
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Randomized Algorithm For 3-Set Splitting Problem
and it’s Markovian Model

Mahdi Heidari∗1, Ali Golshani†2, D. Moazzami‡3 and Ali Moeini§4

1Department of Information Technology, Ghent University-imec, IDLab, B-9052 Ghent,
Belgium.

2Department of Algorithms and Computation, University of Tehran.
3,4University of Tehran, College of Engineering, Faculty of Enginering Science

ABSTRACT ARTICLE INFO

In this paper we restrict every set splitting problem to
the special case in which every set has just three el-
ements. This restricted version is also NP-complete.
Then, we introduce a general conversion from any set
splitting problem to 3-set splitting. Then we introduce
a randomize algorithm, and we use Markov chain model
for run time complexity analysis of this algorithm. In
the last section of this paper we introduce “Fast Split”
algorithm.

Article history:
Received 30, June 2015
Received in revised form 18,
February 2016
Accepted 30 March 2016
Available online 01, April 2016

Keyword: NP-complete problem, set splitting problem, SAT
problem, Markov chain.

AMS subject Classification: 05C78.

1 Introduction

We want to restrict set splitting problem in general case to the specific version in which
each set has just three elements. We know k-set splitting for k ≥ 3 is NP-complete, [5]. In

∗Email: mahdi.heydari@intec.ugent.be
†Email: ali.golshani@gmail.com
‡Email: dmoazzami@ut.ac.ir
§Email: moeini@ut.ac.ir

Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

80 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

k-set splitting each set has just k elements, and there are some approximation algorithm
for these restricted problems [1, 3, 4]. We first introduce a general conversion from any
set splitting problem to 3-set splitting. Then we introduce a randomize algorithm, and
we use Markov chain model for run time complexity analysis of this algoritm.In the last
section of this paper we introduce “Fast Split” algorithm.

2 Basic Definitions

The set splitting problem is NP-complete, [2]. Now we describe the Set Splitting Problem
as follows:

Instance: collection C of subsets of a finite set S.

Question: is there a partition of S into two subsets S1 and S2 such that no subset in C
is entirely contained in either S1 or S2 .

Informally we can say, we have some bins, and in each bin we have some balls, each ball
can be in one or more bins simultaneously. Now we want to color balls with two colors;
blue and red, in such a way that each bin has at least one red ball and one blue ball.

Definition 1: Set S is 2-colorable if and only if we have a proper set splitting for S.

Definition 2: Three-ball bins are those bins which have only three balls.

We start with an example: If we have S = {w1, w2, w3, w4}, and C = {{w1, w2}, {w2, w3}, {w3, w4}},
then a proper splitting for S can be S1 and S2 as follows:

S1 = {w1, w3}, S2 = {w2, w4}

That is we can color w1 and w3 with blue color, w2 and w4 with red color

3 Transforming to 3-set splitting

Now we want to restrict our problem to the condition in which each bin have exactly
three balls. In our previous example all sets had just two balls Let S = {w1, w2, . . . , wn}
be a set of balls and C = {c1, c2, . . . , cm} be a set of bins making up an arbitrary instance
of set splitting in general case. We will construct a collection Ć of three-ball bins on a
set Ś of balls (we add some new ball to the S) which is 2-colorable if and only if C is
2-colorable. We replace each individual bin Cj with collection Ćj of three-ball bins with
original balls in S and some new balls in Ú j which is used only in Ćj. Ś is new balls set
and has also two other balls which should have different color we named this two balls R
and B and to make them to have different colors, we construct C ′′ as follows:

C ′′ = {{R,B, a}, {R,B, b}, {R,B, c}, {a, b, c}}

81 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

C ′′ consist of four bins and five balls{R,B,a,b,c}. We use R, B later in our transformation,
but we don’t use a, b and c anywhere else. C ′′ is a set of three-balls bin and to have C ′′

2-colorable we might color a , b and c not the same, so we force R and B to have different
colors.
So we have:

Ś = S ∪ (
m⋃
j=1

S j́) ∪ {a, b, c, R,B}

and

Ć = C ′′ ∪ (
m⋃
j=1

C j́)

