(v) or f(v) ≤ λ < f(u), then f is said to

be an α-labeling of G with boundary value λ and G is called an α-graph. An α-graph is

necessarily bipartite and λ is the smaller of the two end-vertices of the edge of weight 1.

Suppose G is an α-graph of size n. Let f be an α-labeling of G with boundary value

λ. If {A,B} is the bipartition of V (G), we may assume, without loss of generality, that

A = {v ∈ V (G) : f(v) ≤ λ} and B = {v ∈ V (G) : f(v) > λ}. When a positive constant

k is added to every vertex in B, the resulting labeling is a k-graceful labeling, where the

weights are {k + 1, k + 2, . . . , k + n}. This operation was introducted independently by

Maheo and Thuiller [8] and Slater [11]. We refer to this operation as an amplification.

We study here three operations on graphs that result on graceful graphs. In Section 2

we introduce an operation related to the nth power Gn of a connected graph G, where

n ≥ 1; Gn is that graph with V (Gn) = V (G) for which uv ∈ E(Gn) if and only if

1 ≤ dG(u, v) ≤ n. In our case, Gn denotes the graph with V (Gn) = V (G) and E(Gn) =

E(G) ∪ {uv : dG(u, v) = n}. In particular, we prove that C3 is graceful when C is a

caterpillar; futhermore, the labeling obtained satisfies the conditions to be an α-labeling.

In Section 3 we generalized the result of Seoud and El Sakhawi [10] about the symmetric

product Pn ⊕K2. We prove that G⊕K2 is an α-graph when G is an α-graph.

Section 4 deals with the union of graphs, specifically we prove that G ∪ Pm is graceful

provided that G admits an α-labeling that does not assign the integer λ + 2 as a label,

where λ is its boundary value. We finish this section listing several families of α-graphs

that admit α-labelings of this kind.

Alpha labelings of graphs are extremely useful in the area of graph decompositions [9]; in

addition, they are located in the center of this research area because they can be modified

to produce other types of labeling. For more details at this respect, we recommend [4]

and [6].

For more information about graph labelings, the interested reader is refered to Gallian’s

dynamic survey [5]. In this paper we follow the notation and terminology used in [3] and
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[5].

2 A Graceful Third Power

In his dynamic survey, Gallian [5] defines P k
n , the k

th power of Pn, as the graph obtained

from the path of order n by adding edges that join all vertices u and v with d(u, v) = k.

This definition differs of the one given by Chartrand and Lesniak [3], where d(u, v) ≤ k.

We use here the definition given by Gallian and we extend it to any connected graph. We

are aware of only one result related to the gracefulness of a power of a graph. Kang et al

[6] proved that P 2
n is graceful. In our first theorem, we prove that C3 is graceful for every

caterpillar of diameter at least 3; moreover, the resulting labeled graph is an α-graph.

Let C be a caterpillar of diameter at least three. Its cube C3 is the bipartite graph defined

by V (C3) = V (C) and E(C3) = E(C) ∪ {uv : dC(u, v) = 3}.

In his seminal paper, Rosa [9] proved that all caterpillars are α-graphs. For the sake of

completeness, we show in Figure 1 the technique used to find this α-labeling.

Figure 1: α-labeling of a caterpillar

Suppose C is a caterpillar of size q which has been α-labeled using Rosa’s scheme; let g

be the α-labeling obtained and λ be its boundary value. If {A,B} is the bipartition of

V (C) we assume A = {u ∈ V (G) : g(u) ≤ λ} and B = {v ∈ V (C) : g(v) > λ}. Thus,

A = {ui : 1 ≤ i ≤ λ + 1 and g(ui) = i − 1} and B = {vj : 1 ≤ j ≤ q − λ and g(vj) =

q + 1 − j}. Let v ∈ V (G), by N(v) we understand the subset of V (G) consisting of all

the vertices adjacent to v, that is the neighborhood of v. In the next theorem we assume

that this labeling is known.

Theorem 1. If C is a caterpillar of diameter at least three, then C3 is an α-graph.

Proof. Let n be the size of C3. Consider the following labeling of the vertices of C3:
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• f(ui) = g(ui) for every ui ∈ A

• f(v1) = n

• f(vj) = n +min{f(u) : u ∈ N(vj)} −
j−1
∑

i=1

deg(vi) for every j ≥ 2.

We claim that f is an α-labeling of C3.

