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ABSTRACT ARTICLE INFO

Cellular automata are simple mathematical idealizations
of natural systems. They consist of a lattice of discrete
identical sites, each site taking on a finite set of, say, inte-
ger values. Over the years, scientists have been trying to
investigate the computational capabilities of cellular au-
tomata by limiting the dimension, neighborhood radius,
and the number of states. In this article, we represent a
novel implementation of combinational logic circuits us-
ing nearest-neighbor one-dimensional four-state cellular
automata (CA). The novelty behind the proposed model
is the reduction of the required number of states and yet
being able to implement combinational logic-circuits in
the conventional CA fashion. This can open a new win-
dow to the computation using cellular automata.
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1 Introduction

Cellular automata A is formally a tuple (d, S,N, f), where d is the dimension of space, S
is a finite set of states, N a finite subset of Zd is the neighborhood, and f : SN → S
is the local rule or transition function of the automaton. A configuration of a cel-
lular automaton is a coloring of the space by S, which is an element of SZ . The
global rule G : SZ

d → SZ
d

of a cellular automaton maps a configuration c ∈ SZd
to

the configuration G(c) obtained from applying f uniformly in each cell: for all position
z ∈ Zd, G(c)(z) = f(c(z + v1), ..., c(z + vk)) where N = {v1, , vk}. A space-time diagram
of a given cellular automaton is a mapping ∆ ∈ SN×Zd

such that for all time step t ∈ N,
∆(t+ 1) = G(∆(t)) [24]. In other words, cellular automaton (CA) is discrete dynamic
systems having a simple structure but with complex self-organizing behaviors [37]. Such
complex behaviors are achieved by encoding computing devices of the universal class of
machines.
Cellular automaton is considered to be used in computer processor implementations, cryp-
tography, error correction, etc. [8, 19, 32]. Theoretically, any cellular automaton can be
defined as discrete n-dimensional lattice of cells. Based on this definition, it can be imag-
ined as one-dimensional, two-dimensional, , n-dimensional CA. The atomic components
of the lattice can be differently shaped: for example, a 2D lattice can be composed of tri-
angles, squares, or hexagons. Usually homogeneity is assumed. All cells are qualitatively
identical [4].
As the simplest class, one-dimensional (1D) automaton is assumed as a sequence of cells
which take on a finite set of possible values (states) in discrete time steps according to
deterministic and predefined rules involving neighbor cell(s) [36].
Regardless of designing any class of cellular automaton, the main goal is to achieve uni-
versal automata.
According to Davis [11], a universal program Φ is a program that can compute the output
based on the given inputs x1, x2, ..., xn and desired function Ψ(n) as follows:
Φ(n)(x1, x2, ..., xn, y) = Ψ

(n)
ρ (x1, x2, ..., xn) where #(ρ) = y.

In [10,34], universality is the property described as the capability of performing different
tasks with the same underlying construction by just programming them in a different way.
Universal systems are effectively capable of emulating any other system. Although digital
computers are universal, proving that idealized computational systems are universal can
be extremely difficult and technical. Nonetheless, any system that can be translated into
another system, which is known to be universal, must itself be universal. For example,
a universal Turing machine (UTM) is a Turing machine that can simulate an arbitrary
Turing machine on arbitrary input.
Specific universal Turing machines, universal cellular automata (in both one and two
dimensions), and universal cyclic tag systems are known, although the smallest universal
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example is known only in the case of elementary cellular automata [10,34].
Any CA regardless of beig universal or not, leads to diversity of behaviors for which it is
designed. Wolfram classified all CA behaviors in four groups [35]

1. The ones that spatially have homogenous state

2. The ones that have a sequence of simple stable or periodic structures

3. The ones that have chaotic aperiodic behavior

4. The ones with complicated localized structures, some propagating

As being the simplest type of complex machines, universal machines are the sum of all
behaviors.The notion and construction of a universal cellular automaton are as old as the
formal study of the object itself, starting with the work of von Neumann [25] on self-
reproduction in the 1940s, and using cellular automata under suggestions by Ulam [33].
Originally, universality consisted of cells with four orthogonal neighbors and 29 possible
states as proposed by von Neumann [33]. Throughout the years, however, it was shown
that cells consisting of fewer neighbors and less number of possible states would also be
capable of simulating a universal Turing machine. Ollinger reviews such evolution over
time, in detail [25].
Further works based on the idea of von Neumann leads to various improvements and
discussions on the encoding of Boolean circuits, the different organs that compose the
machine and the transmission of signals. Some of these works are included in [1, 5–7, 18,
24,30,31].
As it is mentioned before, construction of a universal CA started with the work of Neu-
mann [12, 26, 28, 33] and continued by others including Codd [9]. Following the principle
of von Neumanns idea on self-reproduction, Codd was able to reduce drastically the com-
plexity of the automaton. Codd's two-dimensional rule used eight states with the von
Neumann neighborhood. Signals were conveyed by pairs of states (an oriented parti-
cle) moving between walls and reacting upon collision. This cellular automaton was also
universal for Boolean circuits and so intrinsically universal [9, 25].
Following the work of Turing, a Turing-universal cellular automaton is an automaton
encompassing computational power of the class of Turing machines, completely. Smith
III simulated such an automaton using CA with the first neighbors and 18 states [29].
However, Turing-universality is not the only reasonable kind of universality which one
might expect from cellular automata [33]. More literally, a machine is computationally
universal if it is able to compute any computable function (indicated as a part of the
entry). This corresponds also to the common approach of the computer, the hardware
is universal and the program to be executed is stored in main memory (like the data to
process), and is part of the input as far as the hardware/operating system is concerned [14].
The Game of Life introduced by Conway [3, 15] is certainly among the most famous
cellular automata and the first rule which is proved that is universal by analysis of a
given rule rather than on purpose construction. A modern exposition of the Game of
Life universality and a proof of its intrinsic universality are presented by Durand [13].
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In [22], it was shown that intrinsic universality of one-dimensional Cellular Automata
for the nearest neighbor is possible by only four states, with a similar proving approach
to [10].
Recent signs of progress are reviewed in the following researches. In [16], the construction
of small and simple two-dimensional reversible cellular automata was improved. Ollinger
used simulation techniques between cellular automata and strong intrinsically universal
cellular automata, showing that it can be constructed with few states (i.e. 6 states) [23].
Cook [10] and Wolfram [34] showed that very small universal cellular automata cannot
be constructed, but rather they have to be obtained by analysis. Cook was able to prove
the Turing-universality of the two-states first-neighbors so-called rule 110 by analyzing
signals generated by the rule and their collisions.
In 2006, Neary and Woods proved the prediction problem of the rule 110 being P-complete
via careful analysis and modification of Turing machines simulation techniques by tag sys-
tems [20]. Banks constructs a family of very small cellular automata (two-dimensional,
von Neumann neighborhood, very symmetric, four to two states) simulating Boolean
circuits in a very simple and modern way (signals moving in wires, Boolean gates on
collisions). He identified and explicitly used the property of intrinsic universality and
gave a transformation to construct relatively small universal one-dimensional cellular au-
tomata with large neighborhoods starting from two-dimensional ones (re-encoding it into
a one-dimensional first-neighbors automaton with 18 states) [33]. Construction of a two-
dimensional four state universal cellular automaton in the spirit of Banks is provided by
Noural and Kashef [21].
The limits of constructed small intrinsically universal cellular automata are converging
towards analyzed cellular automata. Using particles and collisions, the authors in [10,34]
were able to construct a four-state first-neighbors one-dimensional intrinsically universal
cellular automaton. It is shown in [34] that ”AND” and ”NOT” gates can be implemented
by 1D nearest neighbor CA using five states.
In this paper, we offer an improvement to the five-state 1D nearest neighbor CA [34](pages
667-668) by presenting an algorithm that relies on less number of states (four states) for
such cellular automata. In addition, we show that the presented model will be universal in
terms of combinational Boolean circuits. However, the Turing universality of the proposed
CA is an issue that remains open for future studies. in order to take steps towards Turing
universality, the CA should simulate all the bahaviours of the Turing machine including
the memory. The digital circuits fall into two categories of combinational and sequential.
The combinational Boolean circuits are referred as time-independent logic [27], in which
the output is a pure function of the present input only. While for the sequential circuits,
the output depends on the history of the input, as well. In other words, the sequential
logic has memory, while the combinational logic has not.
In order to achieve this, we use NAND and NOR gates, because they are universal gates.
This means that they can simulate any other gates [17]. This paper is organized as
follows. We first present the Definition of the Problem in Section 2. CA rules are covered
in Section 3. Then we will discuss the proposed cellular construction algorithm in Section
4. In Section 5, analysis of the algorithm is covered. Section 6 discusses halting. Section
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Figure 1: Four States of the proposed CA

7, will cover the reduction of the length of the expression. Cell (memory) and time
complexities will be discussed in Section 8, and Section 9 illustrates future work. Finally,
the conclusion is covered in Section 10.

2 Problem Definition

The ideal end to this paper is to construct a computational machine or a computational
decision making machine. The ideal automaton is achieved only when the behavior is
universal. As it is discussed in the previous section, the computational constructions
could be considered universal in several aspects including Turing universality and any
other types of universality such as the one that this paper is following. This paper is
aimed to focus on implementation of a cellular automata which is universal in the scope
of combinational logic circuits. This means that, the proposed CA can implement any
type of combinational logic circuits. Let the proposed CA be named as CLA (i.e. Cellular
Logic Automata). This paper does not claim to propose a Turing-universal CA but claims
that the proposed model (i.e. CLA) can take an effective step towards universality in terms
of logic circuits in the future.

3 CA Rules

According to formal definition, The CA rules as one of main components of CAs, are used
to determine the state of a cell in the next generation based on its own and neighbors
previous states. The CA rules can be categorized into four main groups. These four
groups are commutative, NAND, conversion, and reduction rules. The state denoted by
X represents ”dont-care”, (this notation is considered in formal notations of logic circuits
design [17]) which can be replaced by any of the four possible states (”C” stands for
Commutation/Carry, and ”N” stands for NAND). Since this is the first place that it was
shown, we need to talk about it here.

3.1 Moving Forward Rules

These rules are used to move forward the 0 or 1 values. In order for a forward rule to be
activated, a ”C”-containing cell has to be placed to the right of a (0/1)-containing cell.
In this case, the values of the two cells are exchanged. This Rule is illustrated in Figure
2. In the first image from left, the middle cell contains 0 and its nearest neighbor on the
right hand contains ”C”. Thus the values of these two cells will be exchanged and the
value will go forward eventually. In Figure 2 the case is shown for other possibilities too.
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Figure 2: The Moving Forward Rules

3.2 NAND Rules

The NAND rules are applied when two (0/1)-containing cells are placed adjacent to
one another, regardless of the values of other cells. It is noteworthy that this group of
rules is the only group of rules that need to be changed in case of a NOR-equivalent
implementation. Figure 3 shows the NAND operation. For example, if two neighbor cells
contain 0, the left cell in the next step will take the state 1 ((0 ∧ 0)′ = 1).

Figure 3: The NAND Rules

3.3 Conversion Rules

The NAND operation is executed through conversion rules. The NAND operation does
not require taking into account the status of the state of the front cell, since the (0/1)-
containing cells are adjacent to each other only when the state of the next cell is N. Figure
4 shows the conversion rules and how they work.

Figure 4: The Conversion Rules

3.4 Reduction Rules

As mentioned earlier, a NAND operation is activated only when two adjacent cells contain
0/1 values and the nearest neighbor to the right cell contains N.the execution of NAND
rules might lead to N-containing cells are adjacent to each other. Therefore, the states of
such cells will have to be converted to ”C”. This rule is illustrated in Figure 5.



47 A. Javan / JAC 52 issue 2, December 2020, PP. 41 - 56

Figure 5: The Reduction Rules

4 The Proposed Cellular Construction Algorithm

It is straightforward to show that NAND and NOR gates are universal gates. This is
essentially due to the fact that we can use either of them to implement all digital circuits.
Without loss of generality, here we use the NAND gate to represent Boolean functions.
In this section, we present our proposed Cellular Construction Algorithm in five steps
which will make the logic circuit work. This algorithm forms the logic circuit and shows
how the inputs must be ready for the process. The central logic to this five-step cellular
construction algorithm is to use various cell combinations to indicate the current state of
the system. In other words, the cells are controlled such that each state would represent
a specific function.The steps of the algorithm are shown in algorithm 1 .

Algorithm 1 Cellular Construction Algorithm

Input: Logic Circuit’s Boolean Expression f(x1, x2...xn)
Input: XV = {xi V alues,∀i ∈ 1 . . . n}
Output: Corresponding Cellular Automatas Cells

1: TINf← CovertToTwoInputNAND(f) . Representation of the
Boolean expression in terms of NAND gates. In this step, all AND, OR, and
NOT gates of the Boolean function are converted to two-input NAND gates.

2: POTINf← PostOrder(TINf) . Post-order expression. The resulting function
from step 1 is expressed in terms of variables and NAND symbol (’).

3: Cf← CovertToCells(POTINf) . Expression formatting. At this stage, three
carrier states ”CCC” are added before every variable, while one carrier state ”C” is
added before every NAND symbol (’). We also replace every NAND operator with
the state ”N”. In addition, two ”CN” cells will be added to the end of the CA cells.

4: CA← ReplaceValues(Cf,XV) . Variable initialization. At this stage, all variables
are initialized to either 0 or 1 based on the input values.

5: return CA . The string resulting from the above four-step
algorithm would always consist of a maximum of four different states: States ”0” and
”1” for representing the bits, one state ”N” for representing the NAND operand, and
state ”C” for representing the carrier symbol. Each character of the resulting string
is then placed into an individual cell. Finally, by applying the rules given in section
2, the result of the Boolean expression (Logic circuit) will appear in the second last
cell following by a ”N” cell, while the other cells will contain the state ”C”.

In order to have a better understanding of the proposed CA, here we present the modeling
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of a digital circuit with an example. Consider the Boolean function presented in equation
1.

f(x, y, z) = (x ∧ y′) ∨ (x ∧ z) (1)

The implementation of the equation 1 by two-input NAND gates, will be as equation 2.

CovertToTwoInputNAND(f) = ((x ∧ (y ∧ 1)′)′ ∧ (x ∧ z)′)′ (2)

The post-order representation of the function is achieved by removing the AND symbols
and parentheses, as seen in equation 3.

PostOrder(CovertToTwoInputNAND(f)) = xy1′′xz′′ (3)

Converting the post-order template to cell states shown in equation 4.

C(f) = CCCxCCCyCCC1CNCNCCCxCCCzCNCNCN (4)

Replacing variables by arbitrary values of XV = {xvalue, yvalue, zvalue} = {1, 0, 0} gives us
the equation 5.

CA(C(f), XV ) = CCC1CCC0CCC1CNCNCCC1CCC0CNCNCN (5)

Figure 6 illustrates the starting state of CA, according to 5. The figure 7 shows the next
state of CA. Therefore, the resulting CA that corresponds to the given function will be
as Figure 8.

Figure 6: The CA Cells Corresponding to Function Mentioned in Equation 1.

Figure 7: The Second state of CA Cells Corresponding to Function Mentioned in Equation
1.

The application of the rules described in Section 2 on cell states in each step, yields to
solving the value of the function. The chronological orderings of cell-states for each step
is given in Figure 8.



49 A. Javan / JAC 52 issue 2, December 2020, PP. 41 - 56

As shown in Figure 8, the final value of the given Boolean function will then be stored in
the second last (second right-most) cell, in the halting state of the CA. The CA proposed
in this paper is following the concept of universality proposed by Davis in Section 1. it
is assumed that the proposed CA can compute any combinational logic circuit function
with determined inputs and functions.

5 Analysis

The arrangement of two consecutive cells is exploited in this approach. For example, when
two consecutive cells contain values (or states) of 0 and 1, one can conclude that the first
bit has reached the ”N” state and has remained in that position so that the second bit
is beside it. This arrangement indicates that a cell with the state ”N” is in front of the
two bits; which in turn means that the NAND operation has to be performed on the
aforementioned bits. Hence, we can predict the state of the next cellwithout observing
its actual value. In fact, the NAND rules have been determined by using the same logic.
The reason for placing two carrier states ”CCC” before every variable is the avoidance
of two variables reaching each other before they reach the NAND operator. Each NAND
operation is done in two phase of conversion and reduction, explaining the placement of
three carrier states ”CCC” before every variable. Conversion rules lead to the placement
of the two bits beside the N cell that indicates the end of the NAND operation. Therefore,
it is necessary to place one carrier state ”C” before every ”N” to avoid the placement of
two consecutive ”N” states in the beginning. In the reduction rules, the idea that two
numbers and an ”N” state would mean the end of the operation is used to eliminate the
NAND operands by replacing the ”N” state by the ”C” state.

6 Halting

As discussed earlier in section 4, once the operation is done, the result of the desired
Boolean function will appear in one of the cells and move to the next cell periodically while
all other cells contain the carrier symbol. This process can be enhanced by adding halting
to the procedure in the following way: Two additional cells (C and N) are appended to
the end (right side) of the CA. Upon arrival of the result to these cells, the value of the
cell containing the result shifts one step to the right side and stops rotating. Therefore,
the second last cell right before the cell containing N always contains the result of the
Boolean expression.

7 Reduction of The Length of the Expression

The first step of the CA algorithm converts all gates to their equivalent NAND represen-
tation. In order to further improve the procedure, inversion rules can indeed be replaced
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by a NAND gate feeding the expression and 1, since X’=(X1)’. This technique can sig-
nificantly reduce the length of the expression since the NAND representation is expected
to have terms that are inverse of one another.

8 Cell and Time Complexity

We can compute the number of cells required for implementing the function. This is
explained in the following example. For the case (xy)’, 4 cells are needed for x, 4 for y, 2
for CN, and 2 for the last CN. Thus, the total number of cells is then

4× (Number of Inputs) + 2× (Number of NANDGates) + 2. (6)

In order to obtain the results of the logic circuit in the aforementioned cellular automata,
the time complexity of the logic computations depends on the number of NAND operations
being involved in the leftmost 0/1 bit.

9 Future Works

The modeling of logic circuits using CA is proposed in this paper. However, the minimum
required CA for implementation of logic circuits on the proposed machine is unknown. The
Boolean expressions to be processed are the ones that can be modeled using combinational
universal logic circuits. Thus this model corresponds to the combinational universal logic
circuits.
In Figure 9, the left, middle, and right blocks represent memory cells, logic circuit (Boolean
expression) cells, and cells constraining final result, respectively. In the previous sections,
the simulation of combinational gates is provided. Hereby, we call this machine as the
Cellular Machine. The main question is that how many states are required to model
this Cellular Machine. In order to implement the above machine, the rules have to be
organized in such a way that provided for the Read/Write commands. Additionally, the
rules must implement guiding the result of each block to the next block in the right as well
as performing Read/Write executions on the left memory cell based on the given memory
address. This CA machine cannot model sequential logic circuits. Thus, it is not possible
to model some circuits such as Flip-Flop, etc. which prevents the capability of creating
memory cells. In this model, the memory cells should be apart from logic circuits and
thus there is a need to provide some cells as memory cells on the left side of the logic
circuits part in this machine. If we decide not to use the Flip-Flop to model memory cells,
the minimum number of states and the rules to build up this model still remains an open
problem. The other problem is as follows. In order to build up such a Cellular Machine
with specific states, what sort of physical structures such as atoms, molecules, etc. could
be used so that they would cover the rules and states of this Cellular Machine?
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10 Conclusion

In this work, we showed that the approach presented by Wolfram in [34] scould indeed be
further optimized by eliminating a redundant state. The presented CA rules and cellular
construction algorithm enable us to construct a four-state 1D nearest neighbor CA rather
than a five-state, which is significant, compared to our proposed approach. A similar
approach may be possible by deploying NOR gates instead of NAND gates. Therefore,
CA rules satisfying the four-state requirements are to be designed.
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Figure 8: Time steps in the evolution of the CA corresponding to the function in Equation
1.
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Figure 9: The Computational Logic Circuit Conceptual Model Using Cellular Automata
(Cellular Machine).
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