تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,508 |
تعداد مشاهده مقاله | 124,128,055 |
تعداد دریافت فایل اصل مقاله | 97,235,553 |
A GIS-Based System for Real-Time Air Pollution Monitoring and Alerting Based on OGC Sensors Web Enablement Standards | ||
Pollution | ||
دوره 7، شماره 1، فروردین 2021، صفحه 25-41 اصل مقاله (1.25 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2020.296938.741 | ||
نویسندگان | ||
M. Akbari1؛ H. Zahmatkesh2؛ M. Eftekhari* 3 | ||
1Civil Engineering Department, University of Birjand, Iran | ||
2Geomatics and Surveying Engineering Department, University of Tehran, Tehran, Iran | ||
3Civil Engineering, Water and Hydraulic Structures, Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
چکیده | ||
Air pollution is a significant concern for both managers and disaster decision-makers in megacities. Considering the importance of having access to correct and up to date spatial data, it goes without saying that designing and implementing an environmental alerting and monitoring system is quite necessary. A standard infrastructure is needed to utilize sensor observations so as to be ready in case of critical conditions. The use of sensor web is regarded a fundamental solution to control and manage air quality in megacities. The proposed system uses the SWE framework of OGC, the reference authority in spatial data, to integrate both sensors and their observations, while utilizing them in the spatial data infrastructure. The developed system provides the capability to collect, transfer, share, and process the sensor observations, calculate the air quality condition, and report real-time critical conditions. For this purpose, a four-tier architectural structure, including sensor, web service, logical, and presentation layer, has been designed. Using defined routines and subsystems, the system applies web sensor data to a set of web services to produce alerting information. The developed system, which is assessed through sensor observation, measures the concentration of carbon monoxide, ozone, and sulfur dioxide in 20 stations in Tehran. In this way, the real-time air quality index is calculated, and critical conditions are sent through email to those users, who have been registered in the system. In addition, interpolation maps of the observations along with time diagrams of sensors’ observations can be obtained through a series of processes, carried out by the process service. | ||
کلیدواژهها | ||
Sensor Web؛ Web GIS؛ AQI؛ Tehran | ||
مراجع | ||
Abbaspour, M. and Soltaninejad, A. (2004). Design of an environmental assessment model on the effect of vehicle emission in greater Tehran on air pollution with economic sensitivity. Int. J. Environ. Sci. Tech., 1(1), 27-38. Alesheikh, A.A., Oskouei, A.K., Atabi, F. and Helali, H. (2005). Providing interoperability for air quality in-situ sensors observations using GML technology. Int. J. Environ. Sci. Tech., 2(2), 133-140. Akbari, M.and Samadzadegan, F. (2015). Identification of air pollution patterns using a modified fuzzy co-occurrence pattern mining method. Int. J. Environ. Sci. Tech., 12(11), 3551-3562. An, R. and Yu, H. (2018). Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China. Public health, 159, 107-115. Botts, M., Percivall, G., Reed, C. and Davidson, J. (2006). OGC® sensor web enablement: Overview and high level architecture. International conference on GeoSensor Networks, 175-190. Botts, M. and Robin, A. (2007). OpenGIS sensor model language (SensorML) implementation specification. OpenGIS Implementation Specification OGC, 7(000). Boulos, M.N.K., Resch, B., Crowley, D.N., Breslin, J.G., Sohn, G., Burtner, R., ... and Chuang, K.Y.S. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples. Int. J. Health Geogr., 10(1), 67. Broering, A., Below, S. and Foerster, T. (2010). Declarative sensor interface descriptors for the sensor web. Proceedings of the WebMGS. Bröring, A., Remke, A., Stasch, C., Autermann, C., Rieke, M. and Möllers, J. (2015). enviroCar: A Citizen Science Platform for Analyzing and Mapping Crowd‐Sourced Car Sensor Data. Trans. GIS, 19(3), 362-376. Chen, N., Wang, K., Xiao, C. and Gong, J. (2014). A heterogeneous sensor web node meta-model for the management of a flood monitoring system. Environ. Modell. Softw., 54, 222-237. Degrossi, L.C., Do Amaral, G.G., De Vasconcelos, E.S., de Albuquerque, J.P. and Ueyama, J. (2013). Using wireless sensor networks in the sensor web for flood monitoring in Brazil. In ISCRAM. Delavar, M. R., Gholami, A., Shiran, G. R., Rashidi, Y., Nakhaeizadeh, G. R., Fedra, K. and Hatefi Afshar, S. (2019). A novel method for improving air pollution prediction based on machine learning approaches: a case study applied to the capital city of Tehran. ISPRS Int. J. Geo-Inf., 8(2), 99. Delin, K.A. and Jackson, S.P. (2001). Sensor web: a new instrument concept. Functional Integration of Opto-Electro-Mechanical Devices and Systems, 4284,1-10. Echterhoff, J. and Everding, T. (2008). Opengis sensor event service interface specification. Open Geospatial Consortium Inc., USA, OpenGIS Discussion Paper, OGC, 08-133. Everding, T. and Echterhoff, J. (2008). Event pattern markup language (EML). Foerster, T., Jirka, S., Stasch, C., Pross, B., Everding, T., Bröring, A. and Jürrens, E.H. (2010). Integrating human observations and sensor observations—the example of a noise mapping community. In Proceedings of Towards Digital Earth Workshop at Future Internet Symposium 2010. Gong, J., Geng, J. and Chen, Z. (2015). Real-time GIS data model and sensor web service platform for environmental data management. Int. J. Health Geogr., 14(1), 2. Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4), 211-221. Henneböhl, K., Gerharz, L.E. and Pebesma, E. J. (2009). An OGC web service architecture for near real-time interpolation of air quality over Europe. Proceedings of StatGIS 2009, Milos, Greece, G. Dubois (Ed.). Horita, F.E., de Albuquerque, J.P., Degrossi, L.C., Mendiondo, E.M. and Ueyama, J. (2015). Development of a spatial decision support system for flood risk management in Brazil that combines volunteered geographic information with wireless sensor networks. Comput. and Geosci., 80, 84-94. Akbari , M., et al. 40 Hu, L., Yue, P., Zhang, M., Gong, J., Jiang, L. and Zhang, X. (2015). Task-oriented Sensor Web data processing for environmental monitoring. Earth Sci. Inform., 8(3), 511-525. Jaafari, S., Shabani, A.A., Moeinaddini, M., Danehkar, A. and Sakieh, Y. (2020). Applying landscape metrics and structural equation modeling to predict the effect of urban green space on air pollution and respiratory mortality in Tehran. Environ. Monit. Assess., 192(7), 412-412. Jiang, Y., Dou, J., Guo, Z. and Hu, K. (2015). Research of marine sensor web based on SOA and EDA. J. Ocean. U. China, 14(2), 261-268. Jirka, S., Bröring, A. and Stasch, C. (2009, June). Applying OGC Sensor Web Enablement to risk monitoring and disaster management. In GSDI 11 world conference, Rotterdam, Netherlands. Johnson, T., Mol, A.P., Zhang, L. and Yang, S. (2017). Living under the dome: Individual strategies against air pollution in Beijing. Habitat Int., 59, 110-117. Jung, Y.J., Lee, J.R., Cho, K., Leeb, D.G., Leeb, Y. K., Lee, Y. .and Beard, K. (2013). Event Processing in Air Pollution Monitoring Application. Inf. Eng. Lett., 3(1), 88. Khedo, K.K., Perseedoss, R. and Mungur, A. (2010). A wireless sensor network air pollution monitoring system. arXiv preprint arXiv:1005.1737. Kotsev, A., Pantisano, F., Schade, S. and Jirka, S. (2015). Architecture of a service-enabled sensing platform for the environment. Sensors, 15(2), 4470-4495. Kumar, R., Mukherjee, A. and Singh, V.P. (2017). Traffic noise mapping of Indian roads through smartphone user community participation. Environ. Monit. Assess., 189(1), 17. Lorkowski, P. and Brinkhoff, T. (2015a). Environmental Monitoring of Continuous Phenomena by Sensor Data