First, we prove that f is an injective function. Clearly, when f is restricted to A, f is

injective. Consider now the labels of vj and vj+1, j ≥ 2; we claim that f(vj+1) > f(vj).

Since d(vj, vj+1) = 2, N(vj) ∩N(vj+1) 6= ∅, thus |N(vj) ∩N(vj+1)| > 0. Then,

min{f(y) : y ∈ N(vj+1)} −min{f(x) : x ∈ N(vj)} < deg(vj)

min{f(y) : y ∈ N(vj+1)} − deg(vj) < min{f(x) : x ∈ N(vj)}

n +min{f(y) : y ∈ N(vj+1)} −

j−1
∑

i=1

deg(vi)− deg(vj)

< n+min{f(x) : x ∈ N(vj)} −

j−1
∑

i=1

deg(vi),

n+min{f(y) : y ∈ N(vj+1)} −

j
∑

i=1

deg(vi)

< n+min{f(x) : x ∈ N(vj)} −

j−1
∑

i=1

deg(vi),

∴ f(vj+1) < f(vj).

Therefore, f is an injective function.

Now, notice that max{f(x) : x ∈ A} < min{f(y) : y ∈ B}; in fact, |A| − 1 = max{f(x) :

x ∈ A} and f(v|B|) = |A|.
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Since,

|A|
∑

i=1

deg(ui) =

|B|
∑

j=1

deg(vj) = n

|A|
∑

i=1

deg(ui)− n = n−

|B|
∑

j=1

deg(vj)

|A|
∑

i=1

deg(ui)− n + deg(v|B|) = n−

|B|−1
∑

j=1

deg(vj)

f(v|B|) =

|A|
∑

i=1

deg(ui)− n + deg(v|B|) + min{f(y) : y ∈ N(v|B|)}

∴ f(v|B|) = deg(v|B|) + min{f(y) : y ∈ N(v|B|)} = |A|.

In the following step we need to prove that all the induced weights are distinct. Let vj ∈ B

and N(vj) = {uk+1, uk+2, . . . , uk+deg(vj)}. Since f(uk+1) < f(uk+2) < · · · < f(uk+deg(vj)),

the edge vju of biggest weight is vjuk+1, which weight is f(vj) − f(uk+1). Consider now

vj−1 ∈ B and N(vj−1) = {ut+1, ut+2, . . . , ut+deg(vj−1)}. We know that

f(ut+deg(vj−1)) ≥ f(uk+1),

that is

t+ deg(vj−1) ≥ k + 1.

Since

f(vj) = n +min{f(x) : x ∈ N(vj)} −

j−1
∑

i=1

deg(vi)

= n+ k + 1−

j−2
∑

i=1

deg(vi)− deg(vj−1)

∴ f(vj)− f(uk+1) = f(vj)− (k + 1) = n−

j−2
∑

i=1

deg(vi)− deg(vj−1).
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On the other side,

f(vj−1)− f(ut+deg(vj−1)) = f(vj−1)− t− deg(vj−1)

= n+min{f(y) : y ∈ N(vj−1)} −

j−2
∑

i=1

deg(vi)− t− deg(vj−1)

= n−

j−2
∑

i=1

deg(vi)− deg(vj−1) + t+ 1− t = f(vj)− f(uk+1) + 1.

Therefore,

(f(vj−1)− f(ut+deg(vj−1)))− (f(vj)− f(uk+1)) = 1

Thus, all induced weights are distinct, being n the largest weight. Hence f is a graceful

labeling of C3. Take λ = |A| − 1; notice that f(u) ≤ λ < f(v) for every ordered pair

(u, v) ∈ A× B. Thus, f is an α-labeling of C3 as we claimed.

We must observe here that the labeling f does not assign the number λ+ 2 as a label of

C3. In Figure 2 we show an example of this construction for a caterpillar of size 18.

Figure 2: α-labeling of C3

3 A Graceful Symmetric Product

In [10] Seoud and El Sakhawi introduced the following operation of graphs. The symmetric

product G1⊕G2, of two graphs G1 and G2, is the graph having vertex set V (G1)×V (G2)

and edge set {(u, v)(u′, v′) : uu′ ∈ E(G1) or vv
′ ∈ E(G2) but not both}. In Figure 3

we show an example of this operation. Seoud and El Sakhawi applied this operation to

graphs of the form Pn ⊕ K2, where Pn is the path of order n and K2 is the null graph
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of order 2, they proved that this graph is arbitrarily graceful. In our next theorem we

extend this result proving that when G1 is an α-graph, the symmetric product G1 ⊕K2

is also an α-graph, which implies that it is arbitrarily graceful.

