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Abstract  
A quantitative structure-property relationship (QSPR) in-silico study was 

performed to develop a mathematical model that correlates 2D and 3D descriptors 

of 37 antioxidant lubricant additives (compounds) with their properties. A 

molecular dynamics simulation study was also carried out to access these additives' 

binding strength on diamond-like carbon (DLC) and steel crystal surfaces. Five 

novel antioxidant lubricant additives were designed from the information derived 

from the QSPR mathematical model’s high coefficient molecular descriptors. All 

the novel lubricant additive’s antioxidant properties were found to be better than 

our previous study, with the lubricant additive (Z)-3-(4-(5-amino-1-phenyl-1H-

pyrazol-3-yl)-3,5-dimethylphenyl)-2-phenyl-5-(thiophen-2-ylmethylene)-3,5-

dihydro-4H-imidazol-4-one found to possessed excellent antioxidant properties of 

0.850281 total acid values (T.A.V 0.1g/L) than its co-additives.  Moreover, all the 

designed additives dynamically bind to steel crystal surfaces excellently from our 

dynamic simulation study than the DLC crystal surface. The molecular dynamics 

simulation results were found to be better than the one reported by our previous 

study. This investigation will help synthesize novel and excellent antioxidant 

lubricant additives that will hinder the base oil from undergoing a complete 

oxidation cycle and meet environmental requirements as these novel additives do 

not contain Zinc and Phosphorus, which often rendered exhaust pipes catalytic 

converter inactive, thereby increasing environmental pollution. 
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Introduction 

The growing concern among scientists and other researchers in the lubricating oil industry 

to explore other alternatives to replace the long-time use of zinc dialkyl dithiophosphates 

(ZDDPs) has continued to generate momentum. Studies show that higher concentrations 

(≥1800 ppm) of ZDDP (a multifunctional lubricant additive) were reported to be responsible 

for fewer corrosion inhibitor efficiency [1], while less concentration of this additive has been 

reported to be responsible for engine failure [2]. Moreover, less efficiency of catalytic 

converters and the violation of the environmental protection regulations have been traced to the 

use of ZDDP as a base oil additive [3].  

At an elevated dynamic temperature in the alloy coated internal combustion engines, metals 

such as iron, zinc, copper, and their alloys were reported to act as catalysts for auto-oxidation 

of lubricating oil the oil is in contact with the atmospheric oxygen. The auto-oxidized lube oil 

often resulted in an unexpected rise in viscosity, sludge, and volume generally varnishes [4-8]. 

Antioxidant additives are lubricating oil additives designed to hinder the base oil from 
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undergoing a complete oxidation circle. These additives also allow automobile lubricating oil 

to operate at unexpected higher dynamic temperatures. Base oil antioxidants such as Aromatic 

amines, hindered phenols, alkyl, and aromatic sulfides a complete oxidation circle been 

identified as reliable free radical tappers [4-8].   

Moreover, nitrogen or sulfur heterocyclic lubricant additives have also been reported to be 

effective antioxidant lubricant additives. They meet environmental requirements as they do not 

contain Zinc and Phosphorus, which often rendered exhaust pipe catalytic converter inactive, 

thereby increasing environmental pollution [9-11]. Therefore, there is an urgent need to sustain 

the momentum of pursuing a very active, reliable, and environmentally friendly antioxidant 

lubricant additive. 

In recent times, the rapid improvement of computer speed and programs has led to the 

development of in-silico studies. Computational in-silico simulations act as a boundary between 

microscopic level, time scales, and the macroscopic world of real laboratory experiments [11]. 

Quantitative Structure-Properties Relationship (QSPR), a theoretical in-silico study, was 

developed to predict and design leading active compounds effectively. QSPR does that by 

relating the chemical properties of a group of compounds with its molecular structures. This in-

silico study has recorded tremendous success in predicting and designing lead compounds with 

improving activities and properties [12,13]. Also, molecular dynamic (MD) simulation is 

another in-silico method that could accurately predict the dynamic interaction energies in close 

contact between potent compounds and crystal surface [13]. In this research, efforts were geared 

towards designing new active antioxidant lubricant additives and investigating their dynamic 

binding energies on Diamond Like-Carbon and steel crystal surfaces through QSPR and MD 

simulation approach. 

