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ABSTRACT ARTICLE INFO

An injective map f : E(G) → {±1,±2, · · · ,±q} is said

to be an edge pair sum labeling of a graph G(p, q) if the

induced vertex function f ∗ : V (G) → Z − {0} defined

by f ∗(v) =
∑

e∈Ev

f (e) is one-one, where Ev denotes the

set of edges in G that are incident with a vetex v and

f ∗(V (G)) is either of the form
{

±k1,±k2, · · · ,±k p

2

}

or
{

±k1,±k2, · · · ,±k p−1

2

}

⋃

{

k p+1

2

}

according as p is even

or odd. A graph which admits edge pair sum labeling is

called an edge pair sum graph. In this paper we exhibit

some spider graph.
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1 Introduction

All graphs in this paper are finite, simple and undirected. For standard terminology

and notations we follow Gross and Yellen [1]. The symbols V (G) and E(G) denote the

vertex set and edge set of a graph. R. Ponraj et. al. introduced the concept of pair sum

labeling in [8] . An injective map f : V (G) → {±1,±2, . . . ,±p} is said to be a pair sum

labeling of a graph G(p, q) if the induced edge function fe : E(G) → Z − {0} defined by

fe(uv) = f(u)+f(v) is one-one and fe(E(G)) is either of the form
{

±k1,±k2, . . . ,±k q

2

}

}

or
{

±k1,±k2, . . . ,±k q−1

2

}

∪
{

±k q+1

2

}

according as q is even or odd. A graph with a pair

sum labeling, it is called a pair sum graph. Analogous to pair sum labeling we define a

new labeling called an edge pair sum labeling in [3] and further studied in [4]-[7]. We

proved that the path, cycle, star graph, Pm∪K1,n, Cn⊙Kc
m if n is even, triangular snake,

bistar, K1,n ∪K1,m, Cn∪Cn and complete bipartite graphs K1,n are edge pair sum graph.

Definition 1.1. A tree is called a spider if it has a center vertex c of degree R > 1 and

all the other vertex is either a leaf or with degree 2. Thus a spider is an amalgamation

of k paths with various lengths. If it has x1’s path of length a1, x2’s path of length a2, . . . .

We shall denote the spider by SP (ax1

1 , ax2

2 , . . . , axm
m ) where a1 < a2 < · · · < am and

x1 + x2 + · · ·+ xm = R[9].

Theorem 1.2. The spider graph SP (1m, 2t) is an edge pair sum graph.

Proof. Let V (SP (1m, 2t)) = {u, vi, uj : 1 ≤ i ≤ m, 1 ≤ j ≤ 2t} and

E(SP (1m, 2t)) = {ei = uvi : 1 ≤ i ≤ m, e′i = uui : 1 ≤ i ≤ t, e′′i = uiut+i : 1 ≤ i ≤ t} be

the vertices and edges of the graph SP (1m, 2t).

Define the edge labeling f : E(SP (1m, 2t)) → {±1,±2, . . . ,±(m+2t)} by considering the

following three cases.

Case (i) m is odd and t is odd.

f(e1) = −1, for 1 ≤ i ≤ m−1

2
, f(e1+i) = (2i + 1) = −f

(

em+1

2
+i

)

for 1 ≤ i ≤ t−1

2
,

f(e′i) = (m+2i) = −f
(

e′t−1

2
+i

)

and f(e′′i ) = 2i = −f
(

e′′t−1

2
+i

)

, f(e′t) = −(m+ t+1) and

f(e′′t ) = (m + t + 2). The induced vertex labeling are as follows f ∗(v1) = −1 = −f ∗(ut),

for 1 ≤ i ≤ m−1

2
f ∗(v1+i) = (2i+1) = −f ∗

(

vm+1

2
+i

)

, for 1 ≤ i ≤ t−1

2
f ∗(ui) = (m+4i) =

−f ∗

(

u t−1

2
+i

)

, f ∗(ut+i) = 2i = −f ∗

(

u 3t−1

2
+i

)

, and f ∗(u2t) = (m+ t+2) = −f ∗(u). From

the above vertex labeling f ∗(V (SP (1m, 2t))) = {±1,±3,±5, . . . ,±m,±2,±4,±6, . . . ,±(t−
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1),±(m + 4),±(m + 8), . . . ,±(m + 2t − 2),±(m+ t + 2)}. Hence f is an edge pair sum

labeling of SP (1m, 2t).

