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1 Introduction

Inverse eigenvalue problems (IEPs) have received much attention in a wide range and
different case of studies. The following matrix, denoted by Jacobi matrix

Jn =


a1 b1 0 ... 0

b1 a2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . bn−1

0 ... 0 bn−1 an

 , (1)

has very important role in variety of applications, for this reason, different IEPs with
different eigen information of this matrix are investigated.
For example, we can mention works done by [4, 7, 9, 12, 13, 14, 18, 19, 21]. In these
papers, different applications of Jacobi matrices in Finite element, Schrodinger equation,
Signal processing and nonlinear Control theory are studied. In [2, 3, 5, 11, 6, 10] the
relations between IEPs and graphs are studied. A widely used method to solve IEPs, is
recurrence relations. This method has been studied for some graphs in [1, 8, 15, 16, 17].
In [20], the construction of block matrices containing Jacobi matrices has been discussed
in detail.
In this work, we generalized the matrix discussed in mentioned works to asymmetric
tridiagonal matrix which is as follows:

An =


a1 b1 0 ... 0

c1 a2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . bn−1

0 ... 0 cn−1 an

 . (2)

In this case, we can implement the perturbation and directed graph problems on this
matrix.
In the sequel, in section 2, we introduce the problem statement and some of the preliminary
concepts that will be used throughout the paper. In section 3, main results are discussed.
Section 4 presents some examples to illustrate the efficiency of the proposed scheme. And
finally, in section 5, we conclude the paper.

2 Preliminaries

The graph G is called a weighted graph, if each edge of graph G has an associated
numerical value, called a weight. A graph is connected when there is a path between every
pair of vertices. Let G be a weighted connected directed graph with vertices {v1, ..., vn},
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Figure 1: A weighted directed path graph

and edge set {e1, ..., e2n}. Figure 1 shows a weighted directed path graph with weights
b1, ..., bn−1, c1, ..., cn−1.
The matrix of the weighted graph G with n vertices is an n × n square matrix An, such
that the entry aij is the weight of the edge between vertices vi and vj and aij = 0 if there
is no edge between them. A nonsymmetric tridiagonal matrix An which corresponds to
a directed path graph is given by Eq.(2), such that the diagonal entries are real and
bi, ci ∈ R− {0} , i = 1, ..., n− 1. If the graph G is directed, in the general form, then An
is nonsymmetric.
The characteristic polynomial of matrix An×n is

Pn(λ) = det(An − λIn), (3)

where λ is a scalar and In is an n× n identity matrix.
We denote the i-th leading principal submatrix of An by Ai, and eigenvalues of Ai by
λ
(i)
1 , λ

(i)
2 , ..., λ

(i)
i , and Xn = (x1, ..., xn)T is an eigenvector of An. The symbol σ(An) denotes

the collection of all eigenvalues of An.
We define principal backward submatrices of An by

Ãi =


an−i+1 bn−i+1 0 ... 0

cn−i+1 an−i+2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . bn−1

0 ... 0 cn−1 an

 , i = 1, ..., n, (4)

and
Qi(λ) = det(Ãi − λIi), i = 1, ..., n. (5)

We will solve the following two IEPs for nonsymmetric tridiagonal matrix that we briefly
call them IEPNT 1.
problem 1.(IEPNT1). Given n real distinct numbers λ(1),λ(2),...,λ(n), n − 1 small real
numbers ε1, ..., εn−1,|εi| 6 1 and a real vector Xn = (x1, ..., xn)T , find matrix An such that
λ(i), i = 1, ..., n is an eigenvalue of Ai ,ci = εibi, and (λ(n), Xn) is an eigenpair of An.

problem 2.(IEPNT2). Given 2n− 1 real pairwise distinct numbers λ
(1)
1 ,λ

(2)
1 , λ

(2)
2 ,...,λ

(n)
1 ,

λ
(n)
2 , and a real vector Xn = (x1, ..., xn)T , find matrix An such that λ

(i)
1 , λ

(i)
2 , i = 1, ..., n

are eigenvalues of Ai , and (λ
(n)
1 , Xn) is an eigenpair of An.