Now we can show that how to construct Ś and Ć from S and C. If we group our original
bins into sets based on the number of balls in each bin, first group contains bins with
two balls (we haven’t bins with one ball because in that condition we haven’t a proper
splitting at all.) and second group has bins with three balls and so on. At each stage
of k stage (when k is the number of balls in one bin) we construct equivalent 3-ball bins
from original k-ball bin.
K = 2 :
For sets with two balls the transformation is as follows:
For each bin with two balls we replace that bin with two new bins. we put R and B in
two new bins separately. We then put two original balls which were in the original bin in
both two new bins. (As we know, we can have one ball in more than one bin at the same
time, but all of them should be color identical.)
We can summarize our discussion in:

S j́ = {w1, w2}

and

C j́ = {{w1, w2, R}, {w1, w2, B}

We know that B and R have different colors, so we can’t color w1 and w2 with the same
color. With this transformation we can be sure if we have one 2-colorable bin with just
two balls its equivalent 3-ball bins are also 2-colorable and vice versa. In Fig 2, we showed
this transformation.
K = 3:
For the set with bins which has 3 balls, we don’t need any further construction, and these
bins have a proper condition.
k > 3:
In these cases (k can be 4, 5 or more) we can construct S j́ and C j́ as follows:

S j́ = {w1, w2, . . . , wk} ∪ {q1, q2, . . . , qk−3} ∪ {r1, r2, . . . , rk−3}

82 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

Fig.2: Transforming to 3-set splitting when k=2, in the first step we should color one of
those two white balls with blue color and this make us to color the second white ball

with red color in the second step.

C j́ = {{w1, w2, q1} ∪ {rk−3, wk−1, wk}}
⋃

{{ri, wi+2, qi+1}, 1 ≤ i ≤ k − 4}
⋃
{{qi, ri, R}{qi, ri, B}, 1 ≤ i ≤ k − 3}

For each bin with k balls (k > 3) we have two groups of tree ball bins, first group have
k− 2 bins,just in the first and the last of these bins we put two original balls (w1 and w2

in the first bin, and wk and wk−1 in the last bin) and one local ball, and in other bins of
the first group we put only one original balls and two local balls. In the second group,
we have 2(k − 3) bins with 3 balls, these bins grantee qi and ri to have different colors,
whereas we used two global balls R and B which we forced them before to have different
colors, so to have 3-colorable bins in the second group qi and ri shouldn’t have same color.
We follow this case with an example:
Suppose we have a bin with five balls;
Cj = {w1, w2, w3, w4, w5}.
We construct an equivalent bins with three balls;

C j́ = {{w1, w2, q1}, {r1, w3, q2} {w4, w5, r2}}

∪{{q1, r1, R}, {q1, r1, B}, {q2, r2, R}, {q2, r2, B}}

Now our construction is completed, and it is easy to verify that, our construction is in
polynomial time. We should show:

Claim 1: we can color the balls in the original bins with two colors if and only if we
are able to color our new construction of bins and balls with two colors.

Proof: Suppose that f : S → {Red,Blue} is a right coloring for C.We will show f can
be extended to a right coloring f ′ : S ′ → {Red,Blue} for C ′.

83 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

We color R,B,a,b,c in the way that C ′′ members include both colors, and this implies
that R and B have different colors.
Since the variables in S ′− (S ∪{R,B, a, b, c}) are partitioned into sets S ′j and since
the variables in each C ′j occurs only in sets belonging to S ′j, we need only show how
f can be extended to the sets S ′j one at a time and in each case we need only verify
that all the sets in the corresponding C ′j are 2-colorable. we can do this as follows:
If we are able to color balls in the general form with two colors then we know, each
bin with any number of balls which we say it k, has at least one red and one blue
ball. If k is two, then one of them w1 or w2 is blue, and another one is red, so adding
new ball with any color don’t change its 2-colorability.

