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1 Abstract continued

These quarantining problems can be used in other fields, specially in graph theory. For
this reason, three applications have been appended: generalized minimum cut problem,
finding an isolation with no single node, and partitioning problem.

2 Introduction

The dynamics of infectious diseases spread (such as influenza, smallpox, HIV, SARS,
etc.) and the efficacy of intervention strategies depend deeply on the underlying host
contact network. The importance of network structure has been explored in various pa-
pers [5,6,7,11,14] where network structures are considered as indispensable tools to model
infectious disease that provide insights to prevent the spread of disease between communi-
ties. For example, Hartvigsen et al. found that vaccinating hosts preferentially with high
clustering coefficients results in twice the number of hosts infected as random vaccinations
than their strategy targeting highest degree hosts [10]. Miller and Hyman compared vac-
cination strategies based on random vaccination (no information) to complete information
about a realistic social network and showed that vaccinating those people with the most
unvaccinated contacts is more effective than a vaccination strategy based on node degree
[8].
As an abstract common idea in such these studies, communities are considered as a con-
tact network and analyzed with emphasis on the understanding of their structures for
preventing the spread of disease. However, these strategies are very different from one
another in prevention measures, initial limitations or relaxations in problem definition,
the construction of an abstraction through a mathematical model and solution techniques
to find an optimum.
In some methods such as vaccination approaches, network structure stays unchanged. In
contrast, we follow in this paper methods preventing the spread of disease by changing
contact patterns [3,4,10,13,15]. These methods solve a problem of link removal and are
applicable in situations in which prevention is interpreted as a cut in a network (reducing
or cutting contacts with infected elements). For example, the prevention of the spread of
infectious diseases such as HIV, tuberculosis or SARS for which there is no vaccine.
Based on some specific applications or requirements, different initial assumptions may
be considered for a model. Some methods consider the nodes of a network as clusters of
communities, hotels, cities or individuals [8,9,10,12,18,19] or may only act on locally avail-
able network information [16]. In this paper, nodes represent individuals and a model is
presented to cover situations with both local and global network information. Among the
papers that have studied the preventing techniques of the spread of an infection, only a
few ones have investigated link isolation or link removal methods [3,4,10,13,15,17]. Some
papers in this category studied the network structure problem before the spread of an
infection. Omic et al. proposed a link isolation strategy based on the quarantining of sus-
ceptible clusters and studied empirically the influence of clustering on robustness against
epidemics in real-world and artificial networks [19]. Authors in [12] investigated a quaran-
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tining problem to maximize the speed at which the virus is eliminated. For this purpose,
they solved some related problems by Lagrange multipliers technique. Marcelino and
Kaiser [4] examined the effects of flight cancellation ranked by edge centrality to decrease
the spread of disease in an airline network. On the other hand, Enns et al. studied the
problem of link elimination after the spread of infection. They converted the problem into
a non-convex quadratically constrained quadratic program and then relaxed it to a con-
vex optimization one via a semidefinite relaxation. Using this semidefinite program, they
found a lower bound on the objective function of the original problem by a randomization
method [5]. Another method in the field of optimization theory was used by Carlyle [11]
who developed an integer programming problem to find an optimal quarantining based
on the suspected infection status of individuals. This model did not incorporate resource
constraints and emphasized on geographically feasible partitions.
In this paper, we study the structure of a contact network and propose a preventing
method to control an infectious disease spreading through the network. The general idea
of the method is based on the deletion of some links (or edges) such that all of infected
nodes are isolated and the cardinality of the set of susceptible nodes connected to infected
ones is minimized [14]. For this purpose, we present a new optimization model and utilize
it firstly to a network under assumptions considered in [14] where the infection state of
nodes is initially known and the number of removable links is bounded from above. The
formulation of this problem (referred to the primary problem, in this paper) is formed as
a linear programming problem in which some variables are binary. The number of these
difficile variables in the formulation is as many as the number of nodes in the network.
The number of such these variables is advantageously not dependent on the amount of
density in a graph. Actually, this invariance property causes the model to be insensitive
to the number of links as problem data. Furthermore, although some difficulties arise
computationally from binary variables, the preceding link invariant as well as the linear
structure of the model, enables us to apply desirably well-known methods in the field of
integer programming such as interior point algorithms or powerful combined approaches
such as simplex implementation together with a special cutting plane technique [6]. Be-
sides the computational aspects, the model finds an exact solution and characterizes the
position of links that should be eliminated for an optimal quarantining.
A natural generalization is resulted directly from the primary problem in a way that the
other resource constraints are also similarly included. Precisely, we associate time as well
as a cost coefficient with each link and define two additional upper bounds on the total
time and the total budget spent on a link breaking process.
Apart from these formulations, the number of removed links may be considered in many
situations as another impressive parameter interfering in the quality of an optimum. Ac-
tually, an optimal isolation with the most number of rescued nodes for an infection, may
be obtained, on the other hand, by the most number of removed connections as well.
However, it may be prefered to decrease this number of disconnected relationships for
several reasons such as some limitations on operating time, invested budget, the remotion
possibility of some links or the amount of network’s connectivity. By considering this
new factor, we present a generalized model that can be used to measure the resistance
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of networks to the spread of a disease both after and before an infection agent is intro-
duced. In this model, the number of removable links is no longer treated only as a crisp
constraint. Instead it also serves as a variable in the objective function of the problem.
According to this strategy, the number of removed links is minimized, while the number of
rescued nodes is as large as possible. The robustness of a given network before the extent
of infection is assessed by an additional constraint on the number of nodes that will be
likely infected. In doing so, the model finds the best reaction of a network confronting an
infection whose least amount has been already specified.
In fact, this formulation permits us to characterize the infection state of some nodes or
that of all nodes (the case in which the robustness is measured after an infection spreads)
beforehand.
Finally, none of the preceding generalization increases the number of binary variables;
in fact, the structure of the models makes it simply possible in any case to analyze the
reaction of a given network to the changing of the infection state of nodes. We list our
contribution briefly as follows:

(1) We investigate a social network with individuals as nodes and human connections as
links. If some nodes are infected, then this infection can spread by the connections.
So, a natural way is to delete some connections and isolate the infected nodes from
the others. At first, we present a mathematical model for this problem (problem
(1)).

(2) Problem (1) is converted into an integer-linear problem (problem (4)).

(3) We modify problem (4) and obtain a new integer-linear problem (problem (3)) having
the least number of binary variables.

(4) The optimal solution of problem (1) is derived from that of problem (3).

(5) Some generalizations, applied and theoretical aspects of problem (3) are presented.

In section 3, we formulate the primary problem as a linear programming model includ-
ing some binary variables. This model solves the problem of link removal to control a
spreading disease. In section 4, a developed model has been proposed to optimize both
the number of rescued nodes and the number of removed links, simultaneously. This
generalization can be used to characterize the robustness of networks after or before the
spreading of an infection. Section 5 presents some corollaries of the preceding models,
particularly in graph theory. At last, numerical examples have been provided to illustrate
the models.

3 Primary Problem

Consider a network G = (N,E) consisting of a set N of n nodes (|N | = n) whose elements
(nodes) have been numbered from 1 to n and a set E of m edges (|E| = m). We refer to
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an edge joining the node pair i and j as {i, j}. Also, we represent a cut of the network by
the notation [N1, N2] in which N2 = N −N1. Here, neither N1 nor N2 is empty, and each
edge {i, j} ∈ [N1, N2] has one endpoint in N1 and the other endpoint in N2. Let N̄ ⊆ N
denote the set of infected nodes and k0 be a preassumed scaler denoting the upper bound
of removable edges. According to the assumptions, an optimization problem (henceforth
called the primary problem) is to find a cut [N1, N2] of network G such that N̄ ⊆ N1

and |N1| is minimum. Equivalently, we would like to separate a network into two parts
(including probably several components) in such a way that:

(i) All infected nodes belong to the same part.

(ii) The number of other nodes (initially uninfected nodes) not belonging to this part
(rescued nodes) is maximized (identically, the number of susceptible nodes staying
connected to infected ones is minimized).

(iii) The number of deleted links does not exceed a given upper bound.

We associate with each node i ∈ N a variable xi whose value is equal to one, if node i
belongs to the part to which the infected nodes belong and equal to zero, otherwise. Our
model is then formulated as follows:

min
n∑

i=1

xi∑
{i,j}∈E

|xi − xj| ≤ k0, i = 1, 2, · · · , n− 1

xi ∈ {0, 1} for i = 1, 2, · · · , n (1)

