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ABSTRACT ARTICLE INFO

We consider online scheduling of jobs with specific re-

lease time on m identical machines. Each job has a

weight and a size; the goal is maximizing total weight of

completed jobs. At release time of a job it must imme-

diately be scheduled on a machine or it will be rejected.

It is also allowed during execution of a job to preempt

it; however, it will be lost and only weight of completed

jobs contribute on profit of the algorithm. In this paper

we study D-benevolent instances which is a wide and

standard class and we give a new algorithm, that ad-

mits (2m + 4)-competitive ratio. It is almost half of the

previous known upper bound for this problem.
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We deal with online scheduling of problems with fixed start time to maximize total

weight of jobs. It is a well-studied problem with many applications. For instance call

control and bandwidth allocation in communication channels [1, 2]. Each job has a size

and a weight associated with. In this paper we consider it for identical machines. Jobs

are released online with fixed start time. On arrival of jobs, they are scheduled on m

machines, unlesss they will be rejected. The number of jobs and future release times are

unknown. Preemption is allowed, which means every job can be preempted at any time;

however, preempted jobs will be lost. Preemption can be useful, when more valuable jobs

are released and there are no available machines to schedule them (it is said that a machine

is available, if it is idle or just finished execution of a job). Without preemption, it is easy

to see that no online algorithm can be competitive for most models. However, power of

preemption is bounded and in some cases preemption does not improve algorithms [2].

An online algorithm is called R-competitive if the total weight of completed jobs is

at least 1/R as the optimum schedule for any instance. In the most general setting, no

algorithm has bounded competitive ratio (Section 1.1) and we consider a standard case,

D-benevolent instances which is a wide class of instances. In D-benevolent instances

weight of job is determined by a fixed function f of its size. A function f is D-benevolent

if it is decreasing on (0,∞), f(0) = 0, and f(p) > 0 for all p > 0. (Hence such functions

have a discontinuity at 0.)

1.1 Previous Result

As mentioned, in the general case, where jobs can have arbitrary weights and size, there

is no any online (randomized) algorithm with competitive ratio even on single machine

[7, 2]. [7] gave optimal 4-competitive algorithms for unit sized jobs with arbitrary weights,

D-benevolent jobs, and C-benevolent jobs, a single machine. The lower bound of 3 for all

surjective functions (includes D-benevolent instances) and single machine was shown by

the same author [7]. [5] and [3] considered the version of jobs with unit weights (a special

case of D-benevolent) on m identical machines. They gave a 1-competitive algorithm for

this problem. The lower bound of 2 in randomized algorithms was improved for unit size,

C-benevolent and D-benevolent instances by [6].

[4] gave a fact that “If algorithm Alg is R-competitive on a single machine, then an

algorithm that uses only the fastest machine by simulating Alg on it is (R.m)-competitive

on m related machines.”. Therefore, by the fact, they extended [7] results (4-competitive

algorithm on single machine for D-benevolent instances) to 4m upper bound on m related

machines for D-benevolent instances which implies on identical machines. They also gave



29 I. Mohammadi, / Journal of Algorithms and Computation 47 (2016) PP. 27 - 36

Figure 1: Execution of chain {j1, j2, j3, j4, j5} by Mi, sequence of jobs {j2, j3, j4} is an
only heap in this chain and set H4 contains jobs {j2, j3} and j5 is only job in the chain
completed by Mi

lower bound m for instances with unit-weight variable-sized jobs that are a special case

of D-benevolent instances, thus it holds the lower bound for D-benevolent instances on

related machines.

1.2 Our Result

In this paper we consider D-benevolent instances on m identical machines and give a

new algorithm. As mentioned, the previous upper bound for this problem is 4m and lower

bound is unknown which is a big gap [4]. Our algorithm improves the upper bound and

admit (2m + 4)-competitive ratio.

We also prove that our algorithm holds [7] upper bound in case of single machine with

4-competitive ratio. Therefore our algorithm admits best known upper bound on m iden-

tical machines.

2 Notations and Definitions

We consider online scheduling of jobs {j1, . . . } on m ≥ 1 identical machines. All

Machines have unit speed. r(j), p(j) and w(j) > 0 denotes release time, size and weight

of job j, respectively. [r(j), d(j)) is a time interval in which an algorithm runs job j and

d(j) is completed or preempted time of job j. Consider job j executing on machine Mi,

if j is completed, d(j) = r(j) + p(j) and if j is preempted, d(j) < r(j) + p(j). We call a

machine is idle if it is not running any job, otherwise it is busy.

For a given algorithm ALG and instance I, ALG(I) and OPT (I) denotes total weight

of completed jobs scheduled by ALG and optimal solution. ALG is called R-competitive

if OPT (I) ≤ R.ALG(I) for any instance I.
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Definition 1. A chain is a maximal sequence of jobs j1, . . . , jn running on one machine,

in which jk is preempted when jk+1 arrives (k = 1 . . . n− 1).