For Cj = {w1, . . . , wk}, k > 3 since f is a right coloring for C there must be at least
integer L such that wL and wL+1 color is different. (whereas in the set Cj we should
have both colors, so L exists in Cj), and also we define not function as follows:
not(red)=blue, not(blue)=red
we define coloring function f’ on set s′j as follows:
L = 1 :

f ′(ri) = not(f(wi+2)) i = 1, . . . , k − 3

f ′(qi) = not(f ′(ri))

2 ≤ L ≤ k − 2

f ′(qi) = not(f(wi+1)) i = 1, . . . , L− 1

f ′(ri) = not(f(wi+2)) i = L, . . . , k − 3

f ′(qi) = not(f ′(ri)) i = L, . . . , k − 3

f ′(ri) = not(f ′(qi)) i = 1, . . . , L− 1

L = k − 1 :

f ′(qi) = not(f(wi+1)) i = 1, . . . , k − 3

f ′(ri) = not(f ′(qi)) i = 1, . . . , k − 3

In the previous definitions we can verify following conditions:
L = 1 :

color(w1) 6= color(w2)

color(ri) 6= color(wi+2) 1 ≤ i ≤ k − 3

84 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

1 < L < k − 1 :

color(qi) 6= color(wi+1) 1 ≤ i ≤ L− 1

color(ri) 6= color(wi+2) L− 1 ≤ i ≤ k − 3

L = k − 1 :

color(qi) 6= color(wi+1) 1 ≤ i ≤ k − 3

color(wk−1) 6= color(wk)

and these observations warranties the correctness of above coloring.
Conversely if f ′ is a right coloring for C ′ , it is easy to verify that the restriction of
f ′ to the variables in S must be a right coloring for C.We should just show if C ′j
have a right coloring then all wi’s (i = 1, . . . , k) have not the same color. For k=2
it is obvious, but for k ≥ 3 supposing all wi’s have a same color, without lose of
generality we suppose all of them are blue. We do following assignment:
Red color=0
Blue color=1
Now the sum of colors in C ′j should be at least |C ′j| = k − 2 (because each set C ′j
has at least one red color) whereas every wi, qi and ri appears exactly one time in
C ′j then we have:

∑
x∈C′j

color(x) =
k∑

i=1

color(wi) +
k−3∑
i=1

color(ri) +
k−3∑
i=1

color(qi)

= 0 +
k−3∑
i=1

(color(qi) + color(ri))

−−−−−−−−−−−−−−−→
(color(qi) 6= color(ri)) =

k−3∑
i=1

1 = k − 3

and this is a contradiction to our assumption (k − 3 < k − 2).

4 Randomized algorithm for 3-set splitting problem

We introduce a randomize algorithm for coloring balls in three-ball bins and then we use
Markov chain as a tools to estimate the complexity of our randomize algorithm.
It is trivial way to find a proper coloring for balls by starting with an arbitrary coloring,
and then we look at each of bins and we try to find the bins which all three balls in it have
the same color. We select one of these balls and change its color to another color. It may

85 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

fix our problem in this bin, but it may cause some other negative or positive effects in
other bins which were two-colorable or not in last step. We can summarize our discussion
as follows:

two-coloring algorithm:

1.Start with an arbitrary coloring
2.Repeat up to m times, terminate if all bins have both two color ball.
a) Choose an arbitrary bin that its entire three balls have the same color.
b) Choose uniformly at random one of the balls in the bin and switch the color of that
ball.
3. If all bins have 2 color balls return it.
4. Otherwise return the coloring is not doable.

We have three choices to select one ball in one bin, and our random generator function
decides to select which ball to switch its color. In the algorithm, n denote the number of
balls, and m is a controlling parameter to have a correct answer.

4.1 Markov chain model

Let S be one right coloring for n balls and let Ai represent the ball coloring after the i
iteration of the algorithm and Xi denote number of balls in the current coloring Ai which
their color is similar to the color of balls in the right coloring S. when Xi = n or Xi = 0,
(in one right coloring state if we switch the color of all balls red to blue and blue to red,
we have still another right coloring). We found our desired coloring, and the algorithm
halts with correct answer. In fact, algorithm could terminate before Xi reaches to n or
0 if it find another correct answer but for our analysis in the worst case, algorithm only
stops when Xi = 0 or Xi = n. Starting with one arbitrary coloring when 0 < Xi < n we
consider how Xi evolves over time, and in particular how long it takes before Xi reaches
to n or 0.
For the case in which 0 < Xi < n we choose a bin that all its three balls have the same
color, in this bin we have at least one ball with the right color and we have at least one
ball with the wrong color. If Xi = k then with probability (k−1)

(n−2) the third ball has a
right color. If we chose one ball to change its color, with probability p we increase the
number of matches and with probability 1− p we decrease the number of matches where
p depends to the number of wrong colored balls in bin, if we have two wrong colored ball
then the probability of moving forward(increasing the number of matches) is 2