Materials and Methods 

Data set and Molecular Descriptors Generation 

The set of data used for this research was made up of 37 (Table 1 in the Appendix) 

heterocyclic derived antioxidant lube oil additives obtained from the literature [14-16] with 

their antioxidant expressed in terms of total acid values (0.1g/L), p(T.A.V 0.1g/L). All the 

selected heterocyclic derived lubricant additives 2D structure were drawn with the ChemDraw 

ultra V12.0 module and transferred to Spartan’14 version 1.1.2 [17] pre-energy minimization 

were carried out by molecular mechanics (MM) and followed by complete geometry 

optimization by B3LYP/6-311++ G** using Spartan’14 version 1.1.2 software. From the 

computational mathematical perspective, this density functional theory (DFT/B3LYP/6-311++ 

G**) method can provide reliable results compared to other in-silico methods [12,13]. The 

geometrically optimized additives were saved in sdf format and transferred to Dragon 6.0 

software toolkits and padel software [18] where about 4234 generated descriptors were reduced 

to 3500 after removing all the irrelevant descriptors. Moreover, Using the random selection 

method, the lubricant additive dataset was divided into training (24) and test sets (13). The 24 

training sets were used for the building and development of the QSPR models while the leftover 

13 test sets were used to evaluate the predictive power of the built models [19]. 

 QSPR model building and development 

Using 24 data of the training sets, the genetic function algorithm (GFA) method in material 

studio chemical model building software version 8.0 was employed to perform the correlation 

analysis between the anti-oxidant properties of the lubricant additives and the calculated 

molecular descriptors. The GFA has the following advantages over other methods; substituting 

regression calculations with the GFA allows the construction of models competitive with those 
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produced by standard techniques and makes available additional information not provided by 

other techniques. GFA as a result provides multiple reliable QSPR/QSAR models, and the 

population of the model is created by evolving random initial models using a genetic algorithm 

[12,13]. 

Assurance of the QSPR models and descriptors variance inflation factor (VIF) 

Determination 

The reliability, robustness, and predictive ability of the constructed QSPR models were 

accessed by internal and external validation parameters and compared with the standard 

recommended values for a generally acceptable QSPR model [20] in Table 2. The internal 

validation parameters such as the square correlation coefficient (R2) (1), the adjusted square 

correlation coefficient (R2
adj) (2) which increases the number of descriptors in the model, and 

the Leave one out cross-validation coefficient (Q2
cv) (3) and all these statistical values must be 

less than 0.5 but greater than 1.0 for a reliable, predictive and guaranteed QSPR model [20]. 

 

R2 = 1 −
∑(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

∑(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2
 (1) 

Radj 
2 = 1 − (1 − 𝑅2)

𝑁 − 1

𝑁 − 𝑃 − 1
=

(𝑁 − 1)𝑅2 − 𝑃

𝑁 − 𝑃 + 1
 (2) 

Q2 = 1 −
∑(𝑌𝑝 − 𝑌)2

∑(𝑌 − 𝑌𝑚)2
 (3) 

 

where p is the number of independent variables in the model, N is sample size [21] where 

Yp and Y represent the predicted and observed activity respectively of the training set, and Ym 

the mean activity value of the training set [21]. The models were externally validated by testing 

the previously excluded compounds which form the test set. The value of R2
Pred which indicates 

the predictive power of a model was calculated using equation (4) [20]. 

𝑅p𝑟𝑒𝑑
2 = 1–

∑[𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡) − 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡𝑒𝑠𝑡)]2

∑[𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡𝑒𝑠𝑡) − 𝑌𝑚𝑒𝑎𝑛(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)]2
 (4) 

Ypred(test) and Observed(test) indicate predicted and observed activity values respectively 

of the test set compounds and Ymean (training) indicates mean activity value of the training. The 

best regression model was generated by considering all the possible combinations of 

descriptors. Variance inflation factor (VIF) [22] was used to identifying the multicollinearity  

among variables. The VIF for the regression coefficient is expressed as:  

𝑉𝐼𝐹 =
1

(1 − 𝑅2)
 (5) 

where R2 is the correlation coefficient of the multiple regression between the variables within 

the model. If VIF equals 1, then no inter-correlation exists for each variable; if VIF falls into 

the range of 1–5, the related model is acceptable; and if VIF is larger than 10, the related model 

is unacceptable. 
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Table 2. Minimum recommended values of validated parameters for generally acceptable QSPR 
Symbol Name Value 

R2 Coefficient of determination ≥ 0.6 

P (95%) Confidence interval at 95% confidence level < 0.05 

Q2 Cross validation coefficient ˂ 0.5 

R2
ext Coefficient of determination for external test set ≥ 0.6 

R2 - Q2 Difference between R2 and Q2 ≤ 0.3 

Next. test set Minimum number of external test set ≥ 5 

 

QSPR Model’s Applicability domain (AD) 

The AD of a QSPR model is defined as a theoretical region in chemical space, defined by 

the model descriptors and modeled response, and thus by the nature of the chemicals in the 

training set, as represented in each model by specific molecular descriptors. Thus only the 

predictions for chemicals falling within this domain can be considered reliable and not model 

extrapolations [23]. Without the restriction placed by the applicability domain, QSPR models 

can predict the activity of any compound even if such a compound is structurally different from 

those included in the training set. This would lead to unreasonable extrapolation of the model 

in chemistry space and therefore heighten the chances of inaccurate predictions.  Thus for a 

QSPR model to give a reliable outcome, its applicability domain must be defined. The leverage 

is defined as a compound’s distance from the centroid of X. Mathematically, the leverage (hii) 

of a given compound in the multidimensional descriptor space, can be calculated as (Eq. 6)   

 ℎ𝑖𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1𝑥𝑖 (6) 

where 𝑥𝑖 the descriptor row matrix of the compound under consideration and X is the 

multidimensional matrix carrying the structural information (calculated molecular descriptors) 

for each training set compound.  The model predictions should be referred to as unreliable for 

those compounds for which hii diagonal elements are greater than the cut-off leverage value 

(h*). These compounds are located far from the structural centroid of the model, and therefore 

could be referred to as structurally influential outliers [24]. The cut-off leverage value (h*) is 

usually defined by Eq. 7. 

ℎ∗ =
3(𝑃 + 1)

𝑛
 (7) 

where p is the total number of descriptors used for developing the QSPR model, while n is 

the total number of the training set compounds. Moreover, the compounds for which the 

calculated standardized residual values are greater than standard deviation units could be 

considered as response outliers [24]. 

Virtual Screening Method; Template Based 

QSPR is an in-silico computational screening technique that designs or predicts the 

properties of un-synthesis chemical compounds with the desired properties by relating 

molecular properties of the compound with its molecular structure. This virtual screening 

method could determine whether the generated model could predict as many structures as 

possible as those used for the training and validation sets and to identify which structural 

modifications could be permitted using the domain of applicability to design a better novel 

chemical compound of desirable property. In this current research, a template-based chemical 
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compound design method was used to design novel antioxidant lubricant additives with 

improved properties. In the pool of experimental lubricant antioxidant additives, a template 

chemical compound with good leverage as well as excellent experimental properties was chosen 

as a useful scaffold toward the base for structural modification with the help of interpretations 

of molecular descriptors generated from the developed QSPR best model.  

Molecular dynamics simulation studies 

Chemical Compounds with anti-oxidant properties were reported to prevent oxidation by 

acting as radical trappers [14-16]. Therefore, a molecular dynamics simulation study was 

carried out to calculate which of the designed compounds have good dynamic binding energy 

against diamond-like carbon (DLC) surface. The dynamic module implemented in the Materials 

studio 8.0 software from Accelrys was used for the simulation calculations. 

Hydrogen-containing DLC (a-C: H) crystals and of the 3D lubricant additives 

Preparation 

The 3D structure of hydrogen-containing DLC crystal surface which was reported in many 

kinds of literature to be better allotropy of carbon in terms of wearing resistance ability and 

antioxidant in the sliding interface [25-30] was constructed from the carbon (C) model using 

Materials studio 8.0 simulation software. This was done by cleaving the carbon surface at point 

1.1 .0 (h k l), Top (1.006 Å), and Thickness (24.121 Å) into the crystal unit. Moreover, the 

repeated units (supercell) of the carbon crystal units were formed at U (9) and V (8) while 

hydrogenation of the supercell, vacuum slab, and geometric optimization was performed. The 

2D structures of the lubricant antioxidant additives were drawn with Chemdraw software and 

were then converted to 3D structures by Materials studio 8.0 simulations Software optimized 

and saved by the same software.  

