More On λ_κ–closed sets in generalized topological spaces

R. Jamunarani, *1, P. Jeyanthi†2 and M. Velrajani ‡3

1,2 Research Center, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628 215, Tamil Nadu, India.
3 Research Center, Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur - 628 216, Tamil Nadu, India

ABSTRACT

In this paper, we introduce λ_κ–closed sets and study its properties in generalized topological spaces.

Article history:
Received 2, February 2014
Received in revised form 10, July 2014
Accepted 19, December 2014
Available online 30, December 2014

Keyword: Generalized topology, μ–open set, μ–closed set, quasi-topology, strong space, Λ_κ–set, λ_κ–open set, λ_κ–closed set.

AMS subject Classification: Primary 54 A 05.

1 Introduction

The theory of generalized topology was introduced by Császár in [1]. The properties of generalized topology, basic operators, generalized neighborhood systems and some con-
structions for generalized topologies have been studied by the same author in [1, 2, 3, 4, 5, 6]. It is well known that generalized topology in the sense of Császár [1] is a generalization of topology on a nonempty set. On the other hand, many important collections of sets related with topology on a set form a generalized topology. In this paper we define several subsets in a generalized topological spaces and study their properties.

A nonempty family μ of subsets of a set X is said to be a generalized topology [2] if $\emptyset \in \mu$ and arbitrary union of elements of μ is again in μ. The pair (X, μ) is called a generalized topological space and elements of μ are called μ-open sets. $A \subset X$ is μ-closed if $X - A$ is μ-open. By a space (X, μ), we always mean a generalized topological space. If $X \in \mu$, (X, μ) is called a strong [3] space. Clearly, (X, μ) is strong if and only if \emptyset is μ-closed if and only if $c_\mu(\emptyset) = \emptyset$. In a space (X, μ), if μ is closed under finite intersection, (X, μ) is called a quasi-topological space [5]. Clearly, every strong, quasi-topological space is a topological space. For $A \subset X$, $c_\mu(A)$ is the smallest μ-closed set containing A and $i_\mu(A)$ is the largest μ-open set contained in A. Moreover, $X - c_\mu(A) = i_\mu(X - A)$, for every subset A of X. A subset A of a space (X, μ) is said to be α-open [4] (resp. σ-open [4], π-open [4], b-open [7], β-open [4]) if $A \subset i_\mu c_\mu i_\mu(A)$ (resp. $A \subset c_\mu i_\mu(A)$, $A \subset i_\mu c_\mu(A)$, $A \subset i_\mu c_\mu(A) \cup c_\mu i_\mu(A)$, $A \subset c_\mu i_\mu c_\mu(A)$). A subset A of a space (X, μ) is said to be α-closed (resp. σ-closed, π-closed, b-closed, β-closed) if $X - A$ is α-open (resp. σ-open, π-open, b-open, β-open). Let (X, μ) be a space and $\zeta = \{\mu, \alpha, \sigma, \pi, b, \beta\}$. For $\kappa \in \zeta$, we consider the space (X, κ), throughout the paper. For $A \subset \mathcal{M}_\kappa = \cup\{B \subset X \mid B \in \mu\}$, the subset $\Lambda_\kappa(A)$ is defined by $\Lambda_\kappa(A) = \cap\{G \mid A \subset G, G \in \kappa\}$. The proof of the following lemma is clear.

Lemma 1.1. Let A, B and $B_\alpha, \alpha \in \Delta$ be subsets of \mathcal{M}_κ in a space (X, κ). Then the following properties are hold.

(a) $B \subset \Lambda_\kappa(B)$.
(b) If $A \subset B$ then $\Lambda_\kappa(A) \subset \Lambda_\kappa(B)$.
(c) $\Lambda_\kappa(\Lambda_\kappa(B)) = \Lambda_\kappa(B)$.
(d) If $A \in \kappa$, then $A = \Lambda_\kappa(A)$.
(e) $\Lambda_\kappa(\cup\{B_\alpha \mid \alpha \in \Delta\}) = \cup\{\Lambda_\kappa(B_\alpha) \mid \alpha \in \Delta\}$.
(f) $\Lambda_\kappa(\cap\{B_\alpha \mid \alpha \in \Delta\}) \subset \cap\{\Lambda_\kappa(B_\alpha) \mid \alpha \in \Delta\}$.

2 More on Λ_κ-closed sets

In a space (X, κ), a subset B of \mathcal{M}_κ is called a Λ_κ-set if $B = \Lambda_\kappa(B)$. We state the following theorem without proof.

Theorem 2.1. For subsets A and $A_\alpha, \alpha \in \Delta$ of \mathcal{M}_κ in a space (X, κ), the following hold.

(a) $\Lambda_\kappa(A)$ is a Λ_κ-set.
(b) If $A \in \kappa$, then A is a Λ_κ-set.
(c) If A_α is a $\Lambda\kappa$-set for each $\alpha \in \triangle$, then $\cap \{ A_\alpha \mid \alpha \in \triangle \}$ is a $\Lambda\kappa$-set.

(d) If A_α is a $\Lambda\kappa$-set for each $\alpha \in \triangle$, then $\cup \{ A_\alpha \mid \alpha \in \triangle \}$ is a $\Lambda\kappa$-set.

A subset A of M_κ in a space (X, κ) is said to be a $\lambda\kappa$-closed set if $A = T \cap C$, where T is a $\Lambda\kappa$-set and C is a κ-closed set. The complement of a $\lambda\kappa$-closed set is called a $\lambda\kappa$-open set. We denote the collection of all $\lambda\kappa$-open (resp., $\lambda\kappa$-closed) set of X by $\lambda\kappa O(X)$ (resp., $\lambda\kappa C(X)$). The following theorem gives the characterization of $\lambda\kappa$-closed sets.

Lemma 2.2. Let $A \subset M_\kappa$ be a subset in a space (X, κ). Then the following are equivalent.

(a) A is a $\lambda\kappa$-closed set.

(b) $A = T \cap c_\kappa(A)$, where T is a $\Lambda\kappa$-set.

(c) $A = \Lambda\kappa(A) \cap c_\kappa(A)$.

Let (X, κ) be a space. A point $x \in M_\kappa$ is called a $\lambda\kappa$-cluster point of A if for every $\lambda\kappa$-open set U of M_κ containing x we have $A \cap U \neq \emptyset$. The set of all $\lambda\kappa$-cluster points of A is called the $\lambda\kappa$-closure of A and is denoted by $c_\lambda(A)$.

Lemma 2.3 gives some properties of c_λ, the easy proof of which is omitted.

Lemma 2.3. Let (X, κ) be a space and $A, B \subset M_\kappa$. Then the following properties hold.

(a) $A \subset c_\lambda(A)$.

(b) $c_\lambda(A) = \cap \{ F \mid A \subset F \text{ and } F \text{ is } \lambda\kappa \text{ - closed} \}$.

(c) If $A \subset B$, then $c_\lambda(A) \subset c_\lambda(B)$.

(d) A is a $\lambda\kappa$-closed set if and only if $A = c_\lambda(A)$.

(e) $c_\lambda(A)$ is a $\lambda\kappa$-closed set.

Let (X, κ) be a space and $A \subset M_\kappa$. A point $x \in M_\kappa$ is said to be a κ-limit point of A if for each κ-open set U containing x, $U \cap \{ A \setminus \{ x \} \} \neq \emptyset$. The set of all κ-limit points of A is called a κ-derived set of A and is denoted by $D_\kappa(A)$.

Let (X, κ) be a space and $A \subset M_\kappa$. A point $x \in M_\kappa$ is said to be a $\lambda\kappa$-limit point of A if for each $\lambda\kappa$-open set U containing x, $U \cap \{ A \setminus \{ x \} \} \neq \emptyset$. The set of all $\lambda\kappa$-limit points of A is called a $\lambda\kappa$-derived set of A and is denoted by $D_\lambda(A)$.

Theorem 2.4 gives some properties of $\lambda\kappa$-derived sets and Theorem 2.5 gives the characterization of $\lambda\kappa$-derived sets.

Theorem 2.4. Let (X, κ) be a space and $A, B \subset M_\kappa$. Then the following hold.

(a) $D_\lambda(A) \subset D_\kappa(A)$.

(b) If $A \subset B$, then $D_\lambda(A) \subset D_\lambda(B)$.

(c) $D_\lambda(A) \cup D_\lambda(B) \subset D_\lambda(A \cup B)$ and $D_\lambda(A \cap B) \subset D_\lambda(A) \cap D_\lambda(B)$.

(d) $D_\lambda(D_\lambda(A) - A \subset D_\lambda(A)$.

(e) $D_\lambda(A \cup D_\lambda(A)) \subset A \cup D_\lambda(A)$.

Proof. (a) Since every κ-open set is a $\lambda\kappa$-open set, it follows.

(b) Let $x \in D_\lambda(A)$. Let U be any $\lambda\kappa$-open set containing x. Then $U \cap \{ A \setminus \{ x \} \} \neq \emptyset$ and so $V \cap \{ B \setminus \{ x \} \} \neq \emptyset$, since $A \subset B$. Therefore, $x \in D_\lambda(B)$.

(c) Since $A \cap B \subset A, B$ we have $D_\lambda(A \cap B) \subset D_\lambda(A) \cap D_\lambda(B)$. Since $A, B \subset A \cup B$,
we have $D_{\lambda_\kappa}(A) \cup D_{\lambda_\kappa}(B) \subset D_{\lambda_\kappa}(A \cup B)$.

(d) Let $x \in D_{\lambda_\kappa}(A) - A$ and U be a λ_κ-open set containing x. Then $U \cap (D_{\lambda_\kappa}(A) - \{x\}) \neq \emptyset$. Let $y \in U \cap (D_{\lambda_\kappa}(A) - \{x\})$. Since $y \in D_{\lambda_\kappa}(A)$ and $x \neq y \in U$, $U \cap (A - \{y\}) \neq \emptyset$. Let $z \in U \cap (A - \{y\})$. Then $z \in U \cap (A - \{y\})$ implies that $z \in U$ and $z \in A - \{y\}$ and so $z \neq y$. Since $x \notin A$, $z \in U \cap (A - \{x\})$ and so $U \cap (A - \{x\}) \neq \emptyset$. Therefore, $x \in D_{\lambda_\kappa}(A)$.

(e) Let $x \in D_{\lambda_\kappa}(A \cup D_{\lambda_\kappa}(A))$. If $x \in A$, the result is clear. Suppose $x \notin A$. Since $x \in D_{\lambda_\kappa}(A \cup D_{\lambda_\kappa}(A)) - A$, then for λ_κ-open set U containing x, $U \cap ((A \cup D_{\lambda_\kappa}(A)) - \{x\}) \neq \emptyset$. Thus $U \cap (A - \{x\}) \neq \emptyset$ or $U \cap (D_{\lambda_\kappa}(A) - \{x\}) \neq \emptyset$. Now it follows from (d) that $U \cap (A - \{x\}) \neq \emptyset$. Hence, $x \in D_{\lambda_\kappa}(A)$. Therefore, in all the cases $D_{\lambda_\kappa}(A \cup D_{\lambda_\kappa}(A)) \subset A \cup D_{\lambda_\kappa}(A)$.

Theorem 2.6. Let (X, κ) be space and $A \subset X$. Then $c_{\lambda_\kappa}(A) = A \cup D_{\lambda_\kappa}(A)$.

Proof. Since $D_{\lambda_\kappa}(A) \subset c_{\lambda_\kappa}(A)$, $A \cup D_{\lambda_\kappa}(A) \subset c_{\lambda_\kappa}(A)$. On the other hand, let $x \in c_{\lambda_\kappa}(A)$. If $x \in A$, the proof is complete. If $x \notin A$, then each λ_κ-open set U containing x intersects A at a point distinct from x. Therefore, $x \in D_{\lambda_\kappa}(A)$. Thus, $c_{\lambda_\kappa}(A) \subset A \cup D_{\lambda_\kappa}(A)$ and so $c_{\lambda_\kappa}(A) = A \cup D_{\lambda_\kappa}(A)$ which completes the proof.

Let (X, κ) be a space and $A \subset X$. Then $i_{\lambda_\kappa}(A)$ is the union of all λ_κ-open set contained in A.

Theorem 2.6 gives some properties of i_{λ_κ}.

Theorem 2.6. Let (X, κ) be a space and $A, B \subset X$. Then the following hold.

(a) A is a λ_κ-open set if and only if $A = i_{\lambda_\kappa}(A)$.

(b) $i_{\lambda_\kappa}(i_{\lambda_\kappa}(A)) = i_{\lambda_\kappa}(A)$.

(c) $i_{\lambda_\kappa}(A) = A - D_{\lambda_\kappa}(X - A)$.

(d) $X - i_{\lambda_\kappa}(A) = c_{\lambda_\kappa}(X - A)$.

(e) $X - c_{\lambda_\kappa}(A) = i_{\lambda_\kappa}(X - A)$.

(f) $A \subset B$ then $i_{\lambda_\kappa}(A) \subset i_{\lambda_\kappa}(B)$.

(g) $i_{\lambda_\kappa}(A) \cup i_{\lambda_\kappa}(B) \subset i_{\lambda_\kappa}(A \cup B)$ and $i_{\lambda_\kappa}(A) \cap i_{\lambda_\kappa}(B) \supset i_{\lambda_\kappa}(A \cap B)$.

Proof. (c) If $x \in A - D_{\lambda_\kappa}(X - A)$, then $x \notin D_{\lambda_\kappa}(X - A)$ and so, there exists a λ_κ-open set U containing x such that $U \cap (X - A) = \emptyset$. Then $x \in U \subset A$ and hence $x \in i_{\lambda_\kappa}(A)$. That is, $A - D_{\lambda_\kappa}(X - A) \subset i_{\lambda_\kappa}(A)$. On the other hand, if $x \in i_{\lambda_\kappa}(A)$, then $x \notin D_{\lambda_\kappa}(X - A)$, since $i_{\lambda_\kappa}(A)$ is a λ_κ-open set and $i_{\lambda_\kappa}(A) \cap (X - A) = \emptyset$. Hence, $i_{\lambda_\kappa}(A) = A - D_{\lambda_\kappa}(X - A)$.

(d) $X - i_{\lambda_\kappa}(A) = X - (A - D_{\lambda_\kappa}(X - A)) = (X - A) \cup D_{\lambda_\kappa}(X - A) = c_{\lambda_\kappa}(X - A)$.

Let (X, κ) be a space and $A \subset X$. Then $b_{\kappa}(A) = A - i_{\kappa}(A)$ is said to be κ-border of A.

Let (X, κ) be a space and $A \subset X$. Then $b_{\lambda_\kappa}(A) = A - i_{\lambda_\kappa}(A)$ is said to be λ_κ-border of A.

Theorem 2.7 gives some properties of b_{λ_κ}.

Theorem 2.7. Let (X, κ) be a space and $A \subset X$. Then the following hold.

(a) $b_{\lambda_\kappa}(A) \subset b_{\kappa}(A)$.

(b) $A = i_{\lambda_\kappa}(A) \cup b_{\lambda_\kappa}(A)$.

(c) $i_{\lambda_\kappa}(A) \cap b_{\lambda_\kappa}(A) = \emptyset$.
Hence (i) \(F \) is a \(\lambda \)-open set if and only if \(b_{\lambda}(A) = \emptyset \).

Proof. (f) If \(x \in i_{\lambda}(b_{\lambda}(A)) \), then \(x \in b_{\lambda}(A) \). On the other hand, since \(b_{\lambda}(A) \subset A \), \(x \in i_{\lambda}(b_{\lambda}(A)) \subset i_{\lambda}(A) \). Hence \(x \in i_{\lambda}(A) \cap b_{\lambda}(A) \) which contradicts \(c \). Thus, \(i_{\lambda}(b_{\lambda}(A)) = \emptyset \).

(h) \(b_{\lambda}(A) = A - i_{\lambda}(A) = A - (X - c_{\lambda}(X - A)) = A \cap c_{\lambda}(X - A) \).

(i) \(b_{\lambda}(A) = D_{\lambda}(X - A) \).

Let \((X, \kappa) \) be a space and \(A \subset X \). Then \(F_{\kappa}(A) = c_{\kappa}(A) - i_{\kappa}(A) \) is said to be the \(\kappa \)-frontier of \(A \).

Let \((X, \kappa) \) be a space and \(A \subset X \). Then \(F_{\lambda}(A) = c_{\lambda}(A) - i_{\lambda}(A) \) is said to be the \(\lambda \)-frontier of \(A \).

Theorem 2.8 gives some properties of \(F_{\lambda} \).

Theorem 2.18 Let \((X, \kappa) \) be a space and \(A \subset X \). Then the following hold.

(a) \(F_{\lambda}(A) \subset F_{\kappa}(A) \).

(b) \(c_{\lambda}(A) = i_{\lambda}(A) \cup F_{\lambda}(A) \).

(c) \(i_{\lambda}(A) \cap F_{\lambda}(A) = \emptyset \).

(d) \(b_{\lambda}(A) \subset F_{\lambda}(A) \).

(e) \(F_{\lambda}(A) = b_{\lambda}(A) \cup D_{\lambda}(A) \).

(f) \(A \) is a \(\lambda \)-open set if and only if \(F_{\lambda}(A) = D_{\lambda}(A) \).

(g) \(F_{\lambda}(A) = c_{\lambda}(A) \cap c_{\lambda}(X - A) \).

(h) \(F_{\lambda}(A) = F_{\lambda}(X - A) \).

(i) \(F_{\lambda}(A) \) is a \(\lambda \)-closed set.

(j) \(F_{\lambda}(i_{\lambda}(A)) \subset F_{\lambda}(A) \).

(k) \(F_{\lambda}(c_{\lambda}(A)) \subset F_{\lambda}(A) \).

(l) \(i_{\lambda}(A) \cap F_{\lambda}(A) = A - F_{\lambda}(A) \).

Proof. (b) \(i_{\lambda}(A) \cup F_{\lambda}(A) = i_{\lambda}(A) \cup (c_{\lambda}(A) - i_{\lambda}(A)) = c_{\lambda}(A) \).

(c) \(i_{\lambda}(A) \cap F_{\lambda}(A) = i_{\lambda}(A) \cap (c_{\lambda}(A) - i_{\lambda}(A)) = \emptyset \).

(e) Since \(i_{\lambda}(A) \cup F_{\lambda}(A) = i_{\lambda}(A) \cup b_{\lambda}(A) \cup D_{\lambda}(A) \), \(F_{\lambda}(A) = b_{\lambda}(A) \cup D_{\lambda}(A) \).

(g) \(F_{\lambda}(A) = c_{\lambda}(A) - i_{\lambda}(A) = c_{\lambda}(A) \cap c_{\lambda}(X - A) \).

(i) \(c_{\lambda}(F_{\lambda}(A)) = c_{\lambda}(c_{\lambda}(A) \cap c_{\lambda}(X - A)) \subset c_{\lambda}(c_{\lambda}(A)) \cap c_{\lambda}(c_{\lambda}(X - A)) = F_{\lambda}(A) \).

Hence \(F_{\lambda}(A) \) is a \(\lambda \)-closed set.

(j) \(F_{\lambda}(F_{\lambda}(A)) = c_{\lambda}(F_{\lambda}(A)) \cap c_{\lambda}(X - F_{\lambda}(A)) \subset c_{\lambda}(F_{\lambda}(A)) = F_{\lambda}(A) \).

(l) \(F_{\lambda}(c_{\lambda}(A)) = c_{\lambda}((c_{\lambda}(A)) - i_{\lambda}(c_{\lambda}(A)) = c_{\lambda}(A) - i_{\lambda}(c_{\lambda}(A)) \subset c_{\lambda}(A) - i_{\lambda}(A) = F_{\lambda}(A) \).

(m) \(A - F_{\lambda}(A) = A - (c_{\lambda}(A) - i_{\lambda}(A)) = i_{\lambda}(A) \).
Let \((X, \kappa)\) be a space and \(A \subset X\). Then \(E_\kappa(A) = i_\kappa(X - A)\) is said to be \(\kappa\)–exterior of \(A\).

Let \((X, \kappa)\) be a space and \(A \subset X\). Then \(E_\lambda_\kappa(A) = i_\lambda_\kappa(X - A)\) is said to be \(\lambda_\kappa\)–exterior of \(A\).

Theorem 2.9 gives some properties of \(E_\lambda_\kappa\).

Theorem 2.9. Let \((X, \kappa)\) be a space and \(A \subset X\). Then the following hold.

(a) \(E_\kappa(A) \subset E_\lambda_\kappa(A)\) where \(E_\kappa(A)\) denotes the exterior of \(A\).

(b) \(E_\lambda_\kappa(A)\) is \(\lambda_\kappa\)–open.

(c) \(E_\lambda_\kappa(A) = i_\lambda_\kappa(X - A) = X - c_\lambda_\kappa(A)\).

(d) \(E_\lambda_\kappa(E_\lambda_\kappa(A)) = i_\lambda_\kappa(c_\lambda_\kappa(A))\).

(e) If \(A \subset B\), then \(E_\lambda_\kappa(A) \supset E_\lambda_\kappa(B)\).

(f) \(E_\lambda_\kappa(A \cup B) \subset E_\lambda_\kappa(A) \cup E_\lambda_\kappa(B)\).

(g) \(E_\lambda_\kappa(A \cup B) \supset E_\lambda_\kappa(A) \cap E_\lambda_\kappa(B)\).

(h) \(E_\lambda_\kappa(X) = \emptyset\).

(i) \(E_\lambda_\kappa(\emptyset) = X\).

(j) \(E_\lambda_\kappa(A) = E_\lambda_\kappa(X - E_\lambda_\kappa(A))\).

(k) \(i_\lambda_\kappa(A) \subset E_\lambda_\kappa(E_\lambda_\kappa(A))\).

(l) \(X = i_\lambda_\kappa(A) \cup E_\lambda_\kappa(A) \cup F_\lambda_\kappa(A)\).

Proof.

(d) \(E_\lambda_\kappa(E_\lambda_\kappa(A)) = E_\lambda_\kappa(X - c_\lambda_\kappa(A)) = i_\lambda_\kappa(X - (X - i_\lambda_\kappa(A))) = i_\lambda_\kappa(c_\lambda_\kappa(A))\).

(j) \(E_\lambda_\kappa(X - E_\lambda_\kappa(A)) = E_\lambda_\kappa(X - i_\lambda_\kappa(X - A)) = i_\lambda_\kappa(X - (X - i_\lambda_\kappa(X - A))) = i_\lambda_\kappa(i_\lambda_\kappa(X - A)) = i_\lambda_\kappa(X - A) = E_\lambda(A)\).

(k) \(i_\lambda_\kappa(A) \subset i_\lambda_\kappa(c_\lambda_\kappa(A)) = i_\lambda_\kappa(X - i_\lambda_\kappa(X - A)) = i_\lambda_\kappa(X - E_\lambda_\kappa(A)) = E_\lambda_\kappa(E_\lambda_\kappa(A))\).
References