3
and if we

have one wrong cohered ball, then the probability of moving forward is 1
3
. Hence we can

find Pr(Xi+1 = j + 1|Xi = j) which is the probability of moving forward or increasing
the number of matches:

Pr(Xi+1 = j + 1 | Xi = j) = (
k − 1

n− 2
)
1

3
+ (

n− k − 1

n− 2
)
2

3
=

2n− k − 3

3n− 6
(1)

Let n be an even number(otherwise we add one extra ball to the ball set), and m = n
2
. We

define Ri as |Xi−m|, Ri = m is equivalent to the final solution of our problem. According

86 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

Fig.3: random walk on graph G

to (1) we have:

Pr(Ri+1 = r + 1 | Ri = r) =
1

2
− r

6(m− 1)
) 1 ≤ r < m (2)

The stochastic process R0, R1, . . . is a Markov chain. This chain, model a random walk
on graph G as we show in Fig.3 . The vertices of G are the integers 0, . . . ,m and, for
1 ≤ i ≤ m, node i is connected to node i− 1 and node i+ 1.

4.2 Time complexity analysis and study of two-coloring algo-
rithm and it’s Markov chain model

Let hr be the expected number of steps to reach m when starting from r. clearly hm = 0
and h0 = h1 + 1, since from h0 we always move to h1 in one step. Let Zr be random
variable representing the number of steps to reach m from state r. Now consider starting
from state r , where 1 ≤ r ≤ m− 1, with probability 1− pr = 1

2
+ r

6(m−1) the next state

is r − 1, and in this case Zr = Zr−1 + 1. With probability pr = 1
2
− r

6(m−1) the next state
is r + 1, and in this case Zr = Zr+1 + 1. Hence

E[Zr] = E[(1− pr)(1 + zr−1) + pr(1 + zr+1)] (3)

But E[Zr] = hr and so, by applying the linearity of expectation, we have:

hr = (1− pr)(1 + hr−1) + pr(1 + hr+1)

= (1− pr)hr−1 + prhr+1 + 1

We therefore have the following system of equations:

hm = 0

h0 = h1 + 1

hr = (1− pr)hr−1 + prhr+1 + 1 1 ≤ j ≤ m

(4)

87 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

By solving the above system equations we find h0 for different values of m we reach to
the following table:

m h0
2 6
3 15
4 32
5 58
7 160

10 586
15 4044
20 25410
30 919728
50 1053353107
75 6289502547544

If we color all balls randomly, each ball with probability 1
2

have a right color, so in this
case E[X0] = n

2
and E[R0] = 0. Ri = m state is equivalent to the final solution of our

problem, and our goal is reaching or at least getting close to this state.
Suppose Y be the probating of having both coloreds in one bin, following lemma indicates
the relation between Y and the states of Markov chain.

Lemma 1: E[Y | Xi = k] = 1 + p2 − p where p = k
n

and E[Y | Ri = r] = 3
4

+ r2

n2 .
Proof: In state k (when Xi = k) each ball with probability p = k

n
has a right color

similar to S. Consider bin (a, b, c) and suppose (a∗, b∗, c∗) is a right coloring of this
bin equivalent to S. In S, the color of two balls are different from the third one.
Without lose of generality we take a∗ and b∗ identical and different from c∗. Now
the probability of all three balls (a,b and c) have a same color is equal to:

Pr(a = a∗, b = b∗, c 6= c∗) + Pr(a 6= a∗, b 6= b∗, c = c∗) =

p× p× (1− p) + p× (1− p)× (1− p) = p(1− p)

So the probability of having both colors in that bin is:

1− p(1− p) = 1 + p2 − p

and the second statement is verifiable according to the definition of Ri in the first
statement.