The example for the edge pair sum graph labeling of SP (1m, 2t) for m = 3 and t = 3 is

shown in Figure 1.

Figure 1.

Case (ii) m is even and t is odd.

For 1 ≤ i ≤ m
2
, f(ei) = (2i + 1) = −f

(

em
2
+i

)

, f(e′1) = 1, f(e′′1) = −2, for 1 ≤ i ≤ t−1

2
,

f(e′1+i) = (m+2i+1) = −f
(

e′t+1

2
+i

)

and f(e′′1+i) = 2(1+ i) = −f
(

e′′t+1

2
+i

)

. The induced

vertex labeling are as follows, for 1 ≤ i ≤ m
2
, f ∗(vi) = (2i + 1) = −f ∗

(

vm
2
+i

)

, f ∗(u1) =

−1 = −f ∗(u), f ∗(ut+1) = −2, for 1 ≤ i ≤ t−1

2
, f ∗(u1+i) = (m + 4i + 3) = −f ∗

(

u t+1

2
+i

)

and f ∗(ut+1+i) = 2(1 + i) = −f ∗

(

u 3t+1

2
+i

)

. From the above vertex labeling we get

f ∗(V (SP (1m, 2t))) = {±3,±5, . . . ,±(m + 1),±1,±4,±6, . . . ,±(t + 1),±(m+ 7),±(m +

11), . . . ,±(m+ 2t+ 1)} ∪ {−2}. Hence f is an edge pair sum labeling of SP (1m, 2t).

Figure 2 illustrates the edge sum graph scheme for SP (1m, 2t) where m = 2 and t = 1.

Figure 2.

Case (iii) m is even and t is even.

f(e1) = −1, f(e2) = 2, for 1 ≤ i ≤ m
2
−1, f(e2+i) = (2i+1) = −f

(

em
2
+1+i

)

, for 1 ≤ i ≤ t
2
,

f(e′i) = (m+2i−1) = −f
(

e′t
2
+i

)

and f(e′′i ) = 2(1+ i) = −f
(

e′′t
2
+i

)

. The induced vertex

labeling are f ∗(v1) = −1 = −f ∗(u), f ∗(v2) = 2, for 1 ≤ i ≤ m
2
− 1, f ∗(v2+i) = (2i+ 1) =

−f ∗
(

vm
2
+1+i

)

, for 1 ≤ i ≤ t
2
, f ∗(ui) = (m + 4i + 1) = −f ∗

(

u t

2
+i

)

= and f ∗(ut+i) =

2(1 + i) = −f ∗

(

u 3t
2
+i

)

. From the above vertex labeling we get f ∗(V (SP (1m, 2t))) =
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{±1,±3,±5, . . . ,±(m − 1),±4,±6, . . . ,±(t + 2),±(m + 5),±(m + 9), . . . ,±(m + 2t +

1)} ∪ {2}.

Hence f is an edge pair sum labeling of SP (1m, 2t).

The example for the edge pair sum graph labeling of SP (1m, 2t) for m = 2 and t = 2 is

shown in Figure 3.

Figure 3.

Theorem 1.3. The spider graph SP (1m, 2t, 3) is an edge pair sum graph.

Proof. Let V (SP (1m, 2t, 3)) = {u, vi, uj, v : 1 ≤ i ≤ m, 1 ≤ j ≤ 2t+2} and E(SP (1m, 2t, 3)) =

{ei = uvi : 1 ≤ i ≤ m, for1 ≤ i ≤ t+1, e′i = uuiande
′′

i = uiut+1+i, e
′′′

1 = u2t+2v} be the ver-

tices and edges of the graph SP (1m, 2t, 3). Define the edge labeling f : E(SP (1m, 2t, 3)) →

{±1,±, 2, . . . ,±(m+ 2t+ 3)} by considering four cases.

Case (i) m is even and t is even.

for 1 ≤ i ≤ m
2
, f(ei) = (2i − 1) = −f

(

em
2
+i

)

, for 1 ≤ i ≤ t
2
, f(e′i) = (m + 2i − 1) =

−f
(

e′t
2
+i

)

and f(e′′i ) = (2i+ 6) = −f
(

e′′t
2
+i

)

, f(e′t+1) = 2, f(e′′t+1) = 4 and f(e′′1) = −6.

The induced vertex labelings are for 1 ≤ i ≤ m
2
, f ∗(vi) = (2i − 1) = −f ∗

(

vm
2
+i

)

, for

1 ≤ i ≤ t
2
, f ∗(ui) = (m+4i+5) = −f ∗

(

u t
2
+i

)

and f ∗(ut+1+i) = (2i+6) = −f ∗

(

u 3t+2

2
+i

)

,

f ∗(ut+1) = 6 = −f ∗(v), f ∗(u2t+2) = −2 = −f ∗(u).

Figure 4.
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From the above arguments we get f ∗(V (SP (1m, 2t, 3))) = {±1,±3,±5, . . . ,±(m−1),±6,±8,±10, . . .

6),±2,±(m+9),±(m+13),±(m+17), . . . ,±(m+2t+5)}. Hence f is an edge pair sum

labeling of SP (1m, 2t, 3).

Figure 4 shows that SP (1m, 2t, 3) is an edge pair sum graph for m = 4 and t = 2.

Case (ii) m is even and t is odd.

For 1 ≤ i ≤ m
2
, f(ei) = (5 + 2i) = −f

(

em
2
+i

)

, for 1 ≤ i ≤ t−1

2
, f(e′i) = (m + 2i +

5) = −f
(

e′t−1

2
+i

)

and f(e′′i ) = (2 + 2i) = −f
(

e′′t−1

2
+i

)

, f(e′t) = −2, f(e′t+1) = −1,

f(e′′t+1) = 3 and f(e′′t ) = 5 = −f(e′′′1 ). The induced vertex labelings are as follows, for

1 ≤ i ≤ m
2
, f ∗(vi) = (2i + 5) = −f ∗

(

vm
2
+i

)

, for 1 ≤ i ≤ t−1

2
, f ∗(ui) = (m + 7 +

4i) = −f ∗

(

u t−1

2
+i

)

and f ∗(ut+1+i) = (2 + 2i) = −f ∗

(

u 3t+1

2
+i

)

, f ∗(ut) = 3 = −f ∗(u),

f ∗(ut+1) = 2 = −f ∗(u2t+2) and f ∗(u2t+1) = 5 = −f ∗(v). From the above vertex labeling

we get f ∗(V (SP (1m, 2t, 3))) = {±2,±3,±5,±7,±9, . . . ,±(m + 5),±(m + 11),±(m +

15), . . . ,±(m + 2t + 5),±4,±6, . . . ,±(t + 1)}. Hence f is an edge pair sum labeling of

SP (12k, 2t, 3).

Figure 5 shows that the spiders SP (1m, 2t, 3) is an edge pair sum graph labeling for m = 4

and t = 3.

Figure 5.

f(e1) = 1, f(e′1) = 2, f(e′′1) = (m + 2) = −f(e′′′1 ), for 1 ≤ i ≤ m−1

2
, f(e1+i) = (2i + 1) =

−f
(

em+1

2
+i

)

, for 1 ≤ i ≤ t−1

2
, f(e′1+i) = (m + 2i + 2) = −f

(

e′t+1

2
+i

)

and f(e′′1+i) =

(m+3+2i) = −f
(

e′′t+1

2
+i

)

, f(e′t+1) = −4, and f(e′′t+1) = −2. The induced vertex labelings

are f ∗(v1) = 1 = −f ∗(u), f ∗(u1) = (m + 4) = −f ∗(u2t+2), for 1 ≤ i ≤ m−1

2
, f ∗(v1+i) =

(2i + 1) = −f ∗

(

vm+1

2
+i

)

, for 1 ≤ i ≤ t−1

2
, f ∗(u1+i) = (2m + 5 + 4i) = −f ∗

(

u t+1

2
+i

)

and f ∗(ut+2+i) = (m + 3 + 2i) = −f ∗

(

u 3t+3

2
+i

)

, f ∗(ut+2) = (m + 2) = −f ∗(v) =

f(e′′′1 ) and f ∗(ut+1) = −6. From the above vertex labeling we get f ∗(V (SP (1m, 2t, 3))) =

{±1,±3,±5, . . . ,±m,±(m+2),±(m+4),±(m+5),±(m+7), . . . ,±(m+ t+2),±(2m+

9),±(2m + 13),±(2m + 17), . . . ,±(2m + 2t + 3)} ∪ {−6}. Hence f is an edge pair sum

labeling of SP (1m, 2t, 3).
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Case (iv) m is odd and t is even.

f(e1) = −1, f(e′t+1) = 2, for 1 ≤ i ≤ m−1

2
, f(e1+i) = (2i + 1) = −f

(

em+1

2
+i

)

, for 1 ≤

i ≤ t
2
, f(e′i) = (m+ 2i) = −f

(

e′t
2
+i

)

and f(e′′i ) = (2i+ 6) = −f
(

e′′t
2
+i

)

, f(e′′t+1) = 4 and

f(e′′′1 ) = −6. The induced vertex labelings are f ∗(v1) = −1 = −f ∗(u), for 1 ≤ i ≤ m−1

2
,

f ∗(v1+i) = (2i+ 1) = −f ∗

(

vm+1

2
+i

)

, for 1 ≤ i ≤ t
2
, f ∗(ui) = (m+ 4i+ 6) = −f ∗

(

u t
2
+i

)

,

and f ∗(ut+1+i) = (2i + 6) = −f ∗

(

u 3t+2

2
+i

)

, f ∗(v) = −6 = −f ∗(ut+1), and f ∗(u2t+2) =

−2. From the above arguments we get f ∗(V (SP (1m, 2t, 3))) = {±1,±3,±5, . . . ,±(m −

2),±6,±8,±10, . . . ,±(t+6),±(m+10),±(m+14),±(m+18), . . . ,±(m+2t+6)}∪{−2}.

Hence f is an edge pair sum labeling of SP (1m, 2t, 3).

Figure 6 shows that the spiders SP (1m, 2t, 3) is an edge pair sum graph labeling for m = 3

and t = 4.

Figure 6.

Theorem 1.4. The spider graph SP (1m, 2t, 4) is an edge pair sum graph.

Proof. Let V (SP (1m, 2t, 4)) = {u, vi, uj, v
′

1, v
′

2 : 1 ≤ i ≤ m, 1 ≤ j ≤ 2t + 2} and

E(SP (1m, 2t, 4)) = {ei = uvi : 1 ≤ i ≤ m, for1 ≤ i ≤ t + 1, e′i = uuiande
′

t+1+i =

uiut+1+i, e
′′

1 = u2t+2v
′

1, e
′′′

1 = v′1v
′

2} be the vertices and edges of the graph SP (1m, 2t, 4).

Define the edge labeling f : E(SP (1m, 2t, 4)) → {±1,±2, . . . ,±(m + 2t + 4)} as follows

by four cases.

Case (i) m is odd and t is odd.

f(e1) = −1, f(e′′1) = −2, f(e′′′1 ) = −5, f(e′1) = 2, for 1 ≤ i ≤ m−1

2
, f(e1+i) = (2i + 7) =

−f
(

em+1

2
+i

)

, for 1 ≤ i ≤ t−1

2
, f(e′1+i) = (m + 2i + 6) = −f

(

e′t+1

2
+i

)

and f(e′t+2+i) =

(6 + 2i) = −f
(

e′3t+3

2
+i

)

, f(e′t+1) = −3, f(e′2t+2) = 4 and f(e′t+2) = 5. The induced

vertex labelings are f ∗(v1) = −1 = −f ∗(ut+1), for 1 ≤ i ≤ m−1

2
, f ∗(v1+i) = (2i +

7) = −f ∗

(

vm+1

2
+i

)

=, f ∗(u1) = 7 = −f ∗(v′1) = −7, for 1 ≤ i ≤ t−1

2
, f ∗(u1+i) =

(m + 12 + 4i) = −f ∗

(

u t+1

2
+i

)

and f ∗(ut+2+i) = (6 + 2i) = −f ∗

(

u 3t+3

2
+i

)

, f ∗(ut+2) =
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5 = −f ∗(v′2) = −5, f ∗(u2t+2) = 2 = −f ∗(u) = −2. From the above vertex labeling we

get f ∗(V (SP (1m, 2t, 4))) = {±1,±2,±5,±7,±9,±11, . . . ,±(m + 6),±(m + 16),±(m +

21),±(m+ 24), . . . ,±(m+ 2t+ 10),±8,±10, . . . ,±(t + 5)}.

Hence f is an edge pair sum labeling of SP (1m, 2t, 4).

Figure 7 shows that SP (1m, 2t, 4) is an edge pair sum graph for m = 3 and t = 1.

Figure 7.

Case (ii) m is odd and t is even.

f(e1) = 5, f(e′′1) = 3, f(e′′′1 ) = −5, for 1 ≤ i ≤ m−1

2
, f(e1+i) = (2i+ 5) = −f

(

em+1

2
+i

)

=

−(2i + 5), for 1 ≤ i ≤ t
2
, f(e′i) = (m + 2i + 4) = −f

(

e′t
2
+i

)

, f(e′t+1+i) = (2i + 2) =

−f
(

e′3t+2

2
+i

)

, f(e′t+1) = −2, f(e′2t+2) = −1. The induced vertex labelings are f ∗(v1) =

5 = −f ∗(v′2) = −5, for 1 ≤ i ≤ m−1

2
, f ∗(v1+i) = (2i+ 5) = −f ∗

(

vm+1

2
+i

)

, for 1 ≤ i ≤ t
2
,

f ∗(ui) = (m + 4i + 6) = −f ∗

(

u t

2
+i

)

, and f ∗(ut+1+i) = (2i + 2) = −f ∗

(

u 3t+2

2
+i

)

,

f ∗(ut+1) = −3 = −f ∗(u) = 3 and f ∗(u2t+2) = 2 = −f ∗(v′1). From the above vertex label-

ing we get f ∗(V (SP (1m, 2t, 4))) = {±2,±3,±5,±7,±9, . . . ,±(m + 4),±4,±6, . . . ,±(t +

2),±(m+ 10),±(m+ 14),±(m+ 18), . . . ,±(m+ 2t + 6)}.

Figure 8.
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Hence f is an edge pair sum labeling of SP (1m, 2t, 4).

The example for the edge pair sum graph labeling of SP (1m, 2t, 4) for m = 3 and t = 2 is

shown in Figure 8.

Case (iii) m is even and t is odd.