Theorem 2. If G is an α-graph, then the symmetric product G⊕K2 is an α-graph.

Proof. Suppose that g is an α-labeling with boundary value λ of a graph G of size n.

Within G ⊕ K2, we can distinguish two copies of G, named G1 and G2. Consider the

following labeling of the vertices of G⊕K2:

f(v) =



















4g(v) if v ∈ V (G1),

4g(v) + 1 if v ∈ V (G2) and g(v) ≤ λ,

4g(v)− 2 if v ∈ V (G2) and g(v) > λ.

We claim that f is an α-labeling of G⊕K2.

First of all, notice that f is injective and that the labels assigned by it are in the set

{0, 1, . . . , 4n}. Let uv ∈ E(G) such that g(v) − g(u) = i for any 1 ≤ i ≤ n. In G ⊕K2

there is an edge u1v1, with u1, v1 ∈ V (G1), which weight is f(v1)−f(u1) = 4g(v)−4g(u) =

4(g(v)−g(u)) = 4i. Thus, the edges of G1 have by weights all the integers in {1, 2, . . . , 4n}

congruent to 0 modulo 4. In G ⊕K2 there is an edge u2v2, with u2, v2 ∈ V (G2), which

weight is f(v2) − f(u2) = (4g(v) − 2) − (4g(u) + 1) = 4(g(v) − g(u)) − 3 = 4i − 3. So

the edges of G2 have as weights all the integers in {1, 2, . . . , 4n} congruent to 1 modulo

4. In G ⊕ K2 there is an edge u1v2 with u1 ∈ V (G1) and v2 ∈ V (G2), which weight

is f(v2) − f(u1) = (4g(v) − 2) − 4g(u) = 4(g(v) − g(u)) − 2 = 4i − 2. Thus the edges

of this form have as weights all the integers in {1, 2, . . . , 4n} congruent to 2 modulo 4.

Finally, in G⊕K2 there is an edge u2v1 with u2 ∈ V (G2) and v1 ∈ V (G1), which weight

is f(v1) − f(u2) = 4g(v) − (4g(u) + 1) = 4(g(v) − g(u))− 1 = 4i − 1. Hence the edges

of this form have as weights all the integers in {1, 2, . . . , 4n} congruent to 3 modulo 4.

Therefore, f is a graceful labeling of G⊕K2. Moreover the integer 4λ+1 is the boundary

value for this labeling, which is in fact an α-labeling of G⊕K2.

In Figure 3 we show an example of this labeling for the disconnected α-graph of order 8

and size 7, G = C6 ∪ P2.

Notice that the α-labeling produced in this theorem does not assign the integer 4λ+2 as

a label of G⊕K2.
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Figure 3: α-labeling of (C6 ∪ P2)⊕K2

4 A Graceful Union

There are several papers devoted to the gracefulness of disconnected graphs (see [5]).

Within this section we analyze the union of a path and a certain type of α-labeled graph.

First, we construct an ad hoc labeling of the path of size m, Pm+1, which is used later

together with an amplification of an α-labeling of a graph G to produce an α-labeling of

G ∪ Pm+1. We conclude the section with a list of α-graphs that can be used in the place

of the graph G just mentioned.

Let G be a graph of size n. Any injective assignment f of nonnegative integers to the

vertices of G that induces the weights 1, 2, . . . , n is called a complete labeling of G. In the

next proposition we show that the path Pm+1 admits a complete labeling other that its

well-known α-labeling.

Proposition 3. The path Pm+1 admits a complete labeling with labels taken from the set

{0, 1, . . . , m− 1, m+ 1}, m ≥ 3.

Proof. Let Pm+1 be a path of order m+ 1 with {A,B} the natural partition of V (Pm+1);

without loss of generality, we are assuming that |A| ≥ |B|. Let A = {u1, u2, . . . , u|A|}

and B = {v1, v2, . . . , v|B|}, so Pm+1 is described by the edges uivi and viui+1 for every

1 ≤ i ≤ |B|. We analyze six cases based on the congruence modulo 3 of |A| and |B|, and

the fact that |A| − |B| ≤ 1.

Case I: |A| ≡ 1(mod 3) and |B| ≡ 0(mod 3).