The study of E[Y] shows in state Ri = m, we expect to have maximum number of 2-
colored bins, indeed in this state all bins have both colors, the minimum value of E[Y] is

88 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

obtained when Ri = 0 , and in this state we have:

E(Y | Ri = 0) =
3

4
If all balls colored randomly,the expectation value of R is 0, so if we start with a random
coloring, we are presumably in the worst point of chain.
we define T (k,m, p) for further lemma as below:

T (k,m, p) =
1

(1− 2p)2
× (2p(1− p)(tm − tk)− (1− 2p)(m− k))

0 ≤ k ≤ m , 0 ≤ p ≤ 1 p 6= 1

2
, t =

1− p
p

Lemma 2:
xm = 0

x0 − x1 = 1

xk = 1 + pxk+1 + (1− p)xk−1 1 ≤ k ≤ m

the solution of above system of equations with respect of p 6= 1
2

is:

xk = T (k,m, p) 0 ≤ k ≤ m

you can easily prove this lemma(by substitution).

In Markov chain the probability of moving forward when we are in Ri = r is equal to:

pr =
1

2
− r

6(m− 1)

this probability depends to r, and decreases by increasing r. If U(i, j) be the expectation
number of steps to reach state j when we start from state i, according to the above lemma
and decreasing pr by increasing r we can obtain following limits for U(i, j):

T (0, j − 1, pi) ≤ U(i, j)

U(0, j) ≤ T (0, j, p)

Result 1:

U(0,m) ∈ Ω((
7

5
)
m
2)

Proof:

U(0,m) ≤ U(
m− 1

2
,m− 1)

≤ T (0,
m− 1

2
, pm−1

2
) ∈ θ((7

5
)
m
2)

This result shows expectation number of steps to reach the final solution is from
exponential order, however we expected this order as we know set splitting problem
is NP-complete.

89 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

Result 2:
r =
√
m− 1, U(0, r) ∈ O(m)

Proof:
U(0, r) ≤ T (0, r, pr)

= (
9

2
r2 − 1

2
)(1 +

2

3r − 1
)r − 15

2
r2 +

1

2

∼= (
9

2
r2 − 1

2
)e

2
3 − 15

2
r2 ∈ θ(r2) = θ(m)

This result shows the expecting number of steps to reach state r =
√
m is from O(m)

. This result is not much surprising because for this value of r, E[Y] is 3
4

+ 1
4m

.So
reaching to this point of chain have not much impact to the number of 2-colorable
bins.(difference between the expectation number of 2-colorable bins in two states 0
and
√
m is constant number 1

2
).

Result 3:
For r =

√
k(m− 1)Ln(m− 1), (k > 0) we have :

U(0, r) ∈ O(
m1+ 2

3
k

Ln(m)
)

Proof:
U(0, r) ≤ T (0, r, pr)

(q =
m− 1

r
)

= (
9(m− 1)

2kLn(m− 1)
− 1

2
)(1 +

2

3q − 1
)kLn(m−1)q − 3(m− 1)− 9(m− 1)

2kLn(m− 1)
+

1

2

(if r → ∞)

∼= (
9(m− 1)

2kLn(m− 1)
− 1

2
)e

2
3
kLn(m−1) − 3(m− 1)− 9(m− 1)

2kLn(m− 1)

= (
9(m− 1)

2kLn(m− 1)
− 1

2
)(m− 1)(

2
3
)k − 3(m− 1)− 9(m− 1)

2kLn(m− 1)

∈ θ(m
1+ 2

3
k

Ln(m)
)

90 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

5 Greedy algorithm for 3-set splitting problem

5.1 Transforming 3-set Splitting problem to weighted max-cut
problem

Suppose 0,1 are representing blue and red colors, with this supposition for three balls a,b
and c we have:

f(a, b, c) =
1

2
(| color(a)− color(b) | + | color(a)− color(c) | + | color(b)− color(c) |)

If a,b and c have the same color f(a,b,c)=0 and when they haven’t the same color
f(a,b,c)=1. So we can find the number of 2-colorable bins through this sigma:

1

2

∑
(a,b,c)∈bins

f(a, b, c)

If we count number of simultaneous occupance of ball a and b in bin sets with n(a,b), we
can summarize the above formula as below:

1

2

∑
a,b∈balls set

n(a, b)× | color(a)− color(b) |

Considering complete and weighted graph G=(V,E), V is equal to balls set and the weight
of each edge is equal to n(a,b), in this graph ball coloring is equivalent to partitioning the
vertices into two disjoint set R and B. The sum of edges weight in cut (R,B) is equal to:∑

a∈R.b∈B

n(a, b) =
∑
a,b

n(a, b)× | color(a)− color(b) |

In other words, the weight of cut (R,B) is two times of 2-colorable bins number. So we
can transform 3-set splitting problem to weighted Max-cut problem.