For 1 ≤ i ≤ m
2
, f(ei) = (2i + 1) = −f

(

em
2
+i

)

, f(e′1) = −1, f(e′′1) = −(m + 3),

f(e′′′1 ) = −(m + 2), for 1 ≤ i ≤ t−1

2
, f(e′1+i) = (m + 2i + 3) = −f

(

e′t+1

2
+i

)

and

f(e′t+2+i) = (m+2+2i) = −f
(

e′3t+3

2
+i

)

, f(e′t+1) = (m+3), f(e′t+2) = 2, f(e′2t+2) = (m+2).

The induced vertex labeling are for 1 ≤ i ≤ m
2
, f ∗(vi) = (2i+ 1) = −f ∗

(

vm
2
+i

)

, f ∗(u1) =

1 = −f ∗(u2t+2), for 1 ≤ i ≤ t−1

2
, f ∗(u1+i) = (2m+5+4i) = −f ∗

(

u t+1

2
+i

)

and f ∗(ut+2+i) =

(m+2+2i) = −f ∗

(

u 3t+3

2
+i

)

, f ∗(ut+1) = (2m+5) = −f ∗(v′1), f
∗(ut+2) = 2 and f ∗(v′2) =

−(m + 2) = −f ∗(u). From the above vertex labeling we get f ∗(V (SP (1m, 2t, 4))) =

{±1,±3,±5,±7, . . . ,±(m + 1),±(2m + 9),±(2m + 13), . . . ,±(2m + 2t + 3),±(2m +

5),±(m + 2),±(m + 4),±(m + 6), . . . ,±(m + t + 1)} ∪ {2}. Hence f is an edge pair

sum labeling of SP (1m, 2t, 4).

The example for the edge pair sum graph labeling of SP (1m, 2t, 4) for m = 2 and t = 3is

shown in Figure 9.

Figure 9.

Case (iv) m is even and t is even.

For 1 ≤ i ≤ m
2
, f(ei) = (2i + 3) = −f

(

em
2
+i

)

, for 1 ≤ i ≤ t
2
, f(e′i) = (m + 2i +

3) = −f
(

e′t
2
+i

)

, f(e′t+1+i) = (m + 2i + 4) = −f
(

e′3t+2

2
+i

)

, f(e′t+1) = 2, f(e′2t+2) =

4, f(e′′1) = −1, f(e′′′1 ) = −2. The induced vertex labeling are for 1 ≤ i ≤ m
2
, f ∗(vi) =

(2i + 3) = −f ∗
(

vm
2
+i

)

, for 1 ≤ i ≤ t
2
, f ∗(ui) = (2m + 4i + 7) = −f ∗

(

u t

2
+i

)

and

f ∗(ut+1+i) = (m + 2i + 4) = −f ∗

(

u 3t+2

2
+i

)

, f ∗(u2t+2) = 3 = −f(v′1), f
∗(v′2) = −2 =

−f ∗(u) and f ∗(ut+1) = 6. From the above vertex labeling we get f ∗(V (SP (1m, 2t, 4))) =

{±2,±3,±5, . . . ,±(m+3),±(2m+11),±(2m+15), . . . ,±(2m+2t+7),±(m+6),±(m+

8),±(m+ 10), . . . ,±(m+ t + 4)} ∪ {6}.

Hence f is an edge pair sum labeling of SP (1m, 2t, 4).
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The example for the edge pair sum graph labeling of SP (1m, 2t, 4) for m = 2 and t = 4 is

shown in Figure 10.

Figure 10.

Theorem 1.5. The spider graph SP (1m, 3t, 4) is an edge pair sum graph if t is even.

Proof. Let V (SP (1m, 3t, 4)) = {u, vi, uj, v
′

1 : 1 ≤ i ≤ m, 1 ≤ j ≤ 3t+3} and E(SP (1m, 3t, 4)) =

{ei = uvi : 1 ≤ i ≤ m, for 1 ≤ i ≤ t + 1, e′i = uui, e
′

t+1+i = uiut+1+i and e′2t+2+i =

ut+1+iu2t+2+i, e
′′

1 = u3t+3v
′

1} be the vertices and edges of the graph SP (1m, 3t, 4).