1Inverse Eigenvalue Problem for Nonsymmetric Tridiagonal Matrix
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3 Main idea

In this section, we will present necessary proofs to obtain the solution of the problems
IEPNT1 and IEPNT2.
In the following lemma, the recurrence relation of Pj(λ), j = 1, ..., n is introduced.
Lemma 3.1 The characteristic polynomial of the matrix An and principal submatrices
Aj satisfy the following recurrence relations:

P0(λ) = 1,

P1(λ) = a1 − λ,
Pj+1(λ) = (aj+1 − λ)Pj(λ)− bjcjPj−1(λ), j = 1, ..., n− 1. (6)

proof It is achieved by expanding the determinant.
Corollary 3.2.In the same way we can show

Q0(λ) = 1

Q1(λ) = an − λ,
Qi+1(λ) = (an−i − λ)Qi(λ)− bn−icn−iQi−1(λ), i = 1, ..., n− 1. (7)

Lemma 3.3. For any real nonzero number λ, Pj(λ) and Pj+1(λ), j = 1, ..., n− 1 can not
be simultaneously zero. proof From Lemma 3, if P1(λ) = P2(λ) = 0 then b1c1 = 0 that
contradicts the properties of An. For 1 6 j 6 n − 1, if Pj(λ) = Pj+1(λ) = 0 then the
recurrence relation (6) Pj−1 = 0, by continuing this way P2(λ) = 0 which implies that
b1 = 0 or c1 = 0 and it is a contradiction.

3.1 The solution of IEPNT1

In this section, we will prove the conditions for the solution to IEPNT1. Theorem
3.4. The IEPNT1 has a unique solution if and only if xi 6= 0, i = 1, ..., n. proof Let
xi 6= 0, i = 1, ..., n. It is easy to see that a1 = λ(1). Since (λ(n), Xn) is an eigenpair of An,

we obtain (a1 − λ(n))x1 + b1x2 = 0 or b1 = (λ(n)−a1)
x2

x1. We note that a1 = λ(1) 6= λ(n),
xi 6= 0, i = 1, ..., n, hence b1 as a result c1 = ε1b1 are always nonzero.
If x1 6= 0, we can show that every component of Xn is multiplier of x1. Since (λ(n), Xn) is
an eigenpair of An, so AnXn = λ(n)Xn. By expanding this relation:

a1x1 + b1x2 = λ(n)x1,

ci−1xi−1 + aixi + bixi+1 = λ(n)xi, i = 2, ..., n− 1,

cn−1xn−1 + anxn = λ(n)xn,

and applying P1(λ
(n)) yields

x2 =
(λ(n) − a1)

b1
x1 =

−P1(λ
(n))

b1
x1.
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This can be concluded

xi =
(−1)i−1Pi−1(λ

(n))
i−1∏
j=1

bj

x1, i = 2, ...n. (8)

The Eq.(8) can be verified by induction on xi. Let it to be true for x1, ..., xj, we prove it
for xj+1. From Eq.(6) we get

xi+1 =
1

bi
((λ(n) − ai)xi − ci−1xi−1)

=
1

bi

(λ(n) − ai)
(−1)i−1Pi−1(λ

(n))
i−1∏
j=1

bj

x1 − ci−1
(−1)i−2Pi−2(λ

(n))
i−2∏
j=1

bj

x1


=

(−1)iPi(λ
(n))

i∏
j=1

bj

x1.

Therefore

bi−1 =
(−1)i−1Pi−1(λ

(n))x1

xi
i−2∏
j=1

bj

, i = 3, ..., n, (9)

so, every component of eigenvector Xn is a multiplier of x1. The distinctness of λ(i)’s
results in Pi−1(λ

(n)) 6= 0, therefore all of bi’s and ci’s are nonzero. We note that similar to
Eq.(8), we can show that if (λ(n), Xn) is an eigenpair of An, then xn 6= 0 and components
of eigenvector Xn are obtained as

xi =
(−1)n−iQn−i(λ

(n))
n−i∏
j=1

cn−j

xn , i = 1, ..., n− 1, (10)

or

ci−1 =
(−1)n−i+1Qn−i+1(λ

(n))xn

xi−1

n−(i−2)∏
j=1

cn−j

, i = 2, ..., n. (11)

This means that every component of Xn is also a multiplier of xn and we can compute
the solution in terms of ci−1.
To obtain ai, since λ(i) is eigenvalue of Ai, so for i = 2, ..., n one has

Pi(λ
(i)) = (ai − λ(i))Pi−1(λ

(i))− bi−1ci−1Pi−2(λ
(i)) = 0, (12)
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and so

ai =
εi−1b

2
i−1Pi−2(λ

(i))

Pi−1(λ(i))
+ λ(i). (13)

From by Lemma (3), Pi−1(λ
(i)) 6= 0 and so ai is always valid. It is clear that solution is

unique.
Conversely, let there exist a solution to IEPNT1 and Xn be an eigenvector of An, this
means that bi’s and ci’s are nonzero. Since (λ(n), Xn) is an eigenpair, by Eq.s (8) and
(10), xi 6= 0, i = 1, · · · , n which completes the proof.
The following algorithm is presented to solve IEPNT1.