Definition 2. A heap jl, . . . , jh is a maximal sub sequence of a chain, in which r(jk) +

p(jk) ≥ r(jk+1) + p(jk+1) (k = l . . . h− 1) (it is called heap since figurative shape of the

sequence looks like a heap of jobs, e.g. {j2, j3, j4} in Fig. 1 ).

Definition 3. Consider chain j1, . . . , jn, Hk for 1 ≤ k ≤ n is a set of jobs jd in which

d ≤ k and jd is within a heap but not the last job of a heap.In the other words, Hk is a

collection of heaps which are appeared before kth job of the chain with the exception of the

last job of the heaps. Moreover, w(Hk) denotes total weight of jobs in Hk.

Due to the fact that every job is within a chain, there are two states for a machine.

Either a machine is idle or is busy and running a chain. At most m chain is running at

same time and a chain contains at least one job and at most all of the jobs. Also chain

may contain zero or more heaps.

Set Hk contains all the jobs in Hk−1 and probably jk, refer to the definition 3 (Note:

during execution of jk, Hk could not contain jk; however, it may be contained later, by

releasing future jobs and extending the heap in which jk is contained).

Fig. 1 illustrates execution of chain {j1, j2, j3, j4, j5} by machine Mi. Last job of

the chain is only job in the chain that is completed and other jobs are preempted by

the next arrived job. Sequence {j2, j3, j4} is only heap within the chain, thus we have

H5 = {j2, j3}, H4 = {j2, j3}, H3 = {j2, j3}, H2 = {j2}, H1 = {}.

3 Linear Competitive Algorithm for D-benevolent In-

stances

In this section we introduce an algorithm ALG that schedules D-benevolent instances

with 4-competitive ratio on single machine and (2m + 4)-competitive ratio on m > 1

machines. The weight of jobs in this class of input are given by a D-benevolent function

f of their sizes, that is, w(j) = f(p(j)). On arrival of a new job j, algorithm ALG decides

to schedule j or reject it.

Algorithm ALG:

1. If there are any idle machines, run j on one of them.
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2. Otherwise, all machines are busy, between m chains running on machines find chain

{j1, . . . , jk} in which [(
∑k

d=1w(jd))−w(Hk)] < w(j), then preempt jk and run j on

the same machine.

3. Otherwise, for a job j′ running on machine Mi that 1 ≤ i ≤ m and r(j′) + p(j′) ≥
r(j) + p(j), preempt j′ and run j on the same machine, if exists.

4. Otherwise, reject j.

Observation 1. For a chain {j1, . . . , jn} executed on machine i by ALG, Mi is idle

when j1 arrives and jn is only job in the chain that is completed. During [r (jk) , d (jk))

ALG runs jk , in which d(jn) = r(jn) + p(jn) and d(jk) = r(jk+1) < r(jk) + p(jk) for

k = 1 . . . n− 1.

Observation 2. Consider a chain {j1, . . . , jn} executed by ALG, we have w(jk) > [(
∑k−1

d=1 w(jd))−
w(Hk−1)] and [(

∑k
d=1 w(jd))− w(Hk)] ≤ 2w(jk) for k = 1 . . . n.

Observation 3. OPT completes all of it’s selected jobs. Consider job j′ that is run by

OPT on Mi. It would be said that j′ is associated with a specific chain run by ALG if

the chain was running on the same machine at the same time. Likewise, It would be said

that j′ is associated with job j run by ALG if j is running on Mi and r(j′) ∈ [r(j), d(j)).

3.1 Upper bound of ALG for single machine

Consider the problem for single machine; in this case we give upper bound 4 for ALG.

Claim 1. For m = 1, every job in OPT is associated with a chain in ALG.

Proof. Assume that j′ run by OPT , is not associated with any chain in ALG, thus during

release time of j′, the single machine is idle in ALG. Therefore, according to step 1, j′

would be scheduled in ALG and it becomes first job of a chain with which j′ is also

associated. A contradiction.

Lemma 1. For m = 1, consider a chain {j1, . . . , jn} containing a heap {jl, . . . , jh}, OPT

starts to run at most one job j′ in time interval [r(jl), d(jh)) and also r(j′) ≥ r(jh).

Proof. There is no job that is released after r(jl) and completed before r(jh) + p(jh) ≥
d(jh). Otherwise, {jl, . . . , jh} could not be a heap according to definition 2 and step 3

of ALG, which means the existed job would be contained into the heap as a last job of

the heap. Therefore, every job which OPT starts to run during [r(jl), d(jh)) would be

completed in time t ≥ d(jh) thus only one job j′ can be executed by OPT ( because

of overlapping at d(jh), it is impossible to run more than one job). In addition, we

have r(j′) ≥ r(jh); otherwise we would have p(j′) > p(jh) ⇒ w(j′) < w(jh) which is a

contradiction with optimal solution.
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Theorem 1. For m = 1, the competitive ratio of ALG is at most 4 for D-benevolent

instances.