Let f : V (Pm+1) → {0, 1, . . . , m− 1, m+ 1} be the injective function defined below:

For every i ≡ 2(mod 3), f(vi) = i− 2, f(vi−1) = i− 1, and f(vi+1) = i.

For every i ≡ 1(mod 3), f(ui) = m+ 2− i, f(ui+1) = m− i, and f(ui+2) = m− 2− i.

Case II: |A| ≡ 0(mod 3) and |B| ≡ 0(mod 3).
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The function f is defined as in Case I except for v|B|, here f(v|B|) = |B|.

Case III: |A| ≡ 2(mod 3) and |B| ≡ 1(mod 3).

Again, f is defined as in Case I except for u|A|, in this case f(u|A|) = |B| − 1.

Case IV: |A| ≡ 1(mod 3) and |B| ≡ 1(mod 3).

In this case the exceptions are v|B|−1 and v|B|, here f(v|B|−1) = |B|−1 and f(v|B|) = |B|−2.

Case V: |A| ≡ 0(mod 3) and |B| ≡ 2(mod 3).

Now we proceed as in Case I except for u|A|−1 and u|A|, here f(u|A|−1) = |A| − 1 and

f(u|A|) = |A|.

Case VI: |A| ≡ 2(mod 3) and |B| ≡ 2(mod 3).

In this case we assign the labels as in Case I.

We claim that f , so defined, is a complete labeling of Pm+1. Because the proof is similar

for all cases, we prove our claim for Case I and leave the remaining cases for the interested

reader.

When i ≡ 2(mod 3), there is an integer k, 1 ≤ k ≤ |B|
3
, such that i = 3k − 1. It is

not difficult to see that the edges ui−1vi−1, uivi−1, uivi, ui+1vi, ui+1vi+1, and ui+2vi+1 have

weightsm−6k+6, m−6k+4,m−6k+5,m−6k+3,m−6k+1, andm−6k+2, respectively.

Since 1 ≤ k ≤ |B|
3
, we have that the induced weights form the set {1, 2, . . . , m}. Notice

that the larger labels used are m− 1 and m+ 1, on the vertices u2 and u1, respectively.

Therefore, f is the complete labeling of Pm+1 described by the proposition.

In Figure 4 we show some complete labelings of Pm+1 corresponding to each case within

the proof of the previous proposition.

Figure 4: Complete labelings of Pm+1

Theorem 4. Let G be an α-graph of size n and order at most n. If there exists an α-

labeling f of G, with boundary value λ, such that λ+2 is not a label of G, then G∪Pm+1

is a graceful graph for every m ≥ 3.
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Proof. Suppose that the vertices of G have been labeled using the function f . This

labeling is amplified in such a way that the largest induced weight is m + n. In this

manner, the integer λ + m + 2 is not assigned as a label of G. On the other hand, we

apply to Pm+1 the complete labeling described in Proposition 3 shifted λ+1 units, so the

largest label on Pm+1 is λ+m+ 2. Thus, we have a graceful labeling of G ∪ Pm+1.

In Figure 5 we show an example for a graph of the form G ∪ Pm+1. The labeling of

G = C8 ⊕K2 was obtained using the α-labeling of C8 given in [6]; the complete labeling

of P8 was obtained using Proposition 3, Case IV, shifted 14 units.

Figure 5: α-labeling of C8 ⊕K2 ∪ P8

Notice that when Pm+1 fits with case I, VI, V, or VI in Proposition 3, the labeling of

G ∪ Pm+1 is an α-labeling.

Some α-labeled graphs that satisfy the conditions of Theorem 4 are the complete bipartite

graphKm,n form,n > 1, given by Rosa [9] (see also [2]), the kC4-snake given by Barrientos

[1], the cube Qn for n ≥ 2 and the book B2n given by Maheo [7]; the symmetric product

of the path Pn, n ≥ 2 with the null graph K2, Pn⊕K2, given by Seoud and El Sakhawi [7];

G1⊕G2, that is the weak tensor product of two α-graphs, when an α-labeling of G, does

not use the label λ+ 2, this operation was introduced by Snevily [12]. We must mention

that C3, where C is a caterpillar, labeled as in Section 2 also satisfies the conditions of

Theorem 4 as well as those of the graphs G⊕K2 presented in Section 3.

5 Conclusions

The three ”graceful” operations considered in this paper provide general results in the

area of graph labelings because they work with broader families of graphs. We expect

that these results can be extended in forcoming works.
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