Define the edge labeling f : E(SP (1m, 3t, 4)) → {±1,±2, . . . ,±(m+ 3t+ 4)} as follows.

Case (i) m is odd.

f(e1) = 5, for 1 ≤ i ≤ m−1

2
, f(e1+i) = (2i + 5) = −f

(

em+1

2
+i

)

, for 1 ≤ i ≤ t
2
f(e′i) =

(m + 2i + 4) = −f
(

e′t
2
+i

)

, f(e′t+1+i) = (m + t + 4 + 2i) = −f
(

e′3t+2

2
+i

)

, f(e′2t+2+i) =

(6 + 2i) = −f
(

e′5t+4

2
+i

)

, f(e′2t+2) = −1, f(e′3t+3) = 3, f(e′′1) = −5, f(e′t+1) = −2.

The induced vertex labelings are f ∗(v1) = 5 = −f ∗(v′1), for 1 ≤ i ≤ m−1

2
f ∗(v1+i) =

(2i + 5) = −f ∗

(

vm+1

2
+i

)

, for 1 ≤ i ≤ t
2
, f ∗(ui) = (2m + t + 8 + 4i) = −f ∗

(

u t

2
+i

)

,

f ∗(ut+1+i) = (m+t+10+4i) = −f ∗

(

u 3t+2

2
+i

)

and f ∗(u2t+2+i) = (6+2i) = −f ∗

(

u 5t+4

2
+i

)

,

f ∗(u3t+3) = −2 = −f ∗(u2t+2), f
∗(u) = 3 = −f ∗(ut+1). From the above arguments we get

f ∗(V (SP (1m, 3t, 4))) = {±2,±3,±5,±7,±9,±11, . . . ,±(m+4),±(2m+t+12),±(2m+t+

16), . . . ,±(2m+3t+8),±(m+t+14),±(m+t+18), . . . , (m+3t+10),±8,±10, . . . ,±(t+6)}.

Hence f is an edge pair sum labeling of SP (1m, 3t, 4).

Case (ii) m is even.

For 1 ≤ i ≤ m
2
, f(ei) = (2i + 5) = −f

(

em
2
+i

)

, for 1 ≤ i ≤ t
2
, f(e′i) = (m + 2i + 5) =

−f
(

e′t
2
+i

)

, f(e′t+1+i) = (m + t + 5 + 2i) = −f
(

e′3t+2

2
+i

)

and f(e′2t+2+i) = (6 + 2i) =

−f
(

e′5t+4

2
+i

)

, f(e′3t+3) = −1, f(e′′1) = −2, f(e′t+1) = 2 and f(e′2t+2) = 4. The induced

vertex labeling are for 1 ≤ i ≤ m
2
, f ∗(v1+i) = (2i + 5) = −f ∗

(

vm
2
+i

)

, for 1 ≤ i ≤ t
2
,

f ∗(ui) = (2m+ t+10+4i) = −f ∗

(

u t

2
+i

)

, f ∗(ut+1+i) = (m+ t+11+4i) = −f ∗

(

u 3t+2

2
+i

)
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and f ∗(u2t+2+i) = (6 + 2i) = −f ∗

(

u 5t+4

2
+i

)

, f ∗(u3t+3) = −3 = −f ∗(u2t+2), f
∗(v′1) =

2 = −f ∗(u), f ∗(ut+1) = 6. From the above arguments we get f ∗(V (SP (1m, 3t, 4))) =

{±2,±3,±7,±9,±11, . . . ,±(m + 5),±(2m + t + 14),±(2m + t + 18), . . . ,±(2m + 3t +

10),±(m+ t + 15),±(m+ t+ 19), . . . ,±(m+ 3t+ 11),±8,±10, . . . ,±(t + 6)} ∪ {6}.

Hence f is an edge pair sum labeling of SP (1m, 3t, 4).
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