Algorithm 1 ( Solving IEPNT1)

1: Input: Distinct real numbers λ(1), λ(2),...,λ(n),
ε1, ..., εn−1,|εi| 6 1, i = 1, · · · , n− 1,

real vector Xn = (x1, ..., xn)T ,
2: If xi = 0, i = 1, · · · , n, then problem can not be solved by this algorithm, stop.
3: Set a1 = λ(1).
4: Set

P0(λ) = 1,

P1(λ) = a1 − λ.
5: Set

b1 =
(λ(n) − a1)

x2
x1,

c1 = ε1b1,

a2 =
ε1b

2
1

P1(λ(2))
+ λ(2),

P2(λ) = (a2 − λ)P1(λ)− b1c1.
6: For i = 3, ..., n

bi−1 = (−1)i−1Pi−1(λ
(n))x1

xi
i−2∏
j=0

bj

,

ci−1 = εi−1bi−1,

ai =
εi−1b

2
i−1Pi−2(λ

(i))

Pi−1(λ(i))
+ λ(i),

Pi(λ) = (ai − λ)Pi−1(λ)− bi−1ci−1Pi−2(λ).
End For.

7: Output: An.

3.2 The solution of IEPNT2

Theorem 3.5. The IEPNT2 has a unique solution if and only if xi 6= 0, i = 1, ..., n.
proof Parts of the proof are the same as proof of Theorem (3.1). If xi 6= 0, i = 1, ..., n,
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with a similar argument a1 = λ
(1)
1 , b1 =

(λ
(n)
1 −a1)
x2

x1 , b1 is always nonzero and

bi−1 =
(−1)i−1Pi−1(λ

(n)
1 )x1

xi
i−2∏
j=1

bj

, i = 3, ..., n,

ci−1 =
(−1)n−i+1Qn−i+1(λ

(n)
1 )xn

xi−1

n−(i−2)∏
j=1

cn−j

, i = 2, ..., n.

By the assumption of this theorem, xi 6= 0, i = 1, ..., n,, hence Pi−1(λ
(n)
1 ) and Qn−i+1(λ

(n)
1 )

are nonzero as a result bi−1, ci−1 are nonzero. To obtain bi−1, ci−1, ai one has

Pi(λ
(i)
1 ) = (ai − λ(i)1 )Pi−1(λ

(i)
1 )− bi−1ci−1Pi−2(λ

(i)
1 ) = 0, (14)

Pi(λ
(i)
2 ) = (ai − λ(i)2 )Pi−1(λ

(i)
2 )− bi−1ci−1Pi−2(λ

(i)
2 ) = 0, (15)

from Eq.(14) and substitute bi−1 from Eq.(9) we obtain

ci−1 =

(−1)i−1(ai − λ(i)1 )Pi−1(λ
(i)
1 )xi

i−2∏
j=1

bj

x1Pi−1(λ
(n)
1 )Pi−2(λ

(i)
1 )

, (16)

from Eqs. (14), (15),(16) and (9) we have

ai =
λ
(i)
2 Pi−2(λ

(i)
1 )Pi−1(λ

(i)
2 )− λ(i)1 Pi−1(λ

(i)
1 )Pi−2(λ

(i)
2 )

Pi−2(λ
(i)
1 )Pi−1(λ

(i)
2 )− Pi−1(λ

(i)
1 )Pi−2(λ

(i)
2 )

, (17)

and it has a unique solution if Pi−2(λ
(i)
1 )Pi−1(λ

(i)
2 ) − Pi−1(λ

(i)
1 )Pi−2(λ

(i)
2 ) 6= 0. By substi-

tuting ai from Eq.(17) in Eq.(16) we obtain ci.
Conversely, let IEPNT2 has a solution with unique values of the entries of An and Xn be
an eigenvector of An. With similar argument to the proof of Theorem (3.1), x1 and xn
are nonzero. As a result, by Eq.s (9) and (11) we obtain that xi 6= 0, i = 1, ..., n which
completes the proof.
The following algorithm is presented to solve IEPNT2.
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Algorithm 2 ( Solving IEPNT2)

1: Input: Pairwise distinct real numbers λ
(1)
1 , λ

(2)
1 , λ

(2)
2 ,...,λ

(n)
1 ,λ

(n)
2 ,

real vector Xn = (x1, ..., xn)T .
2: If for an index i, xi = 0, i = 1, · · · , n then problem can not be solved by this algorithm,

stop.