xi = 1, i ∈ N̄

The objective function sets the values of xi’s equal to zero as many as possible and
maximizes consequently the number of rescued nodes. According to the first constraint,
only links connecting an infected node to an uninfected one are calculated by the inequality
(the summation is taken over indices i < j to consider each edge {i, j} ∈ E once). Also,
links indicate in general only connections between nodes. Based on this, the existence
of several links between two nodes gives no more information and we can show such
these parallel arcs with one link between that nodes. Nevertheless, if parallel arcs are
meaningful in an application, we encounter some notational difficulties. Actually, this
difficulty is merely notational and can be easily handled by various methods such as:
using an appropriate data structure or replacing parallel arcs with one weighted link (see
Corollary 3.5). In agreement with the purpose of the primary problem and the definition
of upper bound k0, other links (those joining two infected or two uninfected nodes) are
not considered in the formulation. Binary variables xi(i = 1, · · · , n) are as many as the
number of nodes and an infected node i can be easily characterized in the beginning by
defining the value of xi equal to one. By this treatment, we can analyze a given network
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with different positions of its infected nodes simply by changing the values of xi’s from
one to zero or vice versa. According to the preceding statements, we have the following
theorem.

Theorem 1. The optimal feasible solution of problem (1) is the feasible optimum to the
primary problem.

Proof. Let N1 = {i : xi = 1} for an optimal feasible solution of problem (1). Obviously,
N̄ ⊆ N1 and [N1, N − N1] is a cut (condition (i)). Since |xi − xj| = 1 iff xi 6= xj, then
each edge in the cut is calculated by inequality constraint in (1) and vice versa. Thus,
this inequality satisfies condition (iii). Condition (ii) is attained from the definition of the
objective function.

Obviously, vector 1t = [1, 1, · · · , 1]1×n is always a feasible solution of problem (1) and
introduces a trivial isolation (as large as a whole network) in which all of nodes are
infected. Therefore, we consider justifiably only isolations (as the feasible quarantinings
of the primary problem) in which there exists at least one i ∈ N − N̄ such that xi = 0.
The following lemma gives a feasibility criterion to the primary problem in terms of the
optimum of problem (1).

Lemma 3.1. The primary problem has no feasible quarantinings iff vector 1 is the unique
optimum of problem (1).

In order to linearize problem (1), firstly we consider the following substitutions for each
{i, j} ∈ E such that i < j:

Pij +Nij = Yij

Pij −Nij = xi − xj (2)

Yij ≤ 1

Pij, Nij, Yij ≥ 0

By these substitutions, the linear-binary formulation of the primary problem is stated as
(see Remark 3.2):

min

n∑
i=1

xi∑
{i,j}∈E

Yij ≤ k0, i = 1, 2, · · · , n− 1 (3)

X̄


Pij +Nij = Yij, {i, j} ∈ E and i < j
Pij −Nij = xi − xj, {i, j} ∈ E and i < j
Yij ≤ 1, {i, j} ∈ E and i < j
Pij, Nij, Yij ≥ 0, {i, j} ∈ E and i < j
xi ∈ {0, 1} , i = 1, 2, · · · , n
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xi = 1 , i ∈ N̄

For brevity, we show the set of vectors (x, Y, P,N) satisfying the constraints above except
the first and the last constraints by the notation X̄.

Remark 3.2. Consider problem (3) with additional constraints Pij, Nij ∈ {0, 1} for
{i, j} ∈ E, i.e.

min

n∑
i=1

xi∑
{i,j}∈E

Yij ≤ k0, i = 1, 2, · · · , n− 1 (4)

(x, Y, P,N) ∈ X̄
xi = 1, i ∈ N̄
Pij, Nij ∈ {0, 1}, {i, j} ∈ E

where xt = (xi)1×n, Y t = (Yij)1×m, P t = (Pij)1×m and N t = (Nij)1×m. The integrality
constraints on variables Pij and Nij imply Yij = |xi − xj| for each {i, j} ∈ E. Therefore,
the feasible regions of two problems (1) and (4) are obviously the same and these problems
are consequently equivalent. If the integrality requirement on Pij’s and Nij’s is dropped,
problem (3) is attained with the fewer binary variables. Nevertheless, Theorem 2 below
shows that an optimal solution of problem (3) is (or can be converted into) an optimum
of problem (4) and hence that of problem (1).

Theorem 2. Suppose that (x, Y, P,N) is an optimal solution of problem (3), where xt =
(xi)1×n, Y t = (Yij)1×m, P t = (Pij)1×m and N t = (Nij)1×m. If (x∗, Y ∗, P ∗, N∗) is defined
as follows:

x∗ij = xij

P ∗ij =

{
Pij Pij 6= Nij

0 Pij = Nij

N∗ij =

{
Nij Pij 6= Nij

0 Pij = Nij

Y ∗ij = P ∗ij +N∗ij

for each {i, j} ∈ E with i < j, then

(a) Y ∗ij = |x∗i − x∗j |, for each {i, j} ∈ E with i < j.