Streams: A System Approach Based on Kriging. In EnviroInfo and ICT for Sustainability 2015. Atlantis Press. Lorkowski, P. and Brinkhoff, T. (2015b). Towards Real-Time Processing of Massive Spatio-temporally Distributed Sensor Data: A Sequential Strategy Based on Kriging. In AGILE 2015, 145-163. Springer, Cham. Markovic, N., Stanimirovic, A. and Stoimenov, L. (2009). Sensor web for river water pollution monitoring and alert system. In 12th AGILE International Conference on Geographic Information Science “Advances in GIScience”, Hannover, Germany, 2073-8013. Na, A. and Priest, M. (2007). Sensor observation service. Implementation Standard OGC, 21. Pirotti, F., Guarnieri, A. and Vettore, A. (2011). Collaborative Web‐GIS design: A case study for road risk analysis and monitoring. Trans. GIS, 15(2), 213-226. Pummakarnchana, O., Tripathi, N. and Dutta, J. (2005). Air pollution monitoring and GIS modeling: a new use of nanotechnology based solid state gas sensors. Sci. Technol. Adv. Mat., 6(3-4), 251. Resch, B., Britter, R., Outram, C., Chen, X. and Ratti, C. (2011). Standardised geo-sensor webs for integrated urban air quality monitoring. In Environmental Monitoring. InTech. Resch, B., Sudmanns, M., Sagl, G., Summa, A., Zeile, P. and Exner, J. P. (2015). Crowdsourcing physiological conditions and subjective emotions by coupling technical and human mobile sensors. GI_Forum, 1, 514-524. Sammarco, M., Tse, R., Pau, G. and Marfia, G. (2017). Using geosocial search for urban air pollution monitoring. Pervasive Mob. Comput., 35, 15-31. Saukh, O., Hasenfratz, D., Noori, A., Ulrich, T. and Thiele, L. (2012). Demo Abstract: Route Selection of Mobile Sensors for Air Quality Monitoring. EWSN 2012, 10. Shafi, S., Reshi, A.A. and Kumaravel, A. (2014). Wireless sensor network based early warning and alert system for radioactive radiation leakage. Middle-East J. Scient. Res, 19(12), 1602-1608. Simonis, I. and Wytzisk, A. (2003). Web notification service. Open GIS Consortium Inc. Skopeliti, A. and Tsoulos, L. (2001). A knowledge based approach for the generalization of linear features. In Proceedings of 20th International Cartography Conference, 1-10. Slovic, A.D. and Ribeiro, H. (2018). Policy instruments surrounding urban air quality: The cases of São Paulo, New York City and Paris. Environ. Sci. Policy, 81, 1-9. Stasch, C., Foerster, T., Autermann, C. and Pebesma, E. (2012). Spatio-temporal aggregation of European air quality observations in the Sensor Web. Comput. and Geosci., 47, 111-118. Tang, S., Yan, Q., Shi, W., Wang, X., Sun, X., Yu, P. ... and Xiao, Y. (2018). Measuring the impact of air pollution on respiratory infection risk in China. Environ. Pollut., 232, 477-486. WHO .( 2019). Urban outdoor air pollution database. Geneva, Switzerland, Department of Pollution, 7(1): 25-41, Winter 2021 Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)" 41 Public Health and Environment, World Health Organization; 2018. http://www.who.int/phe Wiemann, S., Brauner, J., Karrasch, P., Henzen, D. and Bernard, L. (2016). Design and prototype of an interoperable online air quality information system. Environ. Modell. Softw., 79, 354-366. Yousefian, F., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K., & Hassanvand, M. S. (2020). Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci. Rep., 10(1), 1-11. Yue, P., Zhang, C., Zhang, M. andJiang, L. (2014). Sensor Web event detection and geoprocessing over Big data. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp. 1401-1404). IEEE. Yue, P., Zhang, C., Zhang, M., Zhai, X. and Jiang, L. (2015). An SDI approach for big data analytics: The case on sensor web event detection and geoprocessing workflow. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8(10), 4720-4728. Zheng, Y., Liu, F. and Hsieh, H. P. (2013). U-Air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1436-1444). ACM. | ||
آمار تعداد مشاهده مقاله: 1,261 تعداد دریافت فایل اصل مقاله: 882 |