3: Set a1 = λ
(1)
1 , b1 =

(λ
(n)
1 −a1)
x2

x1.
4: Set

P0(λ) = 1,

P1(λ) = a1 − λ.
5: Set

a2 =
λ
(2)
2 P1(λ

(2)
2 )− λ(2)1 P1(λ

(i)
1 )

λ
(2)
1 − λ

(2)
2

,

c1 =
(a2 − λ(2)1 )P1(λ

(2)
1 )

b1
,

P2(λ) = (a2 − λ)P1(λ)− b1c1.
6: For i = 3, ..., n

bi−1 =
(−1)i−1Pi−1(λ

(n)
1 )x1

xi
i−2∏
j=0

bj

,

If Pi−2(λ
(i)
1 )Pi−1(λ

(i)
2 )− Pi−1(λ

(i)
1 )Pi−2(λ

(i)
2 ) 6= 0

Set

ai =
λ
(i)
2 Pi−2(λ

(i)
1 )Pi−1(λ

(i)
2 )−λ(i)1 Pi−1(λ

(i)
1 )Pi−2(λ

(i)
2 )

Pi−2(λ
(i)
1 )Pi−1(λ

(i)
2 )−Pi−1(λ

(i)
1 )Pi−2(λ

(i)
2 )

,

ci−1 =
(−1)i−1(ai−λ

(i)
1 )Pi−1(λ

(i)
1 )xi

i−1∏
j=1

bj

x1Pi−1(λ
(n)
1 )Pi−2(λ

(i)
1 )

,

Set Pi(λ) = (ai − λ)Pi−1(λ)− bi−1ci−1Pi−2(λ).
else, Stop.

”The problem can not be solved by this algorithm.”
End For.

7: Output: An.

4 Numerical Experiments

In this section, we present the numerical results of IEPNT1and IEPNT2. The com-
putational results are provided by MATLAB software. Example 4.1.The real distinct
numbers
λ(1) = 3, λ(2) = 4, λ(3) = 1, λ(4) = 6.1, λ(5) = 3.5, λ(6) = 10, λ(7) = 4.5, λ(8) = 12, λ(9) =
5, λ(10) = 9
ε1 = 0.0570, ε2 = 0.5860, ε3 = 0.4900, ε4 = 0.1110, ε5 = 0.0180, ε6 = 0.1120, ε7 = 0.2210,

ε8 = −0.1720, ε9 = 0.0710, ε10 = 0.0430



145 F. Fathi / JAC 52 issue 2, December 2020, PP. 137 - 148

and vector

X10 = (0.1910, 0.2866, - 0.0955, 0.3821,0.1433,0.3343,0.4776, 0.3057, 0.2961, 0.4298)T

are given. We make A10, such that (λ(10), X10) be an eigenpair of A10.
By Algorithm 1, we get:

A10 =


3.0000 3.9986 0 0 0 0 0 0 0 0
0.2279 3.0886 - 17.2844 0 0 0 0 0 0 0

0 - 10.1287 108.2097 32.3931 0 0 0 0 0 0
0 0 15.8726 9.1874 10.0783 0 0 0 0 0
0 0 0 1.1187 3.8492 0.9293 0 0 0 0
0 0 0 0 0.1673 9.9599 - 0.7221 0 0 0
0 0 0 0 0 - 0.0809 4.5106 7.1023 0 0
0 0 0 0 0 0 1.5696 10.5058 - 4.0863 0
0 0 0 0 0 0 0 0.7028 4.8965 2.3271
0 0 0 0 0 0 0 0 0.1652 8.8862


We compute the spectra of all of the principal submatrices of A10 to verify the results.