(b) (x∗, Y ∗, P ∗, N∗) is an optimal solution of problem (1).
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Proof. (a) Let xi = 0 and xj = 1. Then, Pij − Nij = −1. Since Pij + Nij = Yij ≤ 1,
Pij ≥ 0 and Nij ≥ 0, we have Pij = 0 and Nij = 1. Hence, P ∗ij = 0 and N∗ij = 1 that
implies Y ∗ij = P ∗ij +N∗ij = |x∗i − x∗j | = 1 (the proof is similar when xi = 1 and xj = 0).
Otherwise, let xi = xj = 0. Then, Pij −Nij = 0. In this case, since Pij + Nij = Yij ≤ 1,
we have Pij = Nij ≤ 0.5. However, P ∗ij = N∗ij = 0 that means Y ∗ij = |x∗i − x∗j | = 0 (the
proof is similar when xi = xj = 1 ).
(b) At first, we prove that (x∗, Y ∗, P ∗, N∗) is an optimal solution for problem (3). If
xi − xj = 0, then Pij = Nij and we have by our definition P ∗ij = N∗ij = 0. In this case,
0 ≤ Y ∗ij = P ∗ij +N∗ij ≤ Pij +Nij = Yij ≤ 1 and

∑
{i,j}∈E

Y ∗ij ≤
∑

{i,j}∈E
Yij ≤ k0. However, since

x∗i = xi, it is easy to see that (x∗, Y ∗, P ∗, N∗) satisfies all the constraints of problem (3)
(otherwise, if xi−xj 6= 0, then the feasibility of (x∗, Y ∗, P ∗, N∗) is trivially obtained where
P ∗ij = Pij, N

∗
ij = Nij, and x∗i = xi). Moreover, since the objective function possesses only

variables xi and also x∗i = xi, thus the values of objective function for (x, Y, P,N) and
(x∗, Y ∗, P ∗, N∗) are equal. Therefore, (x∗, Y ∗, P ∗, N∗) is an optimal solution for problem
(3).
On the other hand, we have P ∗ij, N

∗
ij ∈ {0, 1} and Y ∗ij = |x∗i − x∗j | (part (a)) that mean

(x∗, Y ∗, P ∗, N∗) is a feasible solution for problem (4). Now, since the feasible region of
problem (4) is the subset of that of problem (3), thus (x∗, Y ∗, P ∗, N∗) must be also an
optimal solution for problem (4). Now, the result follows from Remark 3.2.

Corollary 3.3. Regarding the proof above, i.e., part (a), we can obtain vector Y ∗ more
simply which is as follows:

Y ∗ij =

{
0 Pij ∈ (0, 0.5] (orNij ∈ (0, 0.5])
1 Pij ∈ {0, 1} (orNij ∈ {0, 1})

Corollary 3.4. By the definition, vector Y ∗ characterizes the positions of broken links.
If Y ∗ij = 1, then {i, j} is deleted by the model.

Corollary 3.5. Let tij (or/and bij) be the time (the budget) that should be consumed for
breaking link {i, j} and t0 (or/and b0) be an upper bound on the admissible total time (total
budget) spent by a process of link removing. These additional resource restrictions can be
formulated as

∑
{i,j}∈E

tij|xi − xj| ≤ t0 and
∑

{i,j}∈E
bij|xi − xj| ≤ b0 and similarly linearized

as stated in problem (2).

4 Maximum Rescued Nodes - Minimum Deleted Links

In this section, we study an isolating model with regard to the number of both rescued
nodes and removed links as well. Firstly, we consider a problem in which only (an esti-
mation for) the lower bound of infection damage is at hand. Our formulation is stated
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as:

min k +M
n∑

i=1

xi∑
{i,j}∈E

Yij ≤ k, i = 1, 2, · · · , n− 1

n∑
i=1

xi ≥ k1 (5)

(x, Y, P,N) ∈ X̄

where k1 6= 0 is a scalar, M is an adequately large positive number and X̄ is defined as in
(3) (if k1 = 0, zero vector 0t = [0, · · · , 0]1×n is obviously the unique optimum). Variable
k denotes the number of deleted links and has a role to play in the objective function. In
this model, no nodes are initially infected. Instead, the least number of nodes that will
be likely infected has been supposed to be equal to k1. The objective of this formulation
is to assess the best reaction of a network (to find an isolation with many rescued nodes
and a few deleted links) in a case in which only the least amount of an infection damage
is known (at least, k1 nodes will be infected).

Remark 4.1. The primary infection state of nodes can be easily added to the model by
setting their values initially equal to one or zero. This case can be interpreted as a solu-
tion strategