

journal homepage: http://jac.ut.ac.ir

Totally magic cordial labeling of some graphs

P. Jeyanthi^{*1} and N. Angel Benseera $^{\dagger 2}$

¹Research Center, Department of Mathematics, Govindammal Aditanar College for women, Tiruchendur - 628 215, Tamilnadu,India

²Department of Mathematics, Sri Meenakshi Government Arts College for Women (Autonomous), Madurai - 625 002, India.

ABSTRACT

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f: $V(G) \cup E(G) \rightarrow \{0, 1\}$ such that $f(a) + f(b) + f(ab) \equiv$ $C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)$ (i = 0, 1) is the sum of the number of vertices and edges with label *i*. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and also prove that some families of graphs admit totally magic cordial labeling.

ARTICLE INFO

Article history: Received 12, February 2015 Received in revised form 27, April 2015 Accepted 10, July 2015 Available online 12, September 2015

Keyword: Cordial labeling, Totally magic cordial labeling.

AMS subject Classification: Primary 54 A 05.

1 Introduction

All graphs in this paper are finite, simple and undirected. The graph G has vertex set V = V(G) and edge set E = E(G) and we write p for |V| and q for |E|. A general reference for graph theoretic notions is [3]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f : V(G) \to \{0,1\}$ induces an edge labeling

^{*}Corresponding author. E-mail: jeyajeyanthi@rediffmail.com

 $^{^{\}dagger}{\rm Email}: angelbenseera @yahoo.com$

 $f^*: E(G) \to \{0, 1\}$ defined by $f^*(uv) = |f(u) - f(v)|$. Such labeling is called cordial if the conditions $|v_f(0) - v_f(1)| \leq 1$ and $|e_{f^*}(0) - e_{f^*}(1)| \leq 1$ are satisfied, where $v_f(i)$ and $e_{f^*}(i)(i = 0, 1)$ are the number of vertices and edges with label *i*, respectively. A graph is called cordial if it admits a cordial labeling.

Kotzig and Rosa introduced the concept of edge-magic total labeling in [6]. A bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, 3, ..., p+q\}$ is called an edge-magic total labeling of G if f(x) + f(xy) + f(y) is constant (called the magic constant of f) for every edge xy of G. The graph that admits this labeling is called an edge-magic total graph.

The notion of totally magic cordial (TMC) labeling is due to Cahit [2] as a modification of edge-magic total labeling and cordial labeling. A graph G is said to have totally magic cordial labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow \{0, 1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)$ (i = 0, 1) is the sum of the number of vertices and edges with label *i*. A graph that admits a TMC labeling is called a TMC graph.

In [4], it was proved that the complete graph K_n is TMC if and only if

 $\sqrt{4k+1}$ has an integer value when n = 4k

 $\sqrt{k+1}$ or \sqrt{k} has an integer value when n = 4k+1

 $\sqrt{4k+5}$ or $\sqrt{4k+1}$ has an integer value when n = 4k+2

 $\sqrt{k+1}$ has an integer value when n = 4k+3. Also it was proved that all trees, cycles $(n \ge 3)$, friendship graph, flower graph and ladder graph $L_n (n \ge 2)$ are TMC.

In [5], totally magic cordial labeling of one-point union of n-copies of cycles, complete graphs and wheels were established.

An odd graph is a graph whose vertices are of odd degree. An odd graph must have an even number of vertices.

We use the following definitions in the subsequent section:

Definition 1.1. A wheel graph W_n is obtained from a cycle C_n by adding a new vertex and joining it to all the vertices of the cycle by an edge, then the new edges are called spokes of the wheel.

Definition 1.2. Ladder graph $L_n (n \ge 2)$ is a product graph $P_2 \times P_n$ with 2n vertices and 3n-2 edges.

Definition 1.3. A fan graph F_n is obtained from a path P_n by adding a new vertex and joining it to all the vertices of the path by an edge.

Definition 1.4. The graph mW_n is the disjoint union of m copies of W_n .

Definition 1.5. The join of graphs G_1 and G_2 is a graph $G_1 + G_2$, with vertex set $V(G_1) \cup V(G_2)$ and edge set consisting of edges of G_1 and G_2 and all the edges joining $V(G_1)$ and $V(G_2)$.

Definition 1.6. The Corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 (which has p_1 vertices) and p_1 copies of G_2 and then joining i^{th} vertex of G_1 to every vertices in the i^{th} copy of G_2 .

2 Main Results

In this section, we give a necessary condition for an odd graph to be not totally magic cordial and also prove that some families of graphs admit totally magic cordial labeling.

Theorem 2.1. Let $G_1(p_1, q_1)$, $G_2(p_2, q_2)$ be two TMC graphs with C = 0. If $p_1 + q_1$ and $p_2 + q_2$ are even and $|p_i - 2m_i| \le 1$, where m_i is the number of vertex labeled with 0 in G_i , i = 1, 2, then $G_1 + G_2$ is TMC.

 $\begin{array}{l} Proof. \mbox{ Let } f \mbox{ and } g \mbox{ be TMC labelings of } G_1 \mbox{ and } G_2 \mbox{ respectively with } C = 0. \mbox{ Assume that } p_1 + q_1 = 2m \mbox{ and } p_2 + q_2 = 2n. \mbox{ Then } n_f(0) = n_f(1) = m \mbox{ and } n_g(0) = n_g(1) = n. \mbox{ Define } h : V(G_1 + G_2) \cup E(G_1 + G_2) \rightarrow \{0,1\} \mbox{ as follows: For } v \in V(G_1 + G_2), \ h(v) = \left\{ \begin{array}{c} f(v) \mbox{ if } v \in V(G_1), \\ g(v) \mbox{ if } v \in V(G_2) \end{array} \right. \mbox{ and for } uv \in E(G_1 + G_2), \ \\ \left\{ \begin{array}{c} f(uv) \mbox{ if } uv \in E(G_2), \\ 0 \mbox{ if } uv \in E(G_2), \\ 0 \mbox{ if } f(u) = 0 \mbox{ and } g(v) = 0 \mbox{ or } f(u) = 1 \mbox{ and } g(v) = 0. \ \end{array} \right. \noalign{\mbox{ Now } n_h(0) = n_f(0) + n_g(0) + m_1m_2 + (p_1 - m_1)(p_2 - m_2) \mbox{ and } n_h(1) = n_f(1) + n_g(1) + m_1(p_2 - m_2) + m_2(p_1 - m_1). \mbox{ Therefore, } |n_h(0) - n_h(1)| \leq |n_f(0) - n_f(1)| + |n_g(0) - n_g(1)| + |(p_1 - 2m_1)(p_2 - 2m_2)|, \mbox{ implies that } \\ |n_h(0) - n_h(1)| \leq |(p_1 - 2m_1)| |(p_2 - 2m_2)|. \mbox{ Thus, } |n_h(0) - n_h(1)| \leq 1 \mbox{ whenever } \\ |p_1 - 2m_1| \leq 1 \mbox{ and } |p_2 - 2m_2| \leq 1. \mbox{ Therefore, } h \mbox{ is a TMC labeling of } G_1 + G_2 \mbox{ and hence, } \\ \end{\mbox{ } G_1 + G_2 \mbox{ is TMC. } \end{array} \right$

Corollary 2.2. If $G_i(p_i, q_i)$, i = 1, 2, 3, ..., n are TMC graphs with C = 0 such that $p_i + q_i$, i = 1, 2, 3, ..., n are even, and $|p_i - 2m_i| \le 1$, where m_i is the number of vertices labeled with 0 in G_i , i = 1, 2, ..., n, then $G_1 + G_2 + ... + G_n$ is TMC.

Theorem 2.3. If G is an edge magic total graph, then G is TMC.

Proof. Let f be an edge magic total labeling of a graph G with p vertices and q edges. Define $g: V(G) \cup E(G) \to \{0,1\}$ by $g(v) \equiv f(v) \pmod{2}$ if $v \in V(G)$ and $g(e) \equiv f(e) \pmod{2}$ if $e \in E(G)$. Since there are exactly $\left\lceil \frac{p+q}{2} \right\rceil$ odd integers and $\left\lfloor \frac{p+q}{2} \right\rfloor$ even integers in the set $\{1, 2, 3, ..., p+q\}$ we have, $|n_f(0) - n_f(1)| \leq 1$. Therefore, G is TMC.

Theorem 2.4. Let G be an odd graph with $p + q \equiv 2 \pmod{4}$. Then G is not TMC.

Proof. Assume that G is TMC with C = 0 or 1 and let f be a TMC labeling of G. Thus, for any edge $ab \in E(G)$, $f(a)+f(b)+f(ab) \equiv C \pmod{2}$ and $|n_f(0) - n_f(1)| \leq 1$. As there are an even number of edges, summing over all the edges we get, $\sum_{a \in V(G)} deg(a) f(a) + \sum_{a \in V(G)} f(ab) \equiv 0 \pmod{2}$. Since degree of each vertex is odd, $n_f(1) = \sum_{a \in V(G)} f(a) + \sum_{a \in V(G)} f(ab) \equiv 0 \pmod{2}$. Also, since $|n_f(0) - n_f(1)| \leq 1$, we cannot have $n_f(0) + n_f(1) = p + q \equiv 2 \pmod{4}$.

Theorem 2.5. The fan graph F_n is TMC for $n \ge 2$.

 $\begin{array}{l} \textit{Proof. Let } V(F_n) = \{u, v_i | 1 \leq i \leq n\} \text{ and } E(F_n) = \{v_i v_{i+1} | 1 \leq i < n\} \cup \{uv_i | 1 \leq i \leq n\}.\\ \textit{Define } f: V(F_n) \cup E(F_n) \rightarrow \{0, 1\} \text{ as follows:}\\ f(u) = 0, \ f(v_i) = \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 1, 2 \pmod{4}, \\ 1 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. f(v_i v_{i+1}) = \left\{ \begin{array}{ll} 1 & \textit{if } i \textit{ is odd}, \\ 0 & \textit{if } i \textit{ is even} \end{array} \right. \text{ and } f(uv_i) = \left\{ \begin{array}{ll} 1 & \textit{if } i \equiv 0, 3 \pmod{4}, \\ 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 1 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right. \\ \left\{ \begin{array}{ll} 0 & \textit{if } i \equiv 0, 3 \pmod{4}, \end{array} \right\} \right\} \right\}$

Theorem 2.6. The wheel graph $W_n (n \ge 3)$ is TMC if and only if $n \not\equiv 3 \pmod{4}$.

Proof. Let $V(W_n) = \{u, v_i | 1 \le i \le n\}$ and $E(W_n) = \{v_i v_{i+1} | 1 \le i < n\} \cup \{uv_i | 1 \le i \le n\} \cup \{v_n v_1\}$. Clearly, $p = |V(W_n)| = n + 1$ and $q = |E(W_n)| = 2n$ so that p + q = 3n + 1. Necessity follows from Theorem 5 and for sufficiency we assume that $n \not\equiv 3 \pmod{4}$. Define $f: V(W_n) \cup E(W_n) \to \{0, 1\}$ as follows:

Define $f: V(W_n) \cup E(W_n) \to \{0, 1\}$ as follows: $f(u) = 0, f(v_i) = \begin{cases} 0 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 1 & \text{if } i \equiv 0, 3 \pmod{4}, \end{cases}$ $f(v_i v_{i+1}) = \begin{cases} 1 & \text{if } i \text{ is odd,} \\ 0 & \text{if } i \text{ is even,} \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases}$ $f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{bmatrix} \\ f(uv_i) = f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{bmatrix} \\ f(uv_i) = f(uv_i) = \begin{cases} 1 & \text{if } i \equiv 0, d_i + 1 \end{cases} \\ f(uv_i) = f(uv_i) = f(uv_i) = f(uv_i) = f(uv_i) = f(uv_$

Theorem 2.7. The graph mW_{4t+3} is TMC if and only if m is even.

Proof. Let $G = mW_{4t+3}$ and n = 4t + 3. Let $V(G) = \{u_j, v_i^j | 1 \le i \le n \text{ and } 1 \le j \le m\}$ and $E(G) = \{u_j v_i^j | 1 \le i \le n, 1 \le j \le m\} \cup \{v_i^j v_{i+1}^j | 1 \le i < n, 1 \le j \le m\} \cup \{v_n^j v_1^j | 1 \le j \le m\}$. Clearly, p = |V(G)| = m(n+1) and q = |E(G)| = 2mn so that p+q = m(3n+1). Necessity follows from Theorem 5 and for sufficiency we assume that m is even. Define $f : V(G) \cup E(G) \to \{0, 1\}$ as follows: **Case i.** $j \equiv 1 \pmod{2}$.

$$\begin{aligned} f(u_j) &= f(v_n^j v_1^j) = 0, \ f(v_i^j) = \begin{cases} 0 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 1 & \text{if } i \equiv 0, 3 \pmod{4}, \end{cases} \\ f(u_j v_i^j) &= \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 0 & \text{if } i \equiv 0, 3 \pmod{4} \end{cases} \text{ and } f(v_i^j v_{i+1}^j) = \begin{cases} 1 & \text{if } i \text{ is odd}, \\ 0 & \text{if } i \text{ is even.} \end{cases} \\ \\ \mathbf{Case \ ii. } j \equiv 0 \pmod{2}. \end{aligned}$$

$$f(u_j) = 0, \ f(v_n^j v_1^j) = 1, \ f(v_i^j) = \begin{cases} 0 & \text{if } i \neq 0 \pmod{4}, \\ 1 & \text{if } i \equiv 0 \pmod{4}, \\ 0 & \text{if } i \equiv 0 \pmod{4}, \\ 0 & \text{if } i \equiv 0 \pmod{4}, \end{cases} \text{ and } f(v_i^j v_{i+1}^j) = \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 0 & \text{if } i \equiv 0, 3 \pmod{4}. \end{cases}$$

Clearly, $n_f(0) = n_f(1)$. Hence, mW_{4t+3} is TMC with $C = 1$.

Theorem 2.8. The graph mW_n is TMC if $n \neq 3 \pmod{4}$ and $m \geq 1$.

Proof. Let
$$G = mW_n$$
. Let $V(G) = \{u_j, v_i^j | 1 \le i \le n \text{ and } 1 \le j \le m\}$ and $E(G) = \{u_j v_i^j | 1 \le i \le n, 1 \le j \le m\} \cup \{v_i^j v_{i+1}^j | 1 \le i < n, 1 \le j \le m\}$
 $\cup \{v_n^j v_1^j | 1 \le j \le m\}$. Define $f : V(G) \cup E(G) \to \{0, 1\}$ as follows:
Case i. $n \equiv 0 \pmod{4}$.
Subcase i. $j \equiv 1 \pmod{2}$.

$$\begin{split} f(u_j) &= 0, \ f(v_n^j v_1^j) = 0, \ f(v_i^j) = \begin{cases} 0 & \text{if } i \equiv 1,2 \pmod{4}, \\ 1 & \text{if } i \equiv 0,3 \pmod{4}, \end{cases} \\ f(u_j v_i^j) &= \begin{cases} 1 & \text{if } i \equiv 1,2 \pmod{4}, \\ 0 & \text{if } i \equiv 0,3 \pmod{4} \end{cases} \text{ and } f(v_i^j v_{i+1}^j) = \begin{cases} 1 & \text{if } i \text{ is odd}, \\ 0 & \text{if } i \text{ is even}. \end{cases} \\ Subcase \ ii. \quad j \equiv 0 \pmod{2}. \end{split}$$

$$f(u_j) = 1, \ f(v_n^j v_1^j) = 0, \ f(v_i^j) = f(u_j v_i^j) = \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 0 & \text{if } i \equiv 0, 3 \pmod{4} \end{cases}$$

and $f(v_i^j v_{i+1}^j) = \begin{cases} 1 & \text{if } i \text{ is odd,} \\ 0 & \text{if } i \text{ is even.} \end{cases}$ Thus, $n_f(0) = n_f(1)$ if

Thus, $n_f(0) = n_f(1)$ if m is even and $n_f(0) = n_f(1) + 1$ if m is odd. Case ii. $n \equiv 1 \pmod{4}$.

$$\begin{aligned} f(u_j) &= 0, \ f(v_n^j v_1^j) = 1, \ f(v_i^j) = \begin{cases} 0 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 1 & \text{if } i \equiv 0, 3 \pmod{4}, \end{cases} \\ f(u_j v_i^j) &= \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 0 & \text{if } i \equiv 0, 3 \pmod{4} \end{cases} \\ \text{and } f(v_i^j v_{i+1}^j) &= \begin{cases} 1 & \text{if } i \text{ is odd}, \\ 0 & \text{if } i \text{ is even.} \end{cases} \\ \text{Clearly, } n_f(0) &= n_f(1). \end{aligned}$$

Case iii. $n \equiv 2 \pmod{4}$. Subcase i. $j \equiv 1 \pmod{2}$.

$$\begin{split} f(u_j) &= 0, \, f(v_n^j v_1^j) = 1, \, f(v_i^j) = \begin{cases} 0 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 1 & \text{if } i \equiv 0, 3 \pmod{4}, \end{cases} \\ f(u_j v_i^j) &= \begin{cases} 1 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 0 & \text{if } i \equiv 0, 3 \pmod{4} \end{cases} \\ \text{and } f(v_i^j v_{i+1}^j) &= \begin{cases} 1 & \text{if } i \text{ is odd,} \\ 0 & \text{if } i \text{ is even.} \end{cases} \\ Subcase \ ii. \quad j \equiv 0 \pmod{2}. \end{split}$$

$$f(u_j) = f(v_n^j v_1^j) = 1, \ f(v_i^j) = f(u_j v_i^j) = \begin{cases} 0 & \text{if } i \equiv 1, 2 \pmod{4}, \\ 1 & \text{if } i \equiv 0, 3 \pmod{4} \end{cases}$$

and $f(v_i^j v_{i+1}^j) = \begin{cases} 1 & \text{if } i \text{ is odd}, \\ 0 & \text{if } i \text{ is even.} \end{cases}$

Clearly,

 $n_f(0) = n_f(1)$ if *m* is even and $n_f(1) = n_f(0) + 1$ if *m* is odd. Hence, mW_n is TMC with C = 1.

Theorem 2.9. The graph $C_n + \overline{K}_{2m+1}$ is TMC if and only if $n \not\equiv 3 \pmod{4}$.

 $\begin{array}{l} Proof. \ \text{Let} \ u_1, u_2, ..., u_n \ \text{be the vertices of } C_n \ \text{and} \ v_1, v_2, ..., v_{2m+1} \ \text{be the vertices of } \overline{K}_{2m+1}.\\ \text{Let} \ G = C_n + \overline{K}_{2m+1}. \ \text{Clearly}, \ p = |V(G)| = n + 2m + 1 \ \text{and} \ q = |E(G)| = 2n(m+1) \\ \text{so that} \ p + q = 2n + (n+1)(2m+1). \ \text{Necessity follows from Theorem 5.} \ \text{For sufficiency},\\ \text{assume that} \ n \not\equiv 3 \ (\text{mod } 4). \ \text{Define} \ f : V(G) \cup E(G) \to \{0,1\} \ \text{as follows:} \\ f(u_i) = \begin{cases} 0 & \text{if} \ i \equiv 0 \ (\text{mod } 4), \\ 1 & \text{if} \ i \not\equiv 0 \ (\text{mod } 4), \end{cases} \ f(v_j) = \begin{cases} 0 & \text{if} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ m+1 < j \leq 2m+1, \\ 1 & \text{if} \ m+1 < j \leq 2m+1, \end{cases} \\ f(u_i u_{i+1}) = \begin{cases} 0 & \text{if} \ i \equiv 0, 3 \ (\text{mod } 4), \\ 1 & \text{elsewhere}, \end{cases} \ f(u_n u_1) = \begin{cases} 0 & \text{if} \ n \equiv 0 \ (\text{mod } 4), \\ 1 & \text{elsewhere}, \end{cases} \\ f(u_i v_j) = \begin{cases} 0 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ m+1 < j \leq 2m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1, \\ 1 & \text{if} \ i \equiv 0 \ (\text{mod } 4) \ \text{and} \ 1 \leq j \leq m+1. \end{cases} \\ \text{Thus,} \\ n_f(0) = n_f(1) + 1 \quad \text{if} \ n \equiv 0 \ (\text{mod } 4) \end{aligned}$

 $n_f(0) = n_f(1) + 1 \quad \text{if } n \equiv 0 \pmod{4}, \\ n_f(0) = n_f(1) \qquad \text{if } n \equiv 1 \pmod{4} \\ \text{and} \quad n_f(0) = n_f(1) - 1 \quad \text{if } n \equiv 2 \pmod{4}.$

Hence, G is TMC with C = 1.

Theorem 2.10. The graph $C_{2n+1} \odot \overline{K}_m$ is TMC if and only if m is odd.

Proof. Let $G = C_{2n+1} \odot \overline{K}_m$. Necessity follows from Theorem 5. For sufficiency, assume that m is odd. If we assign 0 to all the edges of G and 1 to all the vertices of G then we get C = 0. If we assign 1 to all the edges of G and 0 to all the vertices of G then we get C = 1. In either case, $|n_f(0) - n_f(1)| = 0$. Clearly, G is TMC.

Theorem 2.11. The disjoint union of $K_{1,m}$ and $K_{1,n}$ is TMC if and only if m or n is even.

Proof. Let $G = K_{1,m} \cup K_{1,n}$. Let c_1 and c_2 be the central vertices of $K_{1,m}$ and $K_{1,n}$ respectively. Let $u_1, u_2, ..., u_m$ be the pendant vertices of $K_{1,m}$ and $v_1, v_2, ..., v_n$ be those of $K_{1,n}$. Clearly, p = |V(G)| = m + n + 2 and q = |E(G)| = m + n so that p + q = 2(m + n + 1). Necessity follows from Theorem 1. For sufficiency, assume m is even. Define $f: V(G) \cup E(G) \to \{0, 1\}$ as follows: **Case i.** n is even.

 $f(c_1) = 0, \ f(c_2) = 1, \ f(u_i) = 1, \ f(c_1u_i) = 0 \text{ for } 1 \le i \le m \text{ and } f(v_j) = f(c_2v_j) = \begin{cases} 0 \text{ if } 1 \le j \le \frac{n}{2}, \\ 1 \text{ if } \frac{n}{2} < j \le n. \end{cases}$ Case ii. *n* is odd.

$$f(c_1) = f(c_2) = 1, f(u_i) = \begin{cases} 1 & \text{if} \quad 1 \le i \le \frac{m}{2}, \\ 0 & \text{if} \quad \frac{m}{2} < i \le m. \end{cases}$$

$$f(v_j) = f(c_2v_j) = \begin{cases} 1 & \text{if} \quad 1 \le j \le \frac{n-1}{2}, \\ 0 & \text{if} \quad \frac{n-1}{2} < j \le n. \end{cases}$$

Clearly, $n_f(0) = n_f(1)$. Thus, G is TMC with $C = 1$.

References

 I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987), 201–207.

- [2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22(2002), 247–258.
- [3] F. Harary, *Graph Theory*, Addison-Wesley Publishing Co., 1969.
- [4] P. Jeyanthi, N. Angel Benseera and M.Immaculate Mary, On totally magic cordial labeling, SUT Journal of Mathematics, 49 (1) (2013), 13–18.
- [5] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union of *n* copies of a graph, *Opuscula Mathematica*, **34** (1) (2014), 115–122.

P. Jeyanthi / Journal of Algorithms and Computation 46 (2015) PP. 1 - 8

8

[6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (4) (1970), 451–461.