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1 Introduction

“Recreational Mathematics” is a broad term that covers many different areas including
games, puzzles, magic, art, and more [31]. Some may have the impression that top-
ics discussed in recreational mathematics in general and recreational number theory, in
particular, are only for entertainment and may not have an application in mathematics,
engineering, or science. As for the mathematics, even the simplest operation in this paper,
i.e. the sum of digits function, has application outside number theory in the domain of
combinatorics [13, 26, 27, 28, 34] and in a seemingly unrelated mathematical knowledge
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domain: topology [21, 23, 15]. Papers about generalizations of the sum of digits function
are discussed by Stolarsky [38]. It also is a surprise to see that another topic of this paper,
i.e. Armstrong numbers, has applications in “data security” [16].
In number theory, functions are usually non-continuous. This inhibits solving equations,
for instance, by application of the contraction mapping principle because the latter is
normally for continuous functions. Based on this argument, questions about solving
number-theoretic equations ramify to the following:

1. Are there any solutions to an equation?

2. If there are any solutions to an equation, then are finitely many solutions?

3. Can all solutions be found in theory?

4. Can one in practice compute a full list of solutions?

The main purpose of this paper is to investigate these constructive (or algorithmic) prob-
lems by the fixed points of some special functions of the form f : N → N. We confine
computations to the digits of a natural number n in base b (more interestingly in base
b = 10). Answers to the questions above are exemplified by proofs of theorems on some
questions and equations in recreational number theory. The term recreation is kept here
because of our bias to consider digits in the domain of f .
The main trait of recreational questions in number theory is the puzzle aspect: if only a
few rare solutions to an algorithmically easy question exist, then it often is recreational.
Number theory, however, poses problems that cover universal properties, for instance,
about sums and products in finite fields in general [12], or Blomer [11] asks if there exists
a subset of A of N such that every n 6≡ 0, 4, 7 (mod 8) can be represented as the sum
of three squares in A? This has been done by Zöllner [48] for four squares, we have not
found a reference to a full solution of this three squares question. Another illustrative
example of this difference compared to problems in this paper is to find solutions of
n = (p1y1)

2 +(p2y2)
2 +(p3y3)

2 with p1, p2, p3 odd and different primes, as large as possible
such that the main term for the number of representations still dominates the error term
[11]. This professional reasoning about error terms is not done in recreational texts.
We narrow the gap between number theory and recreational number theory in this paper
by adding a tool to find the number of solutions to posed problems for the recreationists. In
view of the above mentioned facts, we give a brief sketch of the contents of this paper: In
Section 2, based on some entertaining examples in Hardy’s book [22] and other resources
[35, 41], we introduce base b F -Hardy’s apology numbers as follows: Let F : N0 → N be
a function, b ∈ N− {1} and ai be a non-negative integer number such that ai ≤ b− 1 for
all 0 ≤ i ≤ m− 1. We say that a natural number n = am−1 · · · a1a0 is a base b F -Hardy’s
apology number if the following equality is satisfied:

H1 : n =
m−1∑
i=0

aib
i =

m−1∑
i=0

F (ai). (F -Hardy’s apology equation)
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Then we show that for a specific F , the cardinality of all F -Hardy’s apology numbers
obtained from the H1 equation mentioned above is finite (see Definition 2.1 and Theorem
2.3.
Let us recall that an n−digit number in base b is called a base-b Armstrong number of
nth order if it is equal to the sum of the nth power of its digits in base b (see Definition
3.1). In Section 3, we discuss Armstrong numbers and their generalization. It happens
that Armstrong numbers have applications in “data security” [9, 8, 16].
If we denote the number of digits of n in base b by Db(n), then in Section 4, we call a
number to be a base b F -Wells number, if n = Db(F (n))(= m), i.e., n is the fixed point
element of the function Db ◦F , where F : N→ N is a function and F (n) =

∑m−1
i=0 aib

i the
representation of F (n) in base b ≥ 2 (see Definition 4.1). In Corollary 4.3, we show that
if F : N→ N is a function, there are finitely many base b F -Wells numbers, if one of the
following statements holds:

1. There is a natural number N such that n ≥ N implies that F (n) ≥ bn.

2. There is a natural number N such that n ≥ N implies that F (n) < bn−1.

Let us recall that if a non-negative integer n has a representation n =
∑m−1

i=0 aib
i in base

b ≥ 2, then the sum of the digits of n is denoted by Sb(n) =
∑m−1

i=0 ai [3, Theorem
6.5.1]. Section 5 is devoted to a generalization of Dudeney numbers. Let F : N → N
be a function and F (n) =

∑m−1
i=0 aib

i be the representation of F (n) in base b ≥ 2. In
Definition 5.1, we call a number n to be a base b F -Dudeney number, if n = Sb(F (n)),
where Sb(F (n)) =

∑m−1
i=0 ai. In Corollary 5.1, we prove that if F : N → N is a function

such that lim
n→+∞

F (n)

b
n−b+1
b−1

= 0, then there are finitely many base b F -Dudeney numbers.

In Section 6, we show that the number of natural numbers which are equal to the sum
of their digits raised to a specific power is finite. In fact, in Theorem 6.1, we prove that
if n is a natural number, Sb(n) is the sum of the digits of the number n in base b, p ≥ 2
is a natural number, and φp : N → N is defined with φp(n) = (Sb(n))p, then the number
of natural numbers satisfying the equality φp(n) = n is finite. Moreover, we show that if
φp(n) = n then n ≤ bp

2
.

This paper is in the continuation of our interest in Algorithms and Computation [1],[2],[24],[33].

2 A Generalization of Hardy’s Apology Numbers

English mathematician, Godfrey Harold Hardy (1877–1947), in his historical book on
mathematics, with the title “A Mathematician’s Apology”, said that “there are just four
numbers [after 1] which are the sums of the cubes of their digits”. Moreover, he said
that “8712 and 9801 are the only four-figure numbers which are integral multiples of their
reversals”, and he also explained that these were not serious theorems, as they were not
capable of any serious generalization [22]. He did not imagine that the same numbers
have become used in encryption [9, 8, 16]. Clifford A. Pickover, in his book [35] on page
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169, defines a number to be factorion, if it is equal to the sum of the factorial values
for each of its digits. Daan van Berkel on page 2 of his paper [41], defines a number to
be Münchhausen in base b if n = am−1 · · · a1a0 =

∑m−1
i=0 aib

i, then n =
∑m−1

i=0 aaii . An
interesting Münchhausen number in base 10 is 3435 = 33 + 44 + 33 + 55, the number that
appears in the title of his paper. On the other hand, we can consider those numbers which
are the sums of the cubes of their 2-grouped digits like the number 165033 which is equal
to 163 + 503 + 333 or 221859 which is equal to 223 + 183 + 593. The title given to his
book reflects Hardy’s modesty to colleagues and the world, as with the Persian “Tarof”
(a Persian traditional modesty to refuse a gift, or benefit even if it is highly wanted).
The tarof in mathematics is explained by Azarang [7]. We believe that Hardy is the first
mathematician to express it and we honor him for it in the title of this paper.
All these entertaining observations and amusing examples may inspire a curious mind
to search for other numbers with similar properties. To this end, we give the following
definition:
Definition 2.1.
Let F : N0 → N be a function, b ∈ N− {1} and ai be a non-negative 1913integer number
such that ai ≤ b−1 for all 0 ≤ i ≤ m−1. We say that a natural number n = am−1 · · · a1a0
is a base b F -Hardy’s apology number if the following equality is satisfied:

H1 : n =
m−1∑
i=0

aib
i =

m−1∑
i=0

F (ai). (F -Hardy’s apology equation)

Moreover, if k ∈ N, we define a natural number n = akm−1 · · · a1a0 to be a base b k-grouped
F -Hardy’s apology number if the following equality holds:

Hk : n =
km−1∑
i=0

aib
i =

m−1∑
i=0

F (aki+k−1 · · · aki+1aki).