σ(A10) = {9.0000, - 1.0626, 2.1463, 11.6420,114.6586, 9.9995, 8.0560, 3.4968, 3.2741, 4.8834},
σ(A9) = {5.0000, - 1.0626, 11.6497, 114.6586, 9.9997, 8.0560, 2.1463, 3.4968, 3.2633},
σ(A8) = {12.0000, - 1.0626, 8.0561, 2.1463, 3.4967, 3.0142, 10.0021,114.6586},
σ(A7) = {4.5000, 114.6586, 10.0105, 8.0562, - 1.0626, 2.1463, 3.4966},
σ(A6) = {10.0000, 8.0560, 114.6586, - 1.0626, 2.1463, 3.4966},
σ(A5) = {3.5000, 114.6586, 8.0831, - 1.0605, 2.1537},
σ(A4) = {6.1000, 114.6542, - 0.3751, 3.1067},
σ(A3) = {1.0000, 3.4487, 109.8497},
σ(A2) = {4.0000, 2.0886},
σ(A1) = {3.0000}.

Example 4.2.The real distinct numbers
λ
(1)
1 = 3, λ

(2)
1 = 4, λ

(2)
2 = 1, λ

(3)
1 = 6.2, λ

(3)
2 = 3.4, λ

(4)
1 = 10.6, λ

(4)
2 = 4.1,

λ
(5)
1 = 12.6λ

(5)
2 = 5λ

(6)
1 = 3.2, λ

(6)
2 = 7, λ

(7)
1 = 8, λ

(7)
2 = 12, λ

(8)
1 = 6,

λ
(8)
2 = 11, λ

(9)
1 = 5.7, λ

(9)
2 = 4.3, λ

(10)
1 = 4.9, λ

(10)
2 = 6.7, and vector

X10 = (0.1910, 0.2866, - 0.0955, 0.3821,0.1433,0.3343,0.4776, 0.3057, 0.2961, 0.4298)T

are given. We make A10, such that (λ(10), X10) be an eigenpair of A10.
By Algorithm 2, we get:

A10 =


3.0000 3.9986 0 0 0 0 0 0 0 0
0.5002 2.0000 - 7.7027 0 0 0 0 0 0 0

0 - 0.6520 4.7951 0.4629 0 0 0 0 0 0
0 0 57.0344 5.5257 36.3414 0 0 0 0 0
0 0 0 1.0631 1.4623 0.2585 0 0 0 0
0 0 0 0 - 1.3369 7.0478 - 1.1022 0 0 0
0 0 0 0 0 4.4735 13.0106 - 17.5632 0 0
0 0 0 0 0 0 0.2309 5.6657 - 1.1629 0
0 0 0 0 0 0 0 0.4794 3.9818 0.2915
0 0 0 0 0 0 0 0 - 3.1497 6.9727


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We compute the spectra of all of the principal submatrices of A10 to verify the results.

σ(A10) = {4.9000,6.7000, - 4.3153, 0.3270,2.5983,11.0194,3.1989,8.6365,5.0680,5.3289,},
σ(A9) = {5.7000,4.3000, - 4.3153,0.3270,2.5983,11.0200,8.6323,3.1989,5.0278,},
σ(A8) = {11.0000,6.0000, - 4.3153,0.3270,12.5983,3.1990,8.6734,5.0249,},
σ(A7) = {8.0000,12.0000, - 4.3153,0.3269,3.1988,5.0223,12.6088,},
σ(A6) = {3.2000,7.0000, 12.5894, - 4.3150,0.3272,5.0293,},
σ(A5) = {12.6000,5.0000, 3.1896, 0.3220, - 4.3285,},
σ(A4) = {4.1000,10.6000, - 1.1049, 1.7257,},
σ(A3) = {3.4000,6.2000, 0.1951},
σ(A2) = {4.0000,1.0000},
σ(A1) = {3.0000}.

5 Conclusion

Two different IEPs for asymmetric tridiagonal matrices were studied. The recurrence
relation of the leading principal minors and the relation of obtaining the component xi of
the given eigenvector Xn from the entries of leading principal minor Ai, are central in ob-
taining the solution. In the first IEP, assuming ci = eibi, 0 < ei 6 1, the system considered
by [13] is exposed by perturbation. In Theorem (3.1), the conditions of solvability of the
first problem is obtained and its solution is formulated as an algorithm in Algorithm (1).
The same problem was investigated by Qifang in [14]. Qifang applied simpler conditions
on the problem by considering complex data. More precisely, it suffices to consider the
Theorem (3.1) to be applicable in Schrdinger equations and complex data.
In the second IEP, we discuss the more general case of the first IEP. In this IEP, ci’s are
not necessarily a multiple of bi and can be any arbitrary nonzero number. In this case,
it is applicable for the weighted directed graphs. In Theorem (3.2), the conditions under
which this problem has a solution are obtained and we also drive a numerical algorithm
for its solution. This problem applies to matrices whose entire entire spectral information
is unattainable.
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