Proof. Consider OPT runs maximal set of jobs {j′1, . . . , j′n′} which are associated with

a specific chain {j1, . . . , jn} in ALG, it is sufficient to compare total weight of jobs

{j′1, . . . , j′n′} with w(jn) (The only job in the chain that ALG completes). Now imag-

ine jk(k = 1 . . . n) is in the chain run by ALG and we have r(j′f ) ∈ [r(jk), d(jk)) in which

j′f is run by OPT (f = 1 . . . n′). It is clear that w(j′f ) ≤ [(
∑k

d=1w(jd))−w(Hk)] ≤ 2w(jk);

otherwise, by step 2 of ALG, j′f would preempt jk. In that case we would have j′f = jk+1,

which contradicts with assumption of release time of j′f . Further more, j′f is only job

started to run by OPT in [r(jk), d(jk)). If it was not, there would be some jobs started

and completed within this time interval, thus by step 3 of ALG, first of them would be

scheduled on the machine and it would become jk+1, that is a contradiction with assump-

tion of r(jk+1) = d(jk). In addition, by lemma 1, no jobs are started to run by OPT while

a job in Hn is running by ALG.

Hence:

n′∑
d=1

w(j′d) ≤ 2

[(
n∑

k=1

w(jk)

)
− w (Hn)

]
≤ 4w(jn)

Note: the second inequality directly comes from observation 2

3.2 Upper bound of ALG for parallel identical machines

Consider the problem for m parallel identical machines; in this case we give upper

bound (2m + 4) for ALG.

Claim 2. For m > 1, consider job j′ only executed by OPT and not by ALG. In this

case, j′ would certainly be associated with a chain in ALG.

Proof. Assume to the contrary that j′ is not associated with any chain in ALG, due to

step 1, ALG would run j′ on an idle machine, a contradiction.

We assign weight of every job executed by OPT to either a job or a chain executed by

ALG. Consider job j′ that OPT runs on machine i, the assignment rules is defined as

follows.

1. If ALG does not run j′, by claim 2 there is a chain with which j′ is associated,

assign w(j′) to the chain.

2. Otherwise, assign w(j′) to itself where ALG runs it.
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Now we can compute the total weight assigned to a specific chain and jobs of it.

Lemma 2. Assume ALG runs a heap {jl, . . . , jh} on Mi , OPT starts to run at most

one job j′ in time interval [r(jl), d(jh)) on Mi , such that j′ is not run by ALG.

Proof. Consider OPT runs a sequence of jobs j′1, . . . j
′
f within [r(jl), d(jh)), we show j′f is

only job that may not be run by ALG. We know in the heap r(jd) + p(jd) ≥ d(jh) for

l ≤ d ≤ h and OPT completes all of its’ selected jobs, so r(j′z) + p(j′z) < r(j′f ) < d(jh) for

z = 1 . . . f − 1. Hence, according to step 3 of ALG, there is at least one step in ALG to

run j′z.

Lemma 3. For a specific chain {j1, . . . .jn} run on Mi, total weight assigned to, is at

most 4w(jn).

Proof. Assume jk ∈ {j1, . . . , jn} and set of jobs {j′1, . . . , j′f} are started by OPT on Mi in

time interval [r(jk), d(jk)). It is clear that r(jk) + p(jk) > r(j′d) + p(j′d) for 1 ≤ d ≤ f − 1,

thus according to the step 3, ALG would certainly execute jobs {j′1, . . . , j′f−1}, which

means weight of no ones would be assigned to the chain. Instead, they would certainly

be assigned to themselves. As regards j′f , in case of not running by ALG, inequation

w(j′f ) < [(
∑k

d=1 w(jd)) − w(Hk)] ≤ 2w(jk) will be held, in which w(j′f ) will be assigned

to the chain. Further more, consider j′ is run by OPT and not by ALG during executing

of heap {jl, . . . , jh}. According to the lemma 2, j′ is only job with this circumstance and

also it is clear that w(j′) < 2w(jh). Hence the total weight assigned to the chain is at

most 2[(
∑n

k=1w(jk))− w(Hn)] ≤ 4w(jn).

For a specific chain {j1, . . . , jn} that may contains some heaps, we define a reduced-

chain {j′1, . . . , j′n′} which contains only jobs of the chain that are not within a heap or

are one of the m last job of a heap, so that any heap in a reduced-chain has at most m

jobs (m refers to the number of machines). Likewise, we define pseudo-chain {j′′1 , . . . , j′′n}
which contains all jobs of the reduced-chain as well as some pseudo jobs so that any job

in the pseudo-chain is within a m-heap (a heap containing exactly m jobs).