5.2 Greedy algorithm with factor .75:

we consider π be an instance of 3-set splitting problem, and G=(V,E) be its equivalent
weighted max-cut problem π′. We show all bins number with M and 2-colorable bins
number with P . So we have:

M =
1

3

∑
a,b

n(a, b)

P =
1

2

∑
a,b

n(a, b)× | color(a)− color(b) |

91 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

following algorithm which we call it Fast Split is a solution with factor 0.5 for π′ problem.
Given a graph G=(V,E) start with an arbitrary partitioning of V, we move a vertex from
one side to the other if it improves the solution until no such vertex exists. The number of
iteration is bounded by O(

∑
a,b n(a, b)) = O(M), because the algorithm improves the cut

value by at least 1 at each step, and the maximum cut is at most
∑

a,b n(a, b). When the
algorithm terminates, each vertex v ∈ V has at least half of its edges in the cut(otherwise
moving v to the other subset improves the solution). So the cut is at least

∑
a,b n(a, b).

If p∗ be the number of 2-colorable bins in optimal solution we have:

pA =
1

2

∑
a∈RA,b∈BA

n(a, b) ≥ 1

2
× .5

∑
a,b

n(a, b) =
3

4
M ≥ 3

4
p∗

So the above algorithm guarantees at least 3
4

of bins have both colors. we can represent
this algorithm for problem π as below:

Fast Split algorithm:
Start with an arbitrary coloring
repeat
change the color of that ball which has most increment in the number of 2-colorable bins
until we haven’t any increment in the number of 2-colorable bins

This algorithm is actually a local search in states space, and in each step of algorithm we
have at least one increment to the number of 2-colorable bins, so the algorithm repeats
at most M times. Each step also needs O(M) time to search for the ball which has most
increment to the number of 2-colorable bins(by one time movement across all the balls
(M balls) and changing their color, we count number of 2-colorable bins and finally we
choose ball with maximum increment), so run time complexity of Fast Split algorithm is
from O(M2).

Lemma 3: Fast Split algorithm guarantees at least 3
4

of bins are 2-colorable.

6 Conclusion and further work:

We modeled set splitting problem with ball and bin which we want to color balls in bins
with two colors in such a way that we have both two color in each bin. Then we restrict
our attention to the case our bins have just 3 balls. This case is also NP-complete, and we
call this condition three-ball bin. We propose a way to convert any set splitting problem
to three-ball bin model. We design a randomized algorithm for this restricted problem,
and finally we estimate its complexity by modeling it by Markov chain. From now any
further work on set splitting can be done on only three-ball bin model because we can
reach to it from any general problem in polynomial time.
We implement this algorithm by Matlab programming language, complete code of this

92 M. Heidari / Journal of Algorithms and Computation 47 (2016) PP. 79 - 92

implementation is available as request for readers. Sat is another NP-complete problem
which has some similarity with set splitting problem. Again similar to 3-set splitting,
3-sat is a special case of SAT problem. In 3-SAT each clause has only three literals.
There are many ideas for solving 3-sat problem, we can look at them and reach more new
innovation for solving set splitting problem.

7 Acknowledgement

This work was supported by Tehran University. Our special thanks go to the University
of Tehran, College of Engineering and Department of Engineering Science for providing
all the necessary facilities available to us for successfully conducting this research.

References

[1] G.Anderson, L.engebretsen, Better approximation algorithm for set splitting and
not-all-equal sat,Information Processing Letters 65 (1998) 305-311 .

[2] M.Garey and D.Johnson, Computers and Intractability: A guide to the Theory of
NP-completeness.

[3] . M.X. Goemans, D.P Williamson, Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming, J. ACM 42 (1995)
1115-l 145.

[4] .V.Kann, J. Lagergren, A. Panconesi, Approximability of maximum splitting of k-sets
and some other Apx-complete problems, Inform. Process. Len 58 (1996) 105-110.

[5] . L. Lovsz, Coverings and colorings of hypergraphs Proc. 4th Southeastern Conf. on
Combinatorics, Graph Theory, and Computing, Utilitas Mathematica Publishing,
Winnipeg (1973), pp. 312