(k-grouped F -Hardy’s apology equation)

The main result of this section is to show that for a given function F : N0 → N, the
cardinality of the set of all base b k-grouped F -Hardy’s apology numbers is finite. For
the ease of our argument, first, we give the following lemma:
Lemma 2.2.
For each natural number m, the following statements hold:

1. If m ≥ 7, then 2m−1 −m2 > 0 and 7 is the best lower bound for m such that this
inequality holds.

2. If m ≥ 4, then 3m−1 −m2 > 0 and 4 is the best lower bound for m such that this
inequality holds.

3. If m ≥ 3, then 4m−1 −m2 > 0 and 3 is the best lower bound for m such that this
inequality holds.
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4. If m ≥ 2 and b ≥ 5, then bm−1 −m2 > 0 and 2 is the best lower bound for m such
that this inequality holds.

Proof. (1): The proof is by induction on m ≥ 7. Set am = 2m−1 − m2. Clearly, a7 =
26 − 72 = 15 > 0. Now imagine am > 0 and we prove that am+1 > 0. Since k ≥ 7, we
have that

am+1 − am = 2m − (m+ 1)2 − 2k−1 +m2 = 2m−1 − 2m− 1 > 2m−1 −m2 = am > 0.

This already means that am+1 > 0 and the proof by induction is complete. Note that
a6 = 25 − 62 = 32− 36 = −4.
(2): Set bm = 3m−1 −m2. It is clear that bm > am. So for m ≥ 7, we have that bm > 0.
On the other hand, b6 = 35 − 62 = 207, b5 = 34 − 52 = 56, b4 = 33 − 42 = 11, while
b3 = 32 − 32 = 0 and this is what we wanted to show.
(3): Define cm = 4m−1 −m2. Clearly, cm > bm. So by (2), cm > 0 holds for each m ≥ 4.
But c3 = 42 − 32 = 7, while c2 = 4− 22 = 0.
(4): Set dm = 5m−1 −m2. Obviously by (3), dm > 0 holds for each m ≥ 3. Also, note
that d2 = 5 − 22 = 1, while d1 = 0. Now, define fm = bm−1 −m2, where b ≥ 6. Clearly,
fm > dm for any m ≥ 2 and finally, f1 = 0 and the proof is complete.

Theorem 2.3.
Let F : N0 → N be a function, b ∈ N − {1} and ai be a non-negative integer such that
ai ≤ b−1, for all 0 ≤ i ≤ km−1, where k is a fixed positive integer and m is an arbitrary
positive integer. Set

sk = max{F (0), F (1), F (2), . . . , F ((b− 1) · · · (b− 1)(b− 1)︸ ︷︷ ︸
k−times

)}.

Then the following statements hold:

(H) If akm−1 6= 0, then the following equation has finitely many solutions:

km−1∑
i=0

aib
i =

m−1∑
i=0

F (aki+k−1 · · · aki+1aki).

Moreover, if an algorithm is designed to find all the solutions of the equation mentioned in
the statement (H), then the solutions are needed to be checked for all n =

∑km−1
i=0 aib

i ≤
bkm−1, where m is as follows:

1. If k = 1 and b = 2, then m = max{7, s1}.

2. If k = 1 and b = 3, then m = max{4, s1}.

3. If k = 1 and b = 4, then m = max{3, s1}.

4. If k is arbitrary and b ≥ 5, then m = max{2, sk}.
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Proof. Let sk = max{F (0), F (1), F (2), . . . , F ((b− 1) · · · (b− 1)(b− 1)︸ ︷︷ ︸
k−times

)}. First, we prove

that the statement (H) holds. It is clear that

m−1∑
i=0

F (aki+k−1 · · · aki+1aki) ≤ msk,

while
∑km−1

i=0 aib
i ≥ bkm−1, since akm−1 6= 0. Note that lim bkm−1/ms = +∞, when

m −→ +∞. Consequently, there is a natural number M such that for m ≥ M , we have
that bkm−1 > msk. This means that for such an M , if m ≥M , then we have

km−1∑
i=0

aib
i >

m−1∑
i=0

F (aki+k−1 · · · aki+1aki).

