تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,104,251 |
تعداد دریافت فایل اصل مقاله | 97,210,243 |
برآورد مقادیر تبخیروتعرق در مقیاس حوضه آبریز با استفاده از مدل SWAT و الگوریتم SEBAL | ||
تحقیقات آب و خاک ایران | ||
دوره 52، شماره 1، فروردین 1400، صفحه 175-194 اصل مقاله (2.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.300306.668567 | ||
نویسندگان | ||
نادیا بابائی1؛ مجتبی شوریان* 2؛ علی مریدی3 | ||
1دانشجوی مقطع دکتری رشته مهندسی عمران گرایش مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی | ||
2استادیار دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی (نویسنده مسئول) | ||
3استادیار دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی | ||
چکیده | ||
برآورد تبخیروتعرق واقعی در حوضههای آبریز به منظور استفاده بهینه از منابع آب و بهبود مدیریت حوضهها، امری ضروری است. از جمله روشهای شناختهشدهای که به این مساله میپردازند، مدل هیدرولوژیکی SWAT و الگوریتم سنجش از دور SEBAL هستند. در این مطالعه، در گام اول، مقادیر تبخیروتعرق حوضه آبریز کرخه، در سه سال خشک، نرمال و تر (به ترتیب: 2008، 2012 و 2015)، با استفاده از مدل SWAT واسنجی شده براساس رواناب و عملکرد محصول و الگوریتم SEBAL بهدست آمده است. مدل SWAT با استفاده از 6 ایستگاه هیدرومتری برای دورههای 2009-1993 و 2013-2010، به ترتیب واسنجی و اعتبارسنجی شد که برای دوره واسنجی، مقادیر ضریب تبیین ( R2) بین 45/0 تا 70/0، ضریب نش- ساتکلیف (NS) بین 52/0 تا 67/0 و ریشه میانگین مربعات خطا (RMSE) بین 64/12 تا (m3/s) 02/25 و برای دوره اعتبارسنجی، مقادیر R2 بین 4/0 تا 60/0، NS بین 30/0 تا 56/0 و RMSE بین 08/11 تا (m3/s) 17/23 بوده است. همچنین متوسط عملکرد مشاهداتی و شبیهسازیشده محصول استراتژیک حوضه که گندم است، به ترتیب برابر با 70/4 و 01/5 تن در هکتار بوده است. در ادامه، نتایج الگوریتم SEBAL و مدل SWAT براساس وضعیت سال آبی، با یکدیگر مورد مقایسه قرار گرفتند که همبستگی میان نتایج این دو روش، برای سه سال نرمال، خشک و تر به ترتیب برابر با 74/0، 60/0 و 52/0 بوده است. در گام دوم از این مطالعه، با توجه به دادههای زمینی و با استفاده از تصاویر سنجنده MODIS از ماهواره Terra که دارای قدرت تفکیک زمانی مناسب است و سنجنده OLI از ماهواره Landsat8 که دارای قدرت تفکیک مکانی مناسب است، نتایج الگوریتم SEBAL و محدوده تغییرات پارامترهای اصلی این الگوریتم در دشتهای پلدختر و روانسر، ارائه شده است. دشت روانسر دارای سطح زیر کشت بالاتر و تغییرات توپوگرافی کمتر است. شبیهسازی عملکرد محصول توسط نرمافزار SWAT، در دشت پلدختر نتیجه بهتری بهدست داده است. با توجه به یافتههای این تحقیق، مقادیر تبخیروتعرق مستخرج از الگوریتم SEBAL و مدل SWAT میتوانند نزدیک به مقادیر واقعی تبخیروتعرق در حوضه باشند. | ||
کلیدواژهها | ||
تبخیروتعرق؛ رواناب؛ عملکرد محصول | ||
عنوان مقاله [English] | ||
Estimating Evapotranspiration Values in River Basin Scale Using SWAT Model and SEBAL Algorithm | ||
نویسندگان [English] | ||
Nadia Babaei1؛ Mojtaba Shourian2؛ Ali Moridi3 | ||
1Ph.D Candidate of Water Resources Engineering and Management, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran; | ||
2(Corresponding Author) Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran; | ||
3Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran; | ||
چکیده [English] | ||
Estimating actual evapotranspiration in river basins is necessary to use water resources optimally and to improve river basin management. SWAT hydrologic model and SEBAL remote sensing algorithm are among the known methods which have addressed this issue. In the present study, in the first step, the actual evapotranspiration of Karkheh river basin was estimated in dry, normal, and wet years (2008, 2012, and 2015, respectively), using the SWAT model calibrated based on runoff and crop yield and SEBAL algorithm. SWAT model was calibrated and validated using six hydrometric stations for the periods of 1993-2009 and 2010-2013, respectively, in which the , NS and RMSE values were obtained between 0.45 to 0.7, 0.52 to 0.67 and 12.64 to 25.02 (m3/s) for the