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In this paper, optimization of a linear objective function
with fuzzy relational inequality constraints is investigated
whereby the feasible region is formed as the intersection
of two inequality fuzzy systems and Fuzzy Or operator
is considered as fuzzy composition. It is shown that a
lower bound is always attainable for the optimal objective
value. Also, it is proved that the optimal solution of the
problem is always resulted from the unique maximum
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1 Introduction

In this paper, we study the following linear problem in which the constraints are formed
as the intersection of two fuzzy systems of relational inequalities defined by Fuzzy Or
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Operator:
min Z = cTx

A5 x ≤ b1

D5 x ≥ b2

x ∈ [0, 1]n

(1)

where I1 = {1, 2, ..,m1}, I2 = {m1 + 1,m1 + 2, ..,m1 + m2} and J = {1, 2, .., n}. A =
(aij)m1×n and D = (dij)m2×n are fuzzy matrices such that 0 ≤ aij ≤ 1 (∀i ∈ I1 and ∀j ∈ J)
and 0 ≤ dij ≤ 1 (∀i ∈ I2 and ∀j ∈ J).b1 = (b1i )m1×1 is an m1dimensional fuzzy vector in
[0, 1]m1 (i.e.,0 ≤ b1i ≤ 1,∀i ∈ I1) , b2 = (b2i )m2×1 s an m2dimensional fuzzy vector in [0, 1]m2

(i.e.,0 ≤ b2i ≤ 1,∀i ∈ I2), and c is a vector in Rn. Moreover, 5 is the max-5composition
where 5 is Fuzzy Or Operator, that is,

4(x, y) = γmax{x, y}+
(1− γ)(x+ y)

2

in which γ ∈ [0, 1]. Furthermore, let S(A, b1) and S(D, b2) denote the feasible solutions
sets of inequalities type1 A 5 x ≤ b1 and type2 D 5 x ≥ b2, respectively, that is,
S(A, b1) = {x ∈ [0, 1]n : A5 x ≤ b1} and S(D, b2) = {x ∈ [0, 1]n : D5 x ≥ b2}. Also, let
S(A,D, b1, b2) denote the feasible solutions set of problem (1). Based on the foregoing
notations, it is clear that S(A,D, b1, b2) = S(A, b1)∩S(D, b2). By these notations, problem
(1) can be also expressed as follows:

min Z = cTx

{5(aij, xj)} ≤ b1i , i ∈ I1
max
j∈J
{5(dij, xj)} ≥ b2i , i ∈ I2

x ∈ [0, 1]n

(2)

Especially, by setting A = D and b1 = b2 , the above problem is converted to max-Fuzzy
Or fuzzy relational equations.
The theory of fuzzy relational equations (FRE) was firstly proposed by Sanchez and applied
in problems of the medical diagnosis [23]. Nowadays, it is well known that many issues
associated with a body knowledge can be treated as FRE problems [51]. In addition to
the preceding applications, FRE theory has been applied in many fields, including fuzzy
control, discrete dynamic systems, prediction of fuzzy systems, fuzzy decision making,
fuzzy pattern recognition, fuzzy clustering, image compression and reconstruction, fuzzy
information retrieval, and so on. Generally, when inference rules and their consequences
are known, the problem of determining antecedents is reduced to solving an FRE [41,49].
The solvability determination and the finding of solutions set are the primary (and the most
fundamental) subject concerning with FRE problems. Actually, The solution set of FRE is
often a non-convex set that is completely determined by one maximum solution and a finite
number of minimal solutions [5]. This non-convexity property is one of two bottlenecks
making major contribution to the increase of complexity in problems that are related to
FRE, especially in the optimization problems subjected to a system of fuzzy relations. The
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other bottleneck is concerned with detecting the minimal solutions for FREs [2]. Markovskii
showed that solving max-product FRE is closely related to the covering problem which is
an NP-hard problem [48]. In fact, the same result holds true for a more general t-norms
instead of the minimum and product operators [2, 3, 12,13,22–30,44,45,48].
Over the last decades, the solvability of FRE defined with different max-t compositions
have been investigated by many researchers [22–30,50,52,53,56,58,59,61,64,67]. Moreover,
some researchers introduced and improved theoretical aspects and applications of fuzzy
relational inequalities (FRI) [12,13,15–21,32,33,42,66]. Li and Yang [42] studied a FRI
with addition-min composition and presented an algorithm to search for minimal solutions.
Ghodousian et al. [13] focused on the algebraic structure of two fuzzy relational inequalities
Aϕx � b1 and Dϕx ≥ b2, and studied a mixed fuzzy system formed by the two preceding
FRIs, where ϕ is an operator with (closed) convex solutions.
The problem of optimization subject to FRE and FRI is one of the most interesting and
on-going research topic among the problems related to FRE and FRI theory [1,8,11–30,39,
43, 46, 54, 57, 62, 66]. Fang and Li [9] converted a linear optimization problem subjected to
FRE constraints with max-min operation into an integer programming problem and solved
it by branch and bound method using jump-tracking technique. In [39] an application of
optimizing the linear objective with max-min composition was employed for the streaming
media provider. Wu et al. [60] improved the method used by Fang and Li, by decreasing
the search domain. The topic of the linear optimization problem was also investigated with
max-product operation [11,35,47]. Loetamonphong and Fang defined two sub-problems
by separating negative and non-negative coefficients in the objective function and then
obtained the optimal solution by combining those of the two sub-problems [47]. Also, in [35]
and [11] some necessary conditions of the feasibility and simplification techniques were
presented for solving FRE with max-product composition. Moreover, some generalizations
of the linear optimization with respect to FRE have been studied with the replacement
of max-min and max-product compositions with different fuzzy compositions such as
max-average composition [14,38,62], max-Discontinuous t-norms composition [29], max-
monotone operators composition [30] and max-t-norm composition [15–20,22–28,36,43,57].
Recently, many interesting generalizations of the linear programming subject to a system
of fuzzy relations have been introduced and developed based on composite operations used
in FRE, fuzzy relations used in the definition of the constraints, some developments on the
objective function of the problems and other ideas [6,10,22–28,33,40,46,63]. For example,
Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem by considering
fuzzy coefficients.
The optimization problem subjected to various versions of FRI could be found in the
literature as well [12,13,15–21,29–33,65,66]. Xiao et al. [66] introduced the latticized linear
programming problem subject to max-product fuzzy relation inequalities. Ghodousian et
al. [12] introduced a system of fuzzy relational inequalities with fuzzy constraints (FRI-FC)
in which the constraints were defined with max-min composition.
The remainder of the paper is organized as follows. Section 2 takes a brief look at
some basic results on the feasible region of Problem (1). These results provide a proper
background to design an algorithm for solving the problem. In section 3, Problem (1)



88 A. Ghodousian / JAC 52 issue 2, December 2020, PP. 85 - 98

is resolved by optimization of the linear objective function considered in section 2. In
addition, the existence of an optimal solution is proved if problem (1) is not empty. The
preceding results are summarized as an algorithm and, finally in section 4 some numerical
examples are described to illustrate.

2 Feasible solutions set of Problem (1)

This section describes the basic definitions and structural properties concerning the
intersection of two systems A5 x ≤ b1 and D5 x ≥ b2. The interesting reader is referred
to [31] for the proofs of the lemmas, theorems and corollaries.
Let S(aij, b

1
i ) = {xj ∈ [0, 1]n : 5(aij, xj) ≤ b1i }, ∀i ∈ I1 and ∀j ∈ J . Also, define

S(ai, b
1
i ) = {xj ∈ [0, 1]n : max

j∈J
{5(aij, xj)} ≤ b1i }, ∀i ∈ I1. The following lemma determines

set S(ai, b
1
i ), ∀i ∈ I1, where W

1
ij = (2b1i − (1 + γ)aij)/(1 − γ) and W

2
ij = (2b1i − (1 −

γ)aij)/(1 + γ).

Lemma 1. For each i ∈ I1 and each j ∈ J ,

S(aij, b
1
i ) =


[
0, min

{
W

2
ij, 1
}]

, aij ≤ b1i[
0, W

1
ij

]
, aij > b1i , 0 ≤ γ ≤ (2b1i − aij)/aij

∅ , aij > b1i , γ > (2b1i − aij)/aij

By the following lemma, the shape of set S(ai, b
1
i ) is attained.

Lemma 2. Suppose that S(ai, b
1
i ) 6= ∅. Then, S(ai, b

1
i ) =

[
0, X (i)

]
,∀i ∈ I1 , where,

X (i) =
[
X (i)1, X (i)2, ..., X (i)n

]
and

X (i)j =

{
min

{
W

2
ij, 1
}

, aij ≤ b1i
W

1
ij , aij > b1i , 0 ≤ γ ≤ (2b1i − aij)/aij

The following theorem shows that set S(A, b1) is actually a closed convex cell.

Theorem 1. Let X = min
i∈I1

{
X (i)

}
and Suppose that S(ai, b

1
i ) 6= ∅. Then, S(A, b1) =[

0, X
]
.

Remark 1. S(A, b1) = ∅ iff 0 ∈ S(A, b1)

Let S(dij, b
2
i ) = {xj ∈ [0, 1] : 5(dij, xj) ≥ b2i },∀i ∈ I2 and ∀j ∈ J . Also, define S(di, b

2
i ) =

{x ∈ [0, 1]n : 5(dij, xj) ≥ b2i }, . The following lemma determines set S(ai, b
1
i ), ∀i ∈ I2 ,

where W
1
ij = (2b1i − (1 + γ)dij)/(1− γ) and W

2
ij = (2b1i − (1− γ)dij)/(1 + γ).

Lemma 3. For each i ∈ I2 and each j ∈ J ,
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S(dij , b
2
i ) =



[
max

{
0, W

1
ij

}
, 1
]

, dij ≥ b2i , 0 ≤ γ < 1

[0, 1] , dij ≥ b2i , γ = 1[
W

2
ij , 1

]
, dij < b2i , (2b2i − dij − 1)/(1− dij) ≤ γ ≤ 1

∅ , dij < b2i , γ < (2b2i − dij − 1)/(1− dij)

By the following lemma, the shape of set S(di, b
2
i ) is attained.

Lemma 4. Suppose that S(di, b
2
i ) 6= ∅. Then, S(di, b

2
i ) =

⋃
j∈J1∪J2

, ∀i ∈ I2, where

J1 = {j ∈ J : dij ≥ b2i , γ < 1}, J2 = {j ∈ J : dij ≥ b2i , γ = 1}, J3 = {j ∈ J : dij < b2i , γ ≥
(2bi

2 − dij − 1)/(1− dij)} and X (i, j) =
[
X (i, j)1, X (i, j)2, ..., X (i, j)n

]
such that

X (i, j)k =


max

{
0, W

1

ij

}
, k = j, j ∈ J1

0 , k = j, j ∈ J2
W

2

ij , k = j, j ∈ J3
0 , otherwise

The following theorem shows that set S(di, b
2
i ) is the union of the finite number of closed

convex cells.

Theorem 2. Suppose that S(di, bi
2) 6= ∅, ∀i ∈ I2. Then, S(D, b2) =

⋃
e∈ED

[
X (e), 1

]
, where

X (e) =
[
X (e)1, X (e)2, ..., X (e)n

]
and such that X (e)j = max

i∈I2

{
X (i, e(i))j

}
= max

i∈I2

{
X (i, ji)j

}
,

∀j ∈ J .

Remark 2. S(D, b2) 6= ∅ iff 1 ∈ S(D, b2).

The following theorem characterizes the feasible region of Problem (1).

Theorem 3. Suppose that S(A,D, b1, b2) 6= ∅. Then S(A,D, b1, b2) =⋃
e∈ED

[
X (e), X

]
Remark 3. Assume that S(D, b1) 6= ∅ and S(D, b2) 6= ∅. Then, S(A,D, b1, b2) 6= ∅ iff
X ∈ S(D, b2)

3 Optimization of the linear objective function

According to the well-known schemes used for optimization of linear problems such as
(1) [9, 13,15–20,33,43], problem (1) is converted to the following two sub-problems:

min Z1 =
n∑

j=1

c+j xj

A5 x ≤ b1

D5 x ≥ b2

x ∈ [0, 1]n

(3)



90 A. Ghodousian / JAC 52 issue 2, December 2020, PP. 85 - 98

and

min Z2 =
n∑

j=1

c−j xj

A5 x ≤ b1

D5 x ≥ b2

x ∈ [0, 1]n

(4)

Where cj
+ = max{cj, 0} and c−j = min{cj, 0} for j = 1, 2, ..., n. It is easy to prove that X

is the optimal solution of (4), and the optimal solution of (3) is X (e′) for some e′ ∈ ED.

Theorem 4. Suppose that S(A,D, b1, b2) 6= ∅, and X and X (e∗)j are the optimal

solutions of sub-problems (4) and (3), respectively. Then cTx∗ is the lower bound of the
optimal objective function in (1), where x∗ = [x1

∗, x2
∗, ..., xn

∗] is defined as follows:

xj
∗ =

{
X j cj < 0

X (e∗)j cj ≥ 0
(5)

for j = 1, 2, ..., n.

Proof. Let x ∈ S(A,D, b1, b2). Then, from Theorem 3 we have x ∈
⋃

e∈ED

[
X (e), X

]
. Therefore,

for each j ∈ J such that cj ≥ 0, inequality x∗j ≤ xj implies c+j xj
∗ ≤ cj

+xj . In addition, for

each j ∈ J such that cj < 0, inequality cj ≤ 0 implies c−j xj
∗ ≤ cj

−xj . Hence,
∑n

j=1 cj
+xj

∗ ≤∑n
j=1 cj

+xj .

Corollary 1. Suppose that S(A,D, b1, b2) 6= ∅. Then, x∗ = [x1
∗, x2

∗, ..., xn
∗] as defined

in (5), is the optimal solution of problem (1).

Proof. According to the definition of vector x∗, we have X (e∗)j ≤ xj
∗ ≤ X j,∀j ∈ J ,

which implies x∗ ∈
⋃

e∈ED

[
X (e), X

]
= STS

F
(A,D, b1, b2).

We now summarize the preceding discussion as an algorithm. Also, see [31] for the algo-
rithm finding the feasible region of Problem (1).

Algorithm 1 (optimization of problem (1))
Given problem (1):

1. If 0 /∈ S(A, b1), then stop; S(A, b1) is infeasible (Remark 1).

2. If 1 /∈ S(D, b2), then stop; S(D, b2) is infeasible (Remark 2).

3. If X /∈ S(A,D, b1, b2), then stop; S(A,D, b1, b2) is infeasible (Remark 3).

4. Find the optimal solution X (e∗) for the sub-problem (3) by considering vectors
X (e), ∀einED.

5. Find the optimal solution x∗ = [x1
∗, x2

∗, ..., xn
∗] for the problem (1) by (5) (Theorem

4)
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4 Numerical examples

Example 1. Consider the following linear optimization problem (1):

min Z = 4.8815x1 + 0.0004x2 − 0.4016X3 + 8.0944x4 + 2.1973x5
0.2967 0.0855 0.9289 0.2373 0.5211
0.3188 0.2625 0.7303 0.4588 0.2316
0.4242 0.8010 0.4886 0.9631 0.4889
0.5079 0.0292 0.5785 0.5468 0.6241

4 x ≤


0.9562
0.7644
0.9768
0.7331




0.6791 0.8852 0.3354 0.6538 0.8909
0.3955 0.9133 0.6797 0.4942 0.3342
0.3674 0.7962 0.1366 0.7791 0.6987
0.9880 0.0987 0.7212 0.7150 0.1978
0.0377 0.2619 0.1068 0.9037 0.0305

4 x ≥


0.3021
0.2841
0.1290
0.0467
0.0219


x ∈ [0, 1]n

step1: Since 0 ∈ S(A, b1), set S(A, b2) is feasible:
0.2967 0.0855 0.9289 0.2373 0.5211
0.3188 0.2625 0.7303 0.4588 0.2316
0.4242 0.8010 0.4886 0.9631 0.4889
0.5079 0.0292 0.5785 0.5468 0.6241

4
0

0
0

 =


0.9562
0.7644
0.9768
0.7331

 ≤


0.9562
0.7644
0.9768
0.7331


step2: Since 1 ∈ S(D, b2), set S(D, b2) is feasible:

0.6791 0.8852 0.3354 0.6538 0.8909
0.3955 0.9133 0.6797 0.4942 0.3342
0.3674 0.7962 0.1366 0.7791 0.6987
0.9880 0.0987 0.7212 0.7150 0.1978
0.0377 0.2619 0.1068 0.9037 0.0305

4
1

1
1

 =


0.9727
0.9783
0.9490
0.9970
0.9759

 ≥


0.3021
0.2841
0.1290
0.0467
0.0219


step3: From Lemma 2 and Theorem 1, X = [0.8082 0.9317 0.7758
0.7952 0.7694]. Since X ∈ S(D, b2), set S(A,D, b1, b2) is feasible:

0.6791 0.8852 0.3354 0.6538 0.8909
0.3955 0.9133 0.6797 0.4942 0.3342
0.3674 0.7962 0.1366 0.7791 0.6987
0.9880 0.0987 0.7212 0.7150 0.1978
0.0377 0.2619 0.1068 0.9037 0.0305

4


0.8082
0.9317
0.7758
0.7952
0.7694

 =


0.9727
0.9783
0.9490
0.9970
0.9759

 ≥


0.3021
0.2841
0.1290
0.0467
0.0219


step4: For this example, there are 3125 feasible vectors X (e) (i.e., X (e) ≤ X ). However,
there is only one minimal solution:

e1 =
[
1 1 1 1 1

]
⇒ X (e1) =

[
0 0 0 0 0

]
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Vector X (e1) =
[
0 0 0 0 0

]
is the optimal solution of the sub-problem (3) that is

obtained by e∗ = e1.
step5: The optimal solution of Problem (1) is resulted as x∗ =

[
0 0 0.77577 0 0

]
with optimal objective value Z∗ = −0.31155.

Example 2. Consider the following linear optimization problem (1):

min Z = −5.4762x1 − 2.3076x2 + 1.6597X3 − 4.9639x4 − 4.1912x5 + 2.3418x6 − 4.6944x7

0.6177 0.0287 0.0596 0.8175 0.8003 0.3909 0.6569
0.8594 0.4899 0.6820 0.7224 0.4538 0.8314 0.6280
0.8055 0.1679 0.0424 0.1499 0.4324 0.8034 0.2920
0.5767 0.9787 0.0714 0.6596 0.8253 0.0605 0.4317
0.1829 0.7127 0.5216 0.5186 0.0835 0.3993 0.0155
0.2399 0.5005 0.0967 0.9730 0.1332 0.5269 0.9841
0.8865 0.4711 0.8181 0.6490 0.1734 0.4168 0.1672


4 x ≤



0.8534
0.8742
0.8137
0.9888
0.7432
0.9902
0.9165




0.1062 0.9203 0.9427 0.5391 0.1711 0.3689 0.3763
0.3724 0.0527 0.4177 0.6981 0.0326 0.4607 0.1909
0.1981 0.7379 0.9831 0.6665 0.5612 0.9816 0.4283
0.4897 0.2691 0.3015 0.1781 0.8819 0.1564 0.4820
0.3395 0.4228 0.7011 0.1280 0.6692 0.8555 0.1206
0.9516 0.5479 0.6663 0.9991 0.1904 0.6448 0.5895

4 x ≥


0.0903
0.0138
0.1744
0.1293
0.1178
0.1888


x ∈ [0, 1]n

step1: Since 0 ∈ S(A, b1), set S(A, b2) is feasible:



0.6177 0.0287 0.0596 0.8175 0.8003 0.3909 0.6569
0.8594 0.4899 0.6820 0.7224 0.4538 0.8314 0.6280
0.8055 0.1679 0.0424 0.1499 0.4324 0.8034 0.2920
0.5767 0.9787 0.0714 0.6596 0.8253 0.0605 0.4317
0.1829 0.7127 0.5216 0.5186 0.0835 0.3993 0.0155
0.2399 0.5005 0.0967 0.9730 0.1332 0.5269 0.9841
0.8865 0.4711 0.8181 0.6490 0.1734 0.4168 0.1672


4

0
0
0

 =



0.6131
0.6446
0.6041
0.7340
0.5345
0.7381
0.6649


≤



0.8534
0.8742
0.8137
0.9888
0.7432
0.9902
0.9165


step2: Since 1 ∈ S(D, b2), set S(D, b2) is feasible:



0.1062 0.9203 0.9427 0.5391 0.1711 0.3689 0.3763
0.3724 0.0527 0.4177 0.6981 0.0326 0.4607 0.1909
0.1981 0.7379 0.9831 0.6665 0.5612 0.9816 0.4283
0.4897 0.2691 0.3015 0.1781 0.8819 0.1564 0.4820
0.3395 0.4228 0.7011 0.1280 0.6692 0.8555 0.1206
0.9516 0.5479 0.6663 0.9991 0.1904 0.6448 0.5895

4
1

1
1

 =



0.9857
0.9245
0.9958
0.9705
0.9639
0.9998

 ≥


0.0903
0.0138
0.1744
0.1293
0.1178
0.1888


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step3: From Lemma 2 and Theorem 1, X = [0.8164 0.7534 0.8171 0.8181 0.8711
0.8171 0.9189]. Since X ∈ S(D, b2), set S(A,D, b1, b2) is feasible:



0.1062 0.9203 0.9427 0.5391 0.1711 0.3689 0.3763
0.3724 0.0527 0.4177 0.6981 0.0326 0.4607 0.1909
0.1981 0.7379 0.9831 0.6665 0.5612 0.9816 0.4283
0.4897 0.2691 0.3015 0.1781 0.8819 0.1564 0.4820
0.3395 0.4228 0.7011 0.1280 0.6692 0.8555 0.1206
0.9516 0.5479 0.6663 0.9991 0.1904 0.6448 0.5895

4


0.8164
0.7524
0.8171
0.8181
0.8711
0.8171
0.9189


=



0.9113
0.7881
0.9416
0.8792
0.8459
0.9538

 ≥


0.0903
0.0138
0.1744
0.1293
0.1178
0.1888


step4: For this example, there are 3125 feasible vectors X (e) (i.e., X (e) ≤ X ). However,
there is only one minimal solution:

e1 =
[
2 1 2 1 1 1

]
⇒ X (e1) =

[
0 0 0 0 0 0 0

]
Vector X (e1) =

[
0 0 0 0 0 0 0

]
is the optimal solution of the sub-problem (3) that

is obtained by e∗ = e1.
step5: The optimal solution of Problem (1) is resulted as x∗ = [0.81643 0.75337 0
0.81807 0.8711 0 0.9189] with optimal objective value Z∗ = −18.2349.
Conclusion
In this paper, we proposed an algorithm to find the optimal solution of linear problems
subjected to two fuzzy relational inequalities with Fuzzy Or operator. Some test problems
were then solved by the proposed algorithm. As future works, we aim at testing our
algorithm in other type of linear optimization problems whose constraints are defined as
FRI with other well-known t-norms.
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