Therefore, the equation mentioned in the statement (H) has finitely many solutions. Now
we go further to prove the other statements of the theorem.
(1): Let m ≥ max{7, s}. By Lemma 2.2, 2m−1−m2 > 0. Also it is clear that 2m−1−ms ≥
2m−1−m2. So for this case, according to the proof of the statement (H), if n is a solution
for Hardy’s Apology Functional, then n ≤ 2m−1.
(2) & (3): By considering Lemma 2.2, the proof of the statements (2) and (3) is similar
to the proof of the statement (1), and therefore it is omitted.
(4): Let m ≥ max{2, s} and b ≥ 5. Then by Lemma 2.2, bm−1−m2 > 0. But bkm−1−ms ≥
bm−1 − m2. Therefore, for this general case, if n is a solution for a k-Hardy’s Apology
Functional, then n ≤ bkm−1.

Example 2.4. Our definition for a base b k-grouped F -Hardy’s apology number is
inspired by the following historical examples.

1. A number is called Münchhausen in base b, if n = am−1 · · · a1a0 =
∑m−1

i=0 aib
i,

then n =
∑m−1

i=0 aaii . Perhaps the most famous Münchhausen number in base 10 is
3435 = 33 + 44 + 33 + 55. For more on Münchhausen numbers, one can refer to the
paper [41] by Daan van Berkel.

2. A number is called factorial in base b, if n = am−1 · · · a1a0 =
∑m−1

i=0 aib
i, then

n =
∑m−1

i=0 ai!. For example, one can easily check that 40585 = 4! + 0! + 5! + 8! + 5!.
Poole [36] proved in an ‘exhaustive’ way that the only factorial numbers in base 10
are 1, 2, 145, 40585. He asked for a better proof method, which is provided in this
paper.

3. A number is said to be subfactorial in base b, if n = am−1 · · · a1a0 =
∑m−1

i=0 aib
i, then

n =
∑m−1

i=0 !ai. Note that the subfactorial of a natural number n, denoted by !n, is
defined as follows:

!n = n!
n∑

i=0

(−1)i/i!.
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An important example for subfactorial numbers is the following:

148349 =!1+!4+!8+!3+!4+!9.

4. A number is d-perfect 1-digit invariant in base b, if n = am−1 · · · a1a0 =
∑m−1

i=0 aib
i,

then n =
∑m−1

i=0 adi . For example, Hardy on page 25 of his famous historical book
on mathematics mentions that “there are just four numbers (after 1) which are the
sums of the cubes of their digits [22]”. He only mentions cubic perfect (3-perfect)
1-digit invariants 153, 370, 371, 407. Quadric perfect 1-digit invariants also exist.
For example, for d = 4, we have 1634 = 14 + 64,+34 + 44 other numbers belonging
to this class are 8208 and 9474. For d = 5, we have 4150, 4151, 54748, 92727, 93084,
and 194979. If d = 6, the only result below n < 106 is 548834. These numbers are
also coined as narcissistic, or Armstrong numbers [29, 43].

5. A number is a dual of a d-perfect 1-digit summative number in base b, if n =
am−1 · · · a1a0 =

∑m−1
i=0 aib

i, then n =
∑m−1

i=0 dai . For example, all such numbers
n < 106 are for d = 3, 12 = 31 + 32. For d = 4, 4624 = 44 + 46 + 42 + 44, 595968 =
45 + 49 + 45 + 49 + 46 + 48. For d > 4 there are no dual d-perfect 1-digit numbers.
Note the difference among use of the variable ‘d’: in previous and next examples
the d is for exponents, while in the current example it is used as the base number.

6. A (k, d)-digit summative number in base b, is n = am−1 · · · a1a0 =
∑m−1

i=0 aib
i, with

n =
∑km−1

i=0 aki+k−1 · · · aki+1aki
d. Examples for b = 10 with k = 2 and d = 3 are

165033 = 163 + 503 + 333, 221859 = 223 + 183 + 593, 341067 = 343 + 103 + 673,
444664 = 443 + 463 + 643, and 487215 = 483 + 723 + 153.

Remark 2.5. Theorem 2.3 is strong because it does not put any condition on F , but it
is quite important to note that it needs k to be a fixed positive integer. The reason for
this is that if we suppose k to be an arbitrary positive integer, then for a specific F , all
k-grouped F -Hardy’s apology numbers obtained from the Hk equation in Theorem 2.3
may have infinitely many solutions. We show this in the next section.

3 Armstrong Numbers and their Generalization

Armstrong numbers have a pretty interesting history. As Lionel Deimel says in [17],
it wasn’t clear who exactly this mysterious Armstrong behind Armstrong numbers is.
Apparently, someone sent an email to Deimel claiming he is the Armstrong. In the email,
he says

“In the mid 1960s – probably around 1966 – I was teaching an elementary
course in Fortran and computing in general at The University of Rochester,
and invented Armstrong Numbers as an exercise for my students. I still have
the original coffee-stained paper that was the master copy for the homework
assignment...”
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and also sent a copy of his paper [6] to Deimel. In it Armstrong defines four types of
Armstrong numbers, from which the generalization of the last one currently is known as
Armstrong numbers :
Definition 3.1.
Suppose that we have an n−digit number in base b. This number is called a base-b
Armstrong number of nth order if it is equal to the sum of the nth power of its digits in
base b.
We can imply from 2.3 that there are finitely many Armstrong numbers in any base b.
This can be verified for small values of b: in [32], Miller and Whalen show that 12, 22,
and 122 are the only Armstrong numbers in base 3 and 130, 131, 203, 223, 313, 332, 1103,
and 3303 are the only Armstrong numbers in base 4.
Example 3.2. There are three base-10 Armstrong numbers of 4th order [43]:

1634 = 14 + 64 + 34 + 44

8208 = 84 + 24 + 04 + 84

9474 = 94 + 44 + 74 + 44.

Weisstein [43] states that D. H. Winter computed [46] the existing 88 Armstrong numbers
in base b = 2, . . . , 16 and they are all of order n ≤ 60. See also [4], or the OEIS database.
The 11− 16 numbers are in sequences A161948 - A161953.
The following proposition is taken from [47] and may serve as an example for encryption
[8] application of Armstrong numbers, e.g. with two keys x and y if brought together
computation should match according to formula (2.1), as executed in a chip of a security
lock.
Proposition 3.3.
There are infinitely many positive integers x = xk−1 . . . x1x0 and y = yk−1 . . . y1y0 (in base
10) such that:

xy = x2 + y2, (3.1)

where xy is the concatenation of x and y. Note the invariance of (3.1) in base b = 10 for
x→ 10k − x, where k is the block length sampled in the numbers.

Proof. A solution to the equation (3.1) is

a = 4, b = 104u, x =
a

17
· (ab− 1), y =

a

17
· (a+ b), (3.2)

where u = 4t + 3, for t ≥ 0. This shows that we have found infinitely many solutions to
the equation (3.1).

Example 3.4. (Some examples for (3.1) in Proposition 3) Easy examples for the equation
(3.1) are:

122 + 332 = 12 33

882 + 332 = 88 33.
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Larger examples for (3.1) are:

94122 + 23522 = 9412 2352

9411764705882 + 2352941176482 = 941176470588 235294117648, (3.3)

and finally,

x = 9411764705882352941176470588 and y = 2352941176470588235294117648. (3.4)

In fact, equations (3.3) and (3.4) are generated by plugging m = 0 and m = 7 in (3.2).
Remark 3.5.
The Fermat prime 17 appears in (3.2), and that happens to be a connection between the
solutions to (3.1) and Fermat primes. In [40], Tito Piezas III conjectured that a similar
solution to (3.2) can be found for other Fermat primes such as 257 and 65537. In other
words, he conjectured that

a = 16, b = 1064u, x = a
257

(ab− 1), y = a
257

(a+ b) (3.5)

a = 256, b = 1016384u, x = a
65537

(ab− 1), y = a
65537

(a+ b) (3.6)

are solutions to (3.1) for all u = 4t+3, t ≥ 0. V. Ponomarenko [40] proved this conjecture.
In the Computational Appendix below is shown that Piezo’s iteration implicitly uses two
consecutive Fermat numbers and can be used to find unwieldy large Narcissistic numbers.
For instance, for the Fermat prime 65537 the numbers x and y each have 100,000 digits
and produce a correct result.
Example 3.6. In the previous example, using the notation of Theorem 2.3, we saw that
if m = 2 is fixed and k is arbitrary, then there are infinitely many solutions to

km−1∑
i=0

aib
i =

m−1∑
i=0

F (aki+k−1 · · · aki+1aki),

where F (x) = x2. The same is true for m = 3 and F (x) = x3. In fact, we can construct
infinitely many solutions for

xyz = x3 + y3 + z3, (3.7)

given one initial solution. For instance, in [42], we see that starting from the initial
solution

153 = 13 + 53 + 33,

we can construct the general solution

1 66 · · · 6︸ ︷︷ ︸
l times

3
+ 5 00 · · · 0︸ ︷︷ ︸

l times

3
+ 3 33 · · · 3︸ ︷︷ ︸

l times

3
= 166 · · · 6500 · · · 0333 · · · 3.

There are many more examples of this kind in [42].
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4 A Generalization of Wells Numbers

David Wells, in his book [44] on page 98, explains that (after n = 1) for n = 22, 23 and
24 only, the number of digits in n! is equal to n. This example motivates us to give the
following general definition. Let, in this paper, the number of digits of n in base b be
denoted by Db(n). It is clear that if n = am−1 · · · a1a0 =

∑m−1
i=0 aib

i is the representation
of the natural number n in base b, then Db(n) = m, by definition. It is easy to see that
Db(n) = b1 + logb(n)c.
Definition 4.1.
Let F : N → N be a function and F (n) =

∑m−1
i=0 aib

i be the representation of F (n) in
base b ≥ 2. We call a number to be a base b F -Wells number, if n = Db(F (n))(= m), i.e.,
n is the fixed point element of the function Db ◦ F .
Proposition 4.2
Let F : N → N be a function. A natural number n is a base b F -Wells number if and
only if bn−1 ≤ F (n) < bn.

Proof. A number n is a base b F -Wells number if and only if n = b1 + logb(F (n))c, which
is equivalent to say that n ≤ 1 + logb(F (n)) < n+ 1 and the proof is complete.

Corollary 4.3
Let F : N→ N be a function. There are finitely many bases b F -Wells numbers if one of
the following statements holds:

1. There is a natural number N such that n ≥ N implies that F (n) ≥ bn.

2. There is a natural number N such that n ≥ N implies that F (n) < bn−1.

Proof. If one of the above conditions holds, then we have at most N − 1 base b F -Wells
numbers.

Example 4.4

1. If F ∈ Q(X) is a positive integer-valued rational function, i.e. F (n) ∈ N for all
n ∈ N, then it is clear that the number of F -Wells numbers is finite. For example,
if F (n) = n4, then it is clear that 10n−1 ≤ n4 < 10n if and only if n = 1, 2.

2. Let F (n) = n!. Then there are finitely many decimal F -Wells numbers and the
proof is as follows: Since n! ≥ e(n/e)n [5, Exercise 10.14 p. 399] and 28/e > 10, it
is clear that if n ≥ 28, then n! ≥ 10n. Therefore, if n is a decimal n!-Wells number,
then n < 28. In fact, a simple computation shows the only n!-Wells numbers are 1,
22, 23, and 24.

3. The only decimal nn-Wells numbers are 1, 8, and 9. Because if n ≥ 10, then
nn ≥ 10n. So, if n is a decimal nn-Wells number, then n < 10, to be checked as
follows:

11 = 1, 22 = 4, 33 = 27, 44 = 256, 55 = 3125, 66 = 46656, 77 = 523543, 88 =
16777216, and 99 = 387420489.
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4. The only decimal !n-Wells numbers in base 10 are n = 24, 25. Note that D10(!23) =
22, while D10(!26) = 27.

5 A Generalization of Dudeney Numbers

Henry Ernest Dudeney (1857–1930) in his book [18] on page 36, introduces some special
numbers with the property that the cube root of these numbers is equal to the sum of
their digits, which is equivalent to say that these numbers are equal to the sum of the
digits of their cube. Today these numbers are called Dudeney numbers. Example of
Dudeney numbers include 512 and 19683, since 3

√
512 = 5 + 1 + 2 = 8 and 3

√
19683 =

1+9+6+8+3 = 27. For a better notation, we recall that if a non-negative integer n has
a representation n =

∑m−1
i=0 aib

i in base b ≥ 2, then the sum of the digits of n is denoted
by Sb(n) =

∑m−1
i=0 ai [3, Theorem 6.5.1].

Definition 5.1.
Let F : N→ N be a function and F (n) =

∑m−1
i=0 aib

i be the representation of F (n) in base
b ≥ 2. We call a number n to be a base b F -Dudeney number, if n = Sb(F (n)), where
Sb(F (n)) =

∑m−1
i=0 ai.

Theorem 5.2.
Let F : N → N be a function and n a base b F -Dudeney number. Then the following
statements hold:

1. F (n) ≥ b
n−b+1
b−1

2. If there is an N ∈ N such that n ≥ N implies that F (n) < b
n−b+1
b−1 , then there are

finitely many base b F -Dudeney numbers.

Proof. (1): Since ai ≤ b− 1 and Sb(F (n)) =
∑m−1

i=0 ai, we have that Sb(F (n)) ≤ (b− 1)m.
But m is the number of the digits of F (n). So m = b1 + logb(F (n))c. Since n is a base b
F -Dudeney number, n ≤ (b−1)b1+logb(F (n))c. So, we have n ≤ b−1+(b−1) logb(F (n))

and finally, F (n) ≥ b
n−b+1
b−1 .

(2) is just a result of (1).

Corollary 5.3.

Let F : N → N be a function such that lim
n→+∞

F (n)

b
n−b+1
b−1

= 0. Then there are finitely many

base b F -Dudeney numbers. In particular, if F ∈ Q[X] is a polynomial function such that
F (n) ∈ N for all n ∈ N, then there are finitely many base b F -Dudeney numbers.
Example 5.4.

1. A Dudeney number is a positive integer such that the sum of its decimal digits
is equal to the cube root of the number. There are exactly seven such integers
(sequence A061209 in the OEIS): 0, 1, 512, 4913, 5832, 17576, and finally, 19683.
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2. Let F : N → N be the Fibonacci sequence, the sequence that is defined as follows:
Fn+2 = Fn+1 + Fn for all n ∈ N and F1 = 1, F2 = 1 and F3 = 2,F4 = 3,F5 =
5,F6 = 8,F7 = 13,F8 = 21,F9 = 34,F10 = 55. The specific Fibonacci-Dudeney
numbers are: F1, F5, and F10.

Let k(n) be the function that gives the sum of the F of each digit of a positive integer n.
Also let m be the number of digits in integer n. Then 10m−1 ≤ n < 10m. Since 9 is the
largest possible digit, we conclude that k(n) ≤ m · s. Therefore, we have that

10m−1 ≤ n ≤ ms.

In other words, m needs to satisfy this inequality:

10 ≤ (ms)
1

m−1

6 The Powers of the Sum of the Digits of a Number

In this short section, we show that the number of natural numbers which are equal to the
sum of their digits raised to a specific power is finite.
Theorem 6.1.
Let n be a natural number and set Sb(n) to be the sum of the digits of the number n in
base b. Let p ≥ 2 be a natural number and define φp : N → N with φp(n) = (Sb(n))p.
Then the number of natural numbers satisfying the equality φp(n) = n is finite. Moreover,
if φp(n) = n then n ≤ bp

2
.

Proof. Let n =
∑m−1

i=0 aib
i be the representation of the number n is base b. It is clear

that Sb(n) ≤ (b− 1)m, where m = b1 + logb(n)c. So if a number n satisfies the equality
φp(n) = n, then it needs to satisfy the inequality n ≤ (b− 1)p(b1 + logb(n)c)p.
Now define a real function f(x) = x − (b − 1)p(1 + logb(x))p. It is clear that f ′(x) =

1 − p(b− 1)p

x ln a
(1 + logb(x))p−1, which shows that for large enough real numbers x, the

function f is increasing.

7 Computational Appendix

To check results as obtained in this paper, we show a few algorithms to do the work.
The programming language used is the Maple programming language. In the first paper
on finding narcissistic numbers, the BASIC language was used [19]. A conversion C of a
decimal integer to a list of its single digits is:

C := (b, n)→ convert(n, base, b)

and its inverse is Maple’s concatenation of digits:

J := n→ Joinsequence(n)
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The sum of a list a of numbers is:

S := a→ add(i, i ε a)

The operator Db for the digit length of a number n is:

Db := n→ length(n)

By following Curry and Feys’ [14] notation of operators and operator sequences, we deviate
from the common use of Category Theory [10] to express algorithms. This considerably
simplifies notation, as follows:

H Hardy’s Apology numbers satisfy the fixed points: n = S(F (C(n))).

D Dudeney numbers are the fixed points: n = F (S(C(n))).

W Wells numbers satisfy: n = Db(F (n)).

Permutation of the order of operators might be beneficial for the discovery of new num-
bers. For instance, in the reverse order of operators of the Wells numbers n = F (Db(n))
with fεF, f := x→ x4, all fixed points are n = 0, 1, 32, 243, 1024.

The algorithm to find the fixed points in Hardy’s Apology Theorem is n = S(F (C(n)))
needs precautions for data handling from one operator to the next, and with the fixed
point criterion at the end as a haltings criterion, as follows:

HApolTh := proc(b, k, n, F) local a, x;

a := C(b^k, n); x := [ seq( F(a[i]), i = 1 ... length(a)) ];

if n = S(x) then n end if

end proc

For example, fεF, f := x→ x5, seq(HApolTh(10, 1, n, f), n = 1 ... 105) exhausts all the
fixed points n = 1, 4150, 4151, 54748, 92727, 93084, as seen from our upper bounds limit
in the Apology Theorem.
The search can be limited as was urgently needed with historical computers [25] by use
of our Hardy’s Apology Theorem 2.3. Take fεF, f := x → x2, in base b = 10 is 9 the
maximum digit. So, the inequality m(92) < 10m, where m is the length of the number, is
false if m = 1, 2. Hence, single and two digits numbers cannot be narcissistic, but with
m = 3, we have 243 < 1000. Concluding, the 3-digit numbers in base 10 cannot have
squared 1-digit sums larger than 243, which is the limit for search. Continuing this we
even could design automated upper bounds for search with digit blocks k = 2, 3, ..., etc.
Piezas’ computation of narcissistic numbers as formulated by [40] is speeded-up by his
inclusion of Fermat steps, with the Ith Fermat number of n and its predecessor:
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Piezas := proc(k, n) local a, b, fe, l, m, x, y;

fe := IthFermat(n); l := (fe-1)/4; m := 4*k+3;

a := IthFermat(n-1)-1; b := 10^(l*m);

x := a*(a*b-1)/fe; y := a*(a+b)/fe;

print(k, m, n, a, l, fe, x, y, x^2+y^2)

end proc

The algorithm is appropriate for fast computing of extremely long narcissistic numbers
with hundreds of thousands of digits (on a PC).
As quoted in our introduction Hardy’s remark “8712 and 9801 are the only four-figure
numbers which are integral multiples of their reversals”, he introduced the eigenvalue λ
for the consecutive application of operations C, permutation P and join J as follows:

2178 = J(P (C(8712)→ 8712 = λJ(P (C(8712)→ λ = 4

Using eigenvalues is studied to its full extent by Lara Pudwell [37] and Sutcliffe [39]. Lara
Pudwell in her paper [37] relates the story about Hardy’s short-sighted second remark
above. Sutcliffe [39] generalized the problem to reversals in any base.

Acknowledgments

The second named author is supported by the Department of Engineering Science at the
Golpayegan University of Technology and his special thanks go to the Department for
providing all necessary facilities available to him for successfully conducting this research.

References

[1] Aghaieabiane, N., Koppelaar, H., Nasehpour, P. (2017) An improved algorithm
to reconstruct a binary tree from its inorder and postorder traversals, Journal of
Algorithms and Computation, 49(1), 93–113.

[2] Aghaieabiane, N., Koppelaar, H., Nasehpour, P. (2017) A novel algorithm to deter-
mine the leaf (leaves) of a binary tree from its preorder and postorder traversals,
Journal of Algorithms and Computation, 49(2), 1–11.

[3] Andreescu, T., Andrica, D. (2009) Number Theory, Structures, Examples, and Prob-
lems, Birkhäser, Basel.
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