calibration period and between 0.4 to 0.6, 0.3 to 0.56 and 11.08 to 23.17 (m3/s) for the validation period, respectively. Further, the average observed and simulated yield of the strategic crop (wheat) in the basin were equal to 4.70 and 5.01 (ton/ha), respectively. In addition, the results of SEBAL algorithm and SWAT model were compared together based on the water year status, which the correlations between the results of those methods were equal to 0.74, 0.60, and 0.52 for normal, dry, and wet years, respectively. In the second step, based on the ground data and MODIS, which has a suitable temporal resolution, and OLI which has a suitable spatial resolution, the results of SEBAL algorithm and the variation ranges of main parameters are presented for Pole-dokhtar and Ravansar plains. Ravansar plain has more cultivation areas and lower topography changes compared to Pole-dokhtar plain. The simulation of crop yield by SWAT gave a better result in Pole-dokhtar plain. Based on the results of this study, the values of evapotranspiration obtained from SEBAL algorithm and SWAT model can be reliable and close to the actual values of evapotranspiration in the river basin. | ||
کلیدواژهها [English] | ||
Evapotranspiration, Runoff, Crop yield | ||
مراجع | ||
Abbaspour, K. C. (2011). User Manual for SWAT-CUP4. SWAT Calibration and Uncertainty Analysis Programs. Swiss Federal Institute of Aquatic Science and Technology. Eawag, Duebendorf. Switzerland, from http://www.eawag.ch. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology. 333 2-4., 413-430. Abedi, G., Eslamian, S., Amiri, M., (2008). Comparison of the four approaches of evapotranspiration estimation with micro lysimiter data in the Isfahan region, In: Proceedings of 2nd National Congress on Irrigation network management, Ahvaz (In farsi). Allen, R., Morse, A., Tasumi, M. (2003). Application of SEBAL for western US water rights regulation and planning. ICID workshop on remote sensing of ET for large regions. Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration Guidelines for computing crop water requirements. FAO irrigation and drainage Paper 56. 11. Arnold, J.G., J.R. Williams, A.D. Nicks, and N.B. Sammons. (1990). SWRRB: Abasin scale simulation model for soil and water resources management.Texas A&M Univ. Press, College Station, TX. Bastiaanssen, W. G., Menenti, M., Feddes, R. A., Holtslag, A. A. (1998a). A remote sensing surface energy balance algorithm for land (SEBAL): 1, Formulation. Journal of Hydrology , 198-212. Bastiaanssen, W. G., Noordman, E. J., Pelgrum, H., Davids, G. (2005). SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. Journal of Irrigation and Drainage Engineering. Bastiaanssen, W., Pelgrum, H., Wang, J., Ma, Y., Moreno, J., Roerink, G., et al. (1998b). A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation. Journal of Hydrology, 213- 229. Beven, K.J., (2001). Rainfall-runoff modeling. the primer. Wiley. Chichester. UK. 361p. Diwakar, S., Kaur, S., Patel, N. (2015). Hydrological modeling in the middle Narmada river basin, india using SWAT model Thesis. Easterling,W.E., Rosenburg, N.J., Mckenney, M.S., Jones, C.A., Dyke, P.T. and Williams, J.R. (1992). Preparing the erosion productivity impact calculator (EPIC) model to simulate crop response to climate change and the direct effects of CO2. Agricultural and forest Meteorology.59:17-34. Faramarzi, M., Abbaspour, K. C., Schulin, R. Yang, H. (2009). Modelling blue and green water resources availability in Iran. Hydrological Processes. 23, 486–501. Faramarzi M., Yang H., Schulin R. Abbaspour K.C. (2010). Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agricultural Water Management, 97:1861-1875. Ganjizadeh, R., Boroumand Nasab, S., Soltani Mohammadi, A., Mirzaei, S. (2013). Evapotranspiration zonation and vegetation factor using satellite images (Case study: Birjand Plain). 12th National Conference on Irrigation and Evaporation Reduction, Kerman (In farsi). Gosain A., Rao S., Srinivasan R. Reddy N.G. (2005). Return flow assessment for irrigation command in the Palleru River basin using SWAT model. Hydrological processes, 19: 673-682. Hadria R., Duchemin B., Lahrouni A., Khabba S., Er‐Raki S., Dedieu G., Chehbouni A. and Olioso A. (2006). Monitoring of irrigated wheat in a semi‐arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency. International Journal of Remote Sensing, 27: 1093-1117. Hong, S., Hendrickx, J.M.H. Borchers, B. (2009). Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale. Journal of Hydrology, 370: 122-138. Hooghoudt, S.B. (1940). Bijdrage totde kennis van enige natuurkundige grootheden van de grond. Versl. Landbouwkd. Onderz. 46:515-707. Immerzeel, W., Droogers, P. (2008). Calibration of a distributed hodrological model based on satellite evapotranspiration. Journal of Hydrology, 411- 424. Immerzeel, W., Gaur, A., Droogers, P. (2006). Remote Sensing and hydrological modelling of the Upper Bhima catchment. IWMI Research 3 , International Water Management Institute, Colombo, Sri Lanka. Immerzeel, W., Gaur A. Zwart, S. (2008). Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural water management, 95: 11-24. Jayakrishnan, R., Srinivasan, R., Santhi, C. Arnold, J. G. (2005). Advances in the application of the SWAT model for water resources management. Hydrological Processes. 19, 749–762. Jeimar P.P., Marcela Q. Natalia E. (2011). application of crop growth modeling for the economic valuation of water in agriculture. The 3rd international forum on water and food Tshwane, South Africa. Karimi, A., Farhadi Bansouleh, B., Hesadi, H. (2012). The estimation of actual evapotranspiration on a regional scale using SEBAL algorithm and Landsat images. Iran Irrigation and Drainage Journal, 353-364 (In farsi). Kamali, B., Kouchi, D. H., Yang, H., Abbaspour, K. C., (2017). Multilevel Drought Hazard Assessment under Climate Change Scenarios in Semi-Arid Regions—A Case Study of the Karkheh River Basin in Iran. Water 2017, 9(4), 241. Li, K.Y., Coe, M.T., Ramankutty, N. De Jong, R. (2007). Modeling the hydrological impact of land-change in West Africa, Journal of Hydrology, 337: 258-268. Memarian, H., Hoseini, H., Memarian. H., (2019). Using SWAT and SWAT-CUP for hydrological simulation and uncertainty analysis in arid and semi-arid watersheds (Case study: Zoshk Watershed, Shandiz, Iran). Journal of Rainwater, 7 (2): 35-44. Mianabadi, A., Alizadeh, A., Sanaeinejad, S.H., Ghahraman, B., Davary, K. (2016). Assessment of the SEBAL Algorithm to Estimate Actual Evapotranspiration in Neishaboor-Rokh Watershed Using SWAT Model. Journal of Water Research in Agriculture. 30(4), 525-541 (In farsi). Mir Yaeghub Zadeh, M. (2014). Developing the semi-distributed SWAT model in the evapotranspiration parameter using the energy balance algorithm (SEBAL) Thesis (In farsi). Mir Yaeghub Zadeh, M., Soleimani K., Habibnejad Roshan. M., Shahedi, K., Abbaspour. K., Akhavan. S. (2014). Determination and evaluation of actual evapotranspiration using remote sensing data; Case study: Tamer Watershed, Golestan. Quarterly Journal of Irrigation and Water Engineering, 89-102 (In farsi). Moazenzadeh, R., Ghahreman, B., Arshad, P., Davari, K., (2016). Improving the watershed modeling by integrating main hydrological components in the SWAT model. Iran Water Resources Research, 12(3) 65-79 (In farsi). Mobasheri, M., Khavarian, H. (2004). The analysis of satellite using methods in determining the evapotranspiration amount. Geographic Sciences Journal, 83-98 (In farsi). Mobasheri, M., Khavarian, H., Ziaeian, P., Kamali, Gh. (2005). Estimating actual evapotranspiration using MODIS images and SEBAL algorithms. Geomatics Conference. Tehran: National Mapping Organization (In farsi). Neitsch S.L., Arnold J.G., Kiniry J.R. and Williams J.R. (2011). Soil and water assessment tool theoretical document (version 2009), Texas water resource institute technical report. Nosrati, K., Mohseni Saravi, M., Ahmadi, H., Aghighi, H. (2014). The estimation of evapotranspiration in Taleghan watershed using MODIS images and SEBAL model. Iranian Natural Resources Magazine, 385-398 (In farsi). Output and Results of the "Requirements of the Irrigation of Agricultural and Garden Crop" Design, Ministry of Agriculture and Organization of Meteorology (In farsi). Report of Agricultural Studies (2013). Agricultural Consumption and Needs and Production Drainage, Ministry of Energy (In farsi). Reporting the System Design of Karkheh River Basin (2013). Iran Water and Power Resources Development Company (In farsi). Ruhoff, A., Paz, A., Collischonn, W., Aragao, L., Rocha, H., Malhi, Y. (2012). A MODIS-based energybalance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas. Remote Sens.4 , 703- 725. Sanei Nejad, S., Nouri, S., HashemiNia, S.M. (2011). The estimation of actual evapotranspiration using satellite images in Mashhad region. Water and Soil Journal (Agricultural Science and Technology), 540-547 (In farsi). SEBAL Advanced Training and Users Manual. (2002). Waters Consulting, University of Idaho, WaterWatch Inc. Singh,VP. (1995). “Watershed Modeling” In: Computer Models of Watershed Hydrology. Singh, V.P (ed.). Chapter 1, Water ResourcesPublications. Colorado, 1-22. Singh R., Kumar S., Nangare D. Meena M. (2009). Drip irrigation and black polyethylene mulch influence on growth, yield and water-use efficiency of tomato. African Journal of Agricultural Research, 4: 1427-1430. Tasumi, M. Allen, R., Trezza, R. (2008). At-surface albedo from Landsat and MODIS satellites for use in energy balance studies of evapotranspiration. Journal of Hydrology , 51- 63. Trezza, R. & Allen, R. (2003). Crop water requirements from a remote sensing model for thr Snake plain area in Idaho Geoenseñanza, año/vol. 8, número 001 Universidad de los Andes San Cristobal, Venezuela. Geoensenanza, 8: 83-90. Walters, R., Allen, R., Tasumi, M., Trezza, R., Bastiaanssen, W. (2002). SEBAL, Surface Energy Balance Algorithms for Land. Advanced Training and User Manual. Version1. Wei, X., Sritharan, S., Kandiah, R., Osterberg, J., Neale, C., farrow, K., et al. (2012). Implication of SEBAL algorithm with landsat thematic mapper 5 in lower colorado river basin. Remote Sensing and Hydrology , 98- 101. Yaeghub Zadeh, M., Boroumand Nasab, S., Izadpanah, Z., Seyyed Kaboli, H. (2014). Studying the spatial and temporal changes of Taleghan basin by using the remote sensing in semi-arid regions. Water Research in Agriculture, 221-234 (In farsi). Yavari, M., Omidvar, J., Davari, K., Farid Hosseini, A., Inanlou M. (2014). Evaluating the empirical estimation methods of actual evapotranspiration (annual) on a large scale using the evapotranspiration estimated from the SEBAL method in Nishabur plain. Quarterly Journal of Irrigation and Water Engineering, 44-55 (In farsi). Yan Y., Guoqiang W., Jingsha Y. (2006). Groundwater depth simulation based on beijing county-level SWAT application tool. Unpublished manuscript, College of Water Sciences, Beijing Normal University, Beijing, China. Yang, Y., Shang, S., Jiang, L (2012). Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 164: 122-112 Ziaei A.N. and Sepaskhah A. (2003). Model for simulation of winter wheat yield under dryland and irrigated conditions. Agricultural water management, 58: 1-17. | ||
آمار تعداد مشاهده مقاله: 664 تعداد دریافت فایل اصل مقاله: 476 |