There are two steps for constructing pseudo-chain related to a chain. Firstly, only keep

any job of the chain that is contained in the related reduced-chain, and then drop the

rest job of the chain. Secondly, generate some pseudo jobs for the chain and adjust their

size and release time in a way that any remaining job of the chain would be included in

a m-heap.

In the second step pseudo jobs should be manually adjust such that they always take

part as former jobs of a m-heap. For example, consider j that is not in a heap. It is

required to generate m− 1 pseudo jobs in a way that they plus j form a m-heap in which
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j is the last job of the heap. In the other case, consider a heap in a chain that contains

less than m jobs. In this case, some pseudo jobs would be generated to extend the heap as

a m-heap and also they would be adjusted so that pseudo jobs become former and lowest

weighted jobs of the m-heap.

Observation 4. Consider a chain {j1, . . . , jn} with its’ related reduced-chain {j′1, . . . , j′n′}
and pseudo-chain {j′′1 , . . . , j′′n}. It is clear that the following equations will be held.

n′∑
i=1

w(j′i) ≤
n′′∑
d=1

w(j′′d ) , jn = j′n′ = j′′n′′

Lemma 4. For a pseudo-chain {j′′1 , . . . , j′′n′′} we have
∑n′′

d=1 w(j′′d ) < (2m)w(j′′n′′).

Proof. We know pseudo-chain is a sequence of heaps {h1, . . . , hz} and for 1 ≤ i ≤ z, hi

contains m jobs. hi(k) Denotes kth job of hi (e.g., hz(m) = j′′n′′).

By the step 2 in ALG it is clear that

w(j′′n′′) = w(hz(m)) >
z−1∑
i=1

w(hi(m))

Note: w(j′′n′′) = w(jn) and
∑z−1

i=1 w(hi(m)) = (
∑n−1

d=1 w(jd))− w(Hn−1) < w(jn)

We know that w(hi(k + 1)) > w(hi(k)). Therefore:

w(j′′n′′) >
z−1∑
i=1

w(hi(1))

+ w(j′′n′′) >

z−1∑
i=1

w(hi(2))

...

+ w(j′′n′′) >
z−1∑
i=1

w(hi(m))

(m)w(j′′n′′) >
m∑
k=1

z−1∑
i=1

w(hi(k)) =
n′′−m∑
d=1

w(j′′d )

We also know w(j′′n′′) is greater than weight of any job in pseudo-chain, so we have
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∑n′′

d=n′′−m+1w(j′′d ) ≤ (m)w(j′′n′′) hence:

n′′−m∑
d=1

w(j′′d ) +
n′′∑

d=n′′−m+1

w(j′′d ) =
n′′∑
d=1

w(j′′d ) < (2m)w(j′′n′′)

Lemma 5. For a chain {j1. . . . , jn} running on one of the m machines, if both ALG and

OPT schedule jk, then it will be contained within the related reduced-chain (for 1 ≤ k ≤
n).

Proof. Assume jk is not within the related reduced-chain. In this case, there would be a

heap with more than m jobs, which jk is one of the former jobs of the heap (it is released

sooner than m last job of the heap). Now we show that scheduling jk by OPT is in direct

contradiction to optimal solution. Since OPT is able to execute at most m jobs of a heap

(because of overlapping of jobs and similarity of machines), if OPT runs jk, definitely

there will be a job j′ within the last m jobs of the heap which will be omitted by OPT .

In addition, according to properties of heaps, we have w(j′) > w(jk) and p(j′) < p(jk)

and r(j′) ≥ r(jk) and r(j′) + p(j′) ≤ r(jk) + p(jk). Therefore, we can introduce better

solution, which schedules same jobs as OPT except jk that is replaced by j′.

Theorem 2. For m > 1, the competitive ratio of the ALG is at most 2m + 4 for D-

benevolent instances.

Proof. Since the ALG only completes the last job of the each chain and weight of all jobs

in OPT are assigned either to the chains or jobs of the chains, it is sufficient to compare

total weight assigned to a specific chain {j1, . . . , jn} and jobs of it, with weight of last

job of the chain w(jn) (the only job in the chain that ALG completes it). By lemma

3, the total weight assigned to the chain is at most 4w(jn), also according to the weight

assignment rules, the total weight assigned to a specific job jk is at most w(jk), in which jk
is within the related reduced-chain {j′1, . . . , j′n′}, by lemma 5. Now consider that sequence

{j′′1 , . . . , j′′n′′} is the related pseudo-chain of the chain. In this case, total weight assigned

to jobs of the chain is at most
∑n′

d=1 w(j′d) ≤
∑n′′

d w(j′′d ) < (2m)w(j′′n′′) = (2m)w(jn).

Hence:

(2m)w(jn) + 4w(jn) = (2m + 4)w(jn)
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