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ABSTRACT ARTICLE INFO

A graph G is said to have a totally magic cordial la-

beling with constant C if there exists a mapping f :

V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡
C (mod 2) for all ab ∈ E(G) and |nf(0)− nf(1)| ≤ 1,

where nf (i) (i = 0, 1) is the sum of the number of ver-

tices and edges with label i. In this paper, we give a

necessary condition for an odd graph to be not totally

magic cordial and also prove that some families of graphs

admit totally magic cordial labeling.
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1 Introduction

All graphs in this paper are finite, simple and undirected. The graph G has vertex

set V = V (G) and edge set E = E(G) and we write p for |V | and q for |E|. A general

reference for graph theoretic notions is [3]. The concept of cordial labeling was introduced

by Cahit [1]. A binary vertex labeling f : V (G) → {0, 1} induces an edge labeling

∗Corresponding author. E-mail: jeyajeyanthi@rediffmail.com
†Email:angelbenseera@yahoo.com

Journal of Algorithms and Computation 46 (2015) PP. 1 - 8



2 P. Jeyanthi / Journal of Algorithms and Computation 46 (2015) PP. 1 - 8

f ∗ : E(G) → {0, 1} defined by f ∗(uv) = |f(u)− f(v)|. Such labeling is called cordial if

the conditions |vf(0)− vf(1)| ≤ 1 and |ef∗(0)− ef∗(1)| ≤ 1 are satisfied, where vf (i) and

ef∗(i)(i = 0, 1) are the number of vertices and edges with label i, respectively. A graph is

called cordial if it admits a cordial labeling.

Kotzig and Rosa introduced the concept of edge-magic total labeling in [6]. A bijection

f : V (G) ∪ E(G) → {1, 2, 3, ..., p+ q} is called an edge-magic total labeling of G if

f(x) + f(xy) + f(y) is constant (called the magic constant of f) for every edge xy of G.

The graph that admits this labeling is called an edge-magic total graph.

The notion of totally magic cordial (TMC) labeling is due to Cahit [2] as a modification

of edge-magic total labeling and cordial labeling. A graph G is said to have totally magic

cordial labeling with constant C if there exists a mapping f : V (G)∪E(G) → {0, 1} such

that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0)− nf(1)| ≤ 1, where

nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. A graph that

admits a TMC labeling is called a TMC graph.

In [4], it was proved that the complete graph Kn is TMC if and only if√
4k + 1 has an integer value when n = 4k√
k + 1 or

√
k has an integer value when n = 4k + 1√

4k + 5 or
√
4k + 1 has an integer value when n = 4k + 2√

k + 1 has an integer value when n = 4k + 3. Also it was proved that all trees, cycles

(n ≥ 3), friendship graph, flower graph and ladder graph Ln(n ≥ 2) are TMC.

In [5], totally magic cordial labeling of one-point union of n-copies of cycles, complete

graphs and wheels were established.

An odd graph is a graph whose vertices are of odd degree. An odd graph must have an

even number of vertices.

We use the following definitions in the subsequent section:

Definition 1.1. A wheel graph Wn is obtained from a cycle Cn by adding a new vertex

and joining it to all the vertices of the cycle by an edge, then the new edges are called

spokes of the wheel.

Definition 1.2. Ladder graph Ln(n ≥ 2) is a product graph P2×Pn with 2n vertices and

3n− 2 edges.

Definition 1.3. A fan graph Fn is obtained from a path Pn by adding a new vertex and

joining it to all the vertices of the path by an edge.

Definition 1.4. The graph mWn is the disjoint union of m copies of Wn.

Definition 1.5. The join of graphs G1 and G2 is a graph G1 + G2, with vertex set

V (G1) ∪ V (G2) and edge set consisting of edges of G1 and G2 and all the edges joining

V (G1) and V (G2).
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Definition 1.6. The Corona G1 ⊙ G2 of two graphs G1 and G2 is defined as the graph

obtained by taking one copy of G1 (which has p1 vertices) and p1 copies of G2 and then

joining ith vertex of G1 to every vertices in the ith copy of G2.

2 Main Results

In this section, we give a necessary condition for an odd graph to be not totally magic

cordial and also prove that some families of graphs admit totally magic cordial labeling.

Theorem 2.1. Let G1(p1, q1), G2(p2, q2) be two TMC graphs with C = 0. If p1 + q1 and

p2 + q2 are even and |pi − 2mi| ≤ 1, where mi is the number of vertex labeled with 0 in

Gi, i = 1, 2, then G1 +G2 is TMC.

Proof. Let f and g be TMC labelings of G1 and G2 respectively with C = 0. Assume

that p1 + q1 = 2m and p2 + q2 = 2n. Then nf(0) = nf (1) = m and ng(0) = ng(1) = n.

Define h : V (G1 + G2) ∪ E(G1 + G2) → {0, 1} as follows: For v ∈ V (G1 + G2), h(v) =
{

f(v) if v ∈ V (G1),

g(v) if v ∈ V (G2)
and for uv ∈ E(G1 +G2),

h(uv) =



















f(uv) if uv ∈ E(G1),

g(uv) if uv ∈ E(G2),

0 if f(u) = 0 and g(v) = 0 or f(u) = 1 and g(v) = 1,

1 if f(u) = 0 and g(v) = 1 or f(u) = 1 and g(v) = 0.

Now nh(0) = nf (0) + ng(0) +m1m2 + (p1 −m1)(p2 −m2) and nh(1) = nf (1) + ng(1) +

m1(p2−m2)+m2(p1−m1). Therefore, |nh(0)− nh(1)| ≤ |nf (0)− nf (1)|+|ng(0)− ng(1)|+
|(p1 − 2m1)(p2 − 2m2)|, implies that

|nh(0)− nh(1)| ≤ |(p1 − 2m1)| |(p2 − 2m2)|. Thus, |nh(0)− nh(1)| ≤ 1 whenever

|p1 − 2m1| ≤ 1 and |p2 − 2m2| ≤ 1. Therefore, h is a TMC labeling of G1+G2 and hence,

G1 +G2 is TMC.

Corollary 2.2. If Gi(pi, qi), i = 1, 2, 3, ..., n are TMC graphs with C = 0 such that pi+qi,

i = 1, 2, 3, ..., n are even,and |pi − 2mi| ≤ 1, where mi is the number of vertices labeled

with 0 in Gi, i = 1, 2, ..., n, then G1 +G2 + ...+Gn is TMC.

Theorem 2.3. If G is an edge magic total graph, then G is TMC.

Proof. Let f be an edge magic total labeling of a graph G with p vertices and q edges.

Define g : V (G) ∪ E(G) → {0, 1} by g(v) ≡ f(v) (mod 2) if v ∈ V (G) and g(e) ≡
f(e) (mod 2) if e ∈ E(G). Since there are exactly

⌈

p+q

2

⌉

odd integers and
⌊

p+q

2

⌋

even

integers in the set {1, 2, 3, ..., p+ q} we have, |nf (0)− nf (1)| ≤ 1. Therefore, G is TMC.

Theorem 2.4. Let G be an odd graph with p+ q ≡ 2 (mod 4). Then G is not TMC.
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Proof. Assume that G is TMC with C = 0 or 1 and let f be a TMC labeling of G. Thus,

for any edge ab ∈ E(G), f(a)+f(b)+f(ab) ≡ C (mod 2) and |nf (0)− nf (1)| ≤ 1. As there

are an even number of edges, summing over all the edges we get,
∑

a∈V (G)

deg (a) f (a) +

∑

ab∈E(G)

f (ab) ≡ 0 (mod 2). Since degree of each vertex is odd, nf (1) =
∑

a∈V (G)

f (a) +

∑

ab∈E(G)

f (ab) ≡ 0 (mod 2). Also, since |nf (0)− nf (1)| ≤ 1, we cannot have nf (0)+nf(1) =

p+ q ≡ 2 (mod 4).

Theorem 2.5. The fan graph Fn is TMC for n ≥ 2.

Proof. Let V (Fn) = {u, vi|1 ≤ i ≤ n} and E(Fn) = {vivi+1|1 ≤ i < n} ∪ {uvi|1 ≤ i ≤ n}.
Define f : V (Fn) ∪ E(Fn) → {0, 1} as follows:

f(u) = 0, f(vi) =

{

0 if i ≡ 1, 2 (mod 4),

1 if i ≡ 0, 3 (mod 4),
f(vivi+1) =

{

1 if i is odd,

0 if i is even
and f(uvi) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4).
Clearly, nf (0) = nf(1) if n is even and nf (0) = nf (1) + 1 if n

is odd. Hence, the fan graph Fn for n ≥ 2 is TMC with C = 1 .

Theorem 2.6. The wheel graph Wn(n ≥ 3) is TMC if and only if n 6≡ 3(mod 4).

Proof. Let V (Wn) = {u, vi|1 ≤ i ≤ n} andE(Wn) = {vivi+1|1 ≤ i < n}∪{uvi|1 ≤ i ≤ n}∪
{vnv1}. Clearly, p = |V (Wn)| = n + 1 and q = |E(Wn)| = 2n so that p + q = 3n + 1.

Necessity follows from Theorem 5 and for sufficiency we assume that n 6≡ 3 (mod 4).

Define f : V (Wn) ∪ E(Wn) → {0, 1} as follows:

f(u) = 0, f(vi) =

{

0 if i ≡ 1, 2 (mod 4),

1 if i ≡ 0, 3 (mod 4),
f(vivi+1) =

{

1 if i is odd,

0 if i is even,
f(uvi) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4),
and f(vnv1) =

{

0 if n ≡ 0 (mod 4),

1 if n ≡ 1, 2 (mod 4).
Clearly,

nf(0) = nf(1) + 1 if n ≡ 0 (mod 4),

nf(0) = nf(1) if n ≡ 1 (mod 4)

and nf(0) = nf(1)− 1 if n ≡ 2 (mod 4).
Thus, f is a TMC labeling of Wn with C = 1.

Theorem 2.7. The graph mW4t+3 is TMC if and only if m is even.

Proof. Let G = mW4t+3 and n = 4t + 3. Let V (G) = {uj, v
j
i |1 ≤ i ≤ n and

1 ≤ j ≤ m} and E(G) = {ujv
j
i |1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {vji vji+1|1 ≤ i < n,

1 ≤ j ≤ m} ∪ {vjnvj1|1 ≤ j ≤ m}. Clearly, p = |V (G)| = m(n+ 1) and q = |E(G)| = 2mn

so that p+q = m(3n+1). Necessity follows from Theorem 5 and for sufficiency we assume

that m is even. Define f : V (G) ∪ E(G) → {0, 1} as follows:

Case i. j ≡ 1 (mod 2).
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f(uj) = f(vjnv
j
1) = 0, f(vji ) =

{

0 if i ≡ 1, 2 (mod 4),

1 if i ≡ 0, 3 (mod 4),

f(ujv
j
i ) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4)
and f(vji v

j
i+1) =

{

1 if i is odd,

0 if i is even.
Case ii. j ≡ 0 (mod 2).

f(uj) = 0, f(vjnv
j
1) = 1, f(vji ) =

{

0 if i 6≡ 0 (mod 4),

1 if i ≡ 0 (mod 4),

f(ujv
j
i ) =

{

1 if i 6≡ 0 (mod 4),

0 if i ≡ 0 (mod 4)
and f(vji v

j
i+1) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4).
Clearly, nf(0) = nf (1). Hence, mW4t+3 is TMC with C = 1.

Theorem 2.8. The graph mWn is TMC if n 6≡ 3 (mod 4) and m ≥ 1.

Proof. Let G = mWn. Let V (G) =
{

uj, v
j
i |1 ≤ i ≤ n and 1 ≤ j ≤ m

}

and E(G) =
{

ujv
j
i |1 ≤ i ≤ n, 1 ≤ j ≤ m

}

∪
{

v
j
i v

j
i+1|1 ≤ i < n, 1 ≤ j ≤ m

}

∪
{

vjnv
j
1|1 ≤ j ≤ m

}

. Define f : V (G) ∪ E(G) → {0, 1} as follows:

Case i. n ≡ 0 (mod 4).

Subcase i. j ≡ 1 (mod 2).

f(uj) = 0, f(vjnv
j
1) = 0, f(vji ) =

{

0 if i ≡ 1, 2 (mod 4),

1 if i ≡ 0, 3 (mod 4),

f(ujv
j
i ) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4)
and f(vji v

j
i+1) =

{

1 if i is odd,

0 if i is even.
Subcase ii. j ≡ 0 (mod 2).

f(uj) = 1, f(vjnv
j
1) = 0, f(vji ) = f(ujv

j
i ) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4)

and f(vji v
j
i+1) =

{

1 if i is odd,

0 if i is even.

Thus, nf (0) = nf (1) if m is even

and nf (0) = nf (1) + 1 if m is odd.
Case ii. n ≡ 1 (mod 4).

f(uj) = 0, f(vjnv
j
1) = 1, f(vji ) =

{

0 if i ≡ 1, 2 (mod 4),

1 if i ≡ 0, 3 (mod 4),

f(ujv
j
i ) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4)

and f(vji v
j
i+1) =

{

1 if i is odd,

0 if i is even.
Clearly, nf(0) = nf (1).
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Case iii. n ≡ 2 (mod 4).

Subcase i. j ≡ 1 (mod 2).

f(uj) = 0, f(vjnv
j
1) = 1, f(vji ) =

{

0 if i ≡ 1, 2 (mod 4),

1 if i ≡ 0, 3 (mod 4),

f(ujv
j
i ) =

{

1 if i ≡ 1, 2 (mod 4),

0 if i ≡ 0, 3 (mod 4)

and f(vji v
j
i+1) =

{

1 if i is odd,

0 if i is even.
Subcase ii. j ≡ 0 (mod 2).

f(uj) = f(vjnv
j
1) = 1, f(vji ) = f(ujv

j
i ) =

{

0 if i ≡ 1, 2 (mod 4),

1 if i ≡ 0, 3 (mod 4)

and f(vji v
j
i+1) =

{

1 if i is odd,

0 if i is even.
Clearly,

nf (0) = nf(1) if m is even

and nf (1) = nf(0) + 1 if m is odd.
Hence, mWn is TMC with C = 1.

Theorem 2.9. The graph Cn +K2m+1 is TMC if and only if n 6≡ 3 (mod 4).

Proof. Let u1, u2, ..., un be the vertices of Cn and v1, v2, ..., v2m+1 be the vertices of K2m+1.

Let G = Cn +K2m+1. Clearly, p = |V (G)| = n + 2m + 1 and q = |E(G)| = 2n(m + 1)

so that p+ q = 2n+ (n+ 1)(2m+ 1). Necessity follows from Theorem 5. For sufficiency,

assume that n 6≡ 3 (mod 4). Define f : V (G) ∪ E(G) → {0, 1} as follows:

f(ui) =

{

0 if i ≡ 0 (mod 4),

1 if i 6≡ 0 (mod 4),
f(vj) =

{

0 if 1 ≤ j ≤ m+ 1,

1 if m+ 1 < j ≤ 2m+ 1,

f(uiui+1) =

{

0 if i ≡ 0, 3 (mod 4),

1 elsewhere,
f(unu1) =

{

0 if n ≡ 0 (mod 4),

1 elsewhere,

and f(uivj) =



















0 if i ≡ 0 (mod 4) and m+ 1 < j ≤ 2m+ 1

or i 6≡ 0 (mod 4) and 1 ≤ j ≤ m+ 1,

1 if i ≡ 0 (mod 4) and 1 ≤ j ≤ m+ 1

or i 6≡ 0 (mod 4) and m+ 1 < j ≤ 2m+ 1.
Thus,

nf(0) = nf (1) + 1 if n ≡ 0 (mod 4),

nf(0) = nf (1) if n ≡ 1 (mod 4)

and nf(0) = nf (1)− 1 if n ≡ 2 (mod 4).
Hence, G is TMC with C = 1.

Theorem 2.10. The graph C2n+1 ⊙Km is TMC if and only if m is odd.
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Proof. Let G = C2n+1 ⊙Km. Necessity follows from Theorem 5. For sufficiency, assume

that m is odd. If we assign 0 to all the edges of G and 1 to all the vertices of G then we

get C = 0. If we assign 1 to all the edges of G and 0 to all the vertices of G then we get

C = 1. In either case, |nf (0)− nf (1)| = 0. Clearly, G is TMC.

Theorem 2.11. The disjoint union of K1,m and K1,n is TMC if and only if m or n is

even.

Proof. Let G = K1,m ∪ K1,n. Let c1 and c2 be the central vertices of K1,m and K1,n

respectively. Let u1, u2, ..., um be the pendant vertices of K1,m and v1, v2, ..., vn be those

of K1,n. Clearly, p = |V (G)| = m + n + 2 and q = |E(G)| = m + n so that p + q =

2(m + n + 1). Necessity follows from Theorem 1. For sufficiency, assume m is even.

Define f : V (G) ∪ E(G) → {0, 1} as follows:

Case i. n is even.

f(c1) = 0, f(c2) = 1, f(ui) = 1, f(c1ui) = 0 for 1 ≤ i ≤ m and f(vj) = f(c2vj) =
{

0 if 1 ≤ j ≤ n
2
,

1 if n
2
< j ≤ n.

Case ii. n is odd.

f(c1) = f(c2) = 1,f(ui) = f(c1ui) =

{

1 if 1 ≤ i ≤ m
2
,

0 if m
2
< i ≤ m.

f(vj) = f(c2vj) =

{

1 if 1 ≤ j ≤ n−1
2
,

0 if n−1
2

< j ≤ n.

Clearly, nf(0) = nf (1). Thus, G is TMC with C = 1.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars

Combin., 23 (1987), 201–207.

[2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory,

22(2002), 247–258.

[3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.

[4] P. Jeyanthi, N. Angel Benseera and M.Immaculate Mary, On totally magic cordial

labeling, SUT Journal of Mathematics, 49 (1) (2013), 13–18.

[5] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union

of n copies of a graph, Opuscula Mathematica, 34 (1) (2014), 115–122.



8 P. Jeyanthi / Journal of Algorithms and Computation 46 (2015) PP. 1 - 8

[6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (4)

(1970), 451–461.