Molecular dynamics simulation energy calculations   

The Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies II 

(COMPASS II) force field method in Materials studio 8.0 Software was selected and used for 

the molecular dynamic simulation. COMPASS II is a robust and well-developed (than 

COMPASS) force field derived based on fitting against a wide range of experimental data for 

organic and inorganic compounds [31]. Using the Materials studio 8.0 Software, The dynamic 

simulation calculations were carried out after introducing the optimized lubricant additive 

compound into the simulation vacuum slab of geometrically optimized hydrogen-containing 

DLC crystal (24.82 Å ×24.82 Å ×45.27 Å) surface at 350.15 K and over a range of inter-surface 

separations. The binding energy was calculated by using equation 8 [32].  

Molecular Dynamic Binding Energy = E total - (E Lubricant Additive + EDLC Surface) (8) 

Results and Discussion 

Some QSPR models were developed by investigating the structure-properties relationship of 

37 synthesized antioxidant lubricant additives. In a pool of some developed QSPR models, the 

best model with the best-squared correlation coefficient (R2), adjusted squared correlation 

coefficient (R2adj), Leave one out cross-validation coefficient (Q2), and the external validation 

(R2ext) of values 0.999477, 0.998823, 0.995547and 0.645 respectively were identified and 

selected as the model with the most predictive power [21]. This predictive model 

p(TAV.0.1g/L), that was expressed in term of antioxidant total acid values (TAV 0.1g/L) was 

further used to predict many properties of some designed antioxidant lubricant additives. Some 
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QSPR statistical analyses were also carried out to further validate the identified model; the plot 

of experimental properties versus residual activities (Fig. 1) indicated that there was no systemic 

error in the developed model as the propagation on both sides of zero in the graph was observed 

[32]. The plotted graph in Fig. 2 is in remarkable concurrence with the validation parameters 

[21] in table 2, and hence the developed model did not demonstrate any relative forms of error, 

since the R2 from the graph was found to be 0.7244. 

 
Fig.1. the experimental against the residual 0.01g/L values for the training and test sets of antioxidant lubricant 

additives 

 
 

Fig. 2. The experimental against the predicted values for antioxidant lubricant additives 

QSPR Model     

p (T. A. V
0.1g

L
)

= −0.402710730 × CrippenLogP − 0.899668648
× nAtomLAC − 7.181018099 × MDEN − 33
+ 0.413688209 × nRotBt +  4.465137586 × WT. eneg
+ 5.439709. R2 of 0.999477,  

 Radj
2 = 0.998823    Q2 = 0.995547    Rext

2 = 0.645  

(9) 
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The QSPR model revealed that decrease in molecular descriptors such as CrippenLogP 

(Lipophilicity parameter, character), nAtomLAC (Longest Aliphatic Chain Descriptor), 

MDEN-33 (Molecular distance edge between all primary carbons) and an increase in nRotBt 

(Rotatable Bonds Count Descriptor) and WT.eneg (Non-directional WHIM, weighted by 

Mulliken atomic electronegativities) values will increase the antioxidant properties of the 

lubricant additive [18, 34].  

Applicability domain’s assessment of the developed model and molecular designs 

To be sure of the additives to use as a design template for further structural modifications 

since the robustness of the QSPR model alone cannot be enough to predict the properties of all 

the compounds accurately within the chemical space [35]. In Fig. 3, William’s plot which is the 

applicability domain’s leverage plot was calculated and contained leverage danger, h* of 0.75. 

This plot revealed that about five compounds (14, 20, 27, 17, and 21) beyond the leverage 

danger were termed as influential antioxidant lubricant additives [24]. These influential 

antioxidant lubricant additives are compounds that go beyond the dangerous leverage 

lines/chemical space and therefore, such compound cannot be used as a design template [24]. 

The compound with serial number 15 (Table 1) has zero (0.00) residual value and was 

statistically found to be within the chemical space of William’s plot with an excellent leverage 

value (Fig. 3) was chosen as the best template after which further modification was made.  

From the developed QSPR model, the molecular descriptor with the highest/ contributor to 

the development of the model was WT.eneg (Non-directional WHIM, weighted by Mulliken 

atomic electronegativities). This descriptor was chosen as the best contributor due to the highest 

coefficient value among the co-descriptors. Therefore, the interpretation of this descriptor 

revealed that the addition of more weighted electronegative compounds such as nitrogen atoms 

from NH2  and another substituent like phenyl and methyl to the additive template (Fig. 4) 

revealed that better novel antioxidant lubricant additives were designed (Table 3). Moreover, 

all the five designed antioxidant lubricant additives along with their properties (total acid 

values) were found to be excellently better than the experimental antioxidant lubricant additives 

(Table 1). 

 

 
Fig. 3. Williams plot for QSPR Model 
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Fig. 4. 2D Structural fragment of the chosen additive template 

Table 3. Novel Antioxidant Lubricant Additive’s Properties and Dynamic Binding Energies 

S/N 2D of Designed Compound 

A.L.A 

Properties 

(T.A.N. ) 

Dynamic Binding Energy   

(kcal/mol) 

Steel- A.L.A 

Complex 

DLC-A.L. A 

Complex 

1 

 

0.850281 -171817 -12285.2 

2 

 

1.300557 172835 -12281.9 

3 

 

0.896965 

 

-171767 

 

-12278.8 

 

4 

 

1.144883 -171835 -12286.8 

5 

 

1.291393 -172870 -12286.4 

A.L.A = Antioxidant Lubricant Additive, A.V= Acid Value, T.A.N= Total Acid Value,       

DLC = Diamond Like Carbon 

 

Dynamic simulations studies 

The five designed antioxidant lubricant additives such as (Z)-3-(4-(5-amino-1-phenyl-1H-

pyrazol-3-yl)-3, 5-dimethylphenyl)-2-phenyl-5-(thiophen-2-ylmethylene)-3, 5-dihydro-4H-

imidazol-4-one, (Z)-3-(4-(3-amino-4-methyl-1-phenyl-1H-pyrazol-5-yl)phenyl)-2-phenyl-5-

(thiophen-2-ylmethylene)-3, 5-dihydro-4H-imidazol-4-one, (Z)-3-(4-(3-amino-4-methyl-1-

phenyl-1H-pyrazol-5-yl)-3-methylphenyl)-2-phenyl-5-(thiophen-2-ylmethylene)-3, 5-dihydro-

4H-imidazol-4-one, (Z)-3-(4-(5-amino-4-methyl-2-phenyl-2,5-dihydroisoxazol-3-yl)-3-

methylphenyl)-2-phenyl-5-(thiophen-2-ylmethylene)-3, 5-dihydro-4H-imidazol-4-one and 

(Z)-3-(4-(5-amino-2-phenyl-2,5-dihydroisoxazol-3-yl)-3-methylphenyl)-2-phenyl-5(thiophen-

2-ylmethylene)-3, 5-dihydro-4H-imidazol-4-one were found to be dynamically bound to the 

DLC (-12285.2, -12281.9, -12278.8, -12286.8 and -12286.4kcal/mol) and steel (-171817, 

172835, -171767, -171835 and  -172870 kcal/mol) surfaces respectively (Table 3). 
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 Moreover, from Table 3, it can be observed that all the designed additives were found to 

dynamically bind to the steel crystal surface than the DLC crystal surface. This study also 

revealed that (Z)-3-(4-(5-amino-2-phenyl-2,5-dihydroisoxazol-3-yl)-3-methylphenyl)-2-

phenyl-5-(thiophen-2-ylmethylene)-3, 5-dihydro-4H-imidazol-4-one was excellently bound to 

steel surface (-172870 kcal/mol) than its co-additives, while (Z)-3-(4-(5-amino-4-methyl-2-

phenyl-2,5-dihydroisoxazol-3-yl)-3-methylphenyl)-2-phenyl-5-(thiophen-2-ylmethylene)-3,5 

dihydro-4H-imidazol-4-one was also excellently bound to DLC surface (-12286.8 kcal/mol)  

than other antioxidant lubricant additives (Table 3). 

Conclusion 

Quantitative structure-properties relationships (QSPR) which is an in-silico method, were 

used to correlate 2D and 3D properties (descriptors) of antioxidant lubricant additives 

(compounds) with their properties. QSPR mathematical model and molecular descriptors with 

high coefficient value were used to design five novel antioxidant lubricant additives. All the 

novel additive’s antioxidant properties were found to be better than the experimental additives 

in Table 1 and our previous study [36], with the novel lubricant additive (Z)-3-(4-(5-amino-1-

phenyl-1H-pyrazol-3-yl)-3,5-dimethylphenyl)-2-phenyl-5-(thiophen-2-ylmethylene)-3,5-

dihydro-4H-imidazol-4-one found to possessed excellent antioxidant properties of 0.850281 

total acid values (T.A.V 0.1g/L).   Moreover, all the designed additives were found to 

dynamically bind to steel crystal surface excellently than the DLC crystal surface; this was in 

agreement with our previous study [36]. The additives; (Z)-3-(4-(5-amino-2-phenyl-2,5-

dihydroisoxazol-3-yl)-3-methylphenyl)-2-phenyl-5-(thiophen-2-ylmethylene)-3,5-dihydro-

4H-imidazol-4-one and (Z)-3-(4-(5-amino-4-methyl-2-phenyl-2,5-dihydroisoxazol-3-yl)-3-

methylphenyl)-2-phenyl-5-(thiophen-2 ylmethylene)-3,5-dihydro-4H-imidazol-4-one was 

excellently bound to steel (-172870 kcal/mol) and to DLC (-12286.8 kcal/mol) surfaces than 

their co-additives. The molecular dynamic simulation results were found to be better than the 

one reported by our previous study [36]. This investigation will help to synthesize novel and 

excellent anti-oxidant lubricant additives that will hinder the base oil from undergoing a 

complete circle of oxidation and they meet environmental requirements as these novel additives 

do not contain Zinc and Phosphorus which often rendered exhaust pipe catalytic converter 

inactive thereby increasing environmental pollution [9-11]. 
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Appendix 
 

Table 1. Experimental, Predicted and Residual Antioxidant Lubricant Additive’s Properties 

S/N 2D Structures 

Exp. A.L.A 

Properties 

(T.A.N.) 

Predicted 

(TAV.0.1g/L) 

Residual 

(TAV.0.1g/L) 

1 

 

10.19 9.88 0.31 

2 

 

6.80 6.70 0.10 

3 

 

7.66 6.78 0.88 

4 

 

7.28 7.49 7.28 

5 

 

7.61 7.49 -0.21 

6 

 

8.73 8.81 -0.08 

7 

 

8.79 8.70 0.09 

8 

 

8.82 7.82 1.00 

9 

 

10.41 10.34 0.07 
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10 

 

6.05 6.90 -0.85 

11 

 

6.82 7.15 -0.33 

12 

 

5.32 8.88 -3.56 

13 

 

7.01 7.04 -0.03 

14 

 

7.70 8.30 0.40 

15 

 

 

5.10 5.10 0.00 

16 

 

4.8 4.91 -0.11 

17 

 

3.8 5.23 -1.43 

18 

 

5.5 5.44 0.06 

19 

 

2.73 2.69 0.04 
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20 

 

1.5 1.50 0.00 

21 

 

2.57 4.41 -1.84 

22 

 

2.25 4.40 -2.15 

23 

 

10.74 9.60 1.14 

24 

 

10.64 8.56 2.08 

25 

 

9.07 7.48 1.59 

26 

 

9.64 9.70 -0.06 

27 

 

8.06 9.17 -1.11 

28 

 

7.57 7.77 -0.2 

29 

 

7.82 9.98 -2.16 
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30 

 

6.16 9.45 -3.29 

31 

 

10.19 9.88 0.31 

32 

 

9.96 7.86 2.1 

33 

 

9.52 9.10 0.38 

34 

 

5.6 7.80 -2.2 

35 

 

9.63 8.52 1.11 

36 

 

6.55 7.99 -1.44 

37 

 

7.84 9.16 -1.32 

A.L.A = Antioxidant Lubricant Additive, T.A.N= Total Acid Value    

 

 

 

 

 

 

This article is an open-access article distributed under the terms and conditions 

of the Creative Commons Attribution (CC-BY) license. 

 

https://creativecommons.org/licenses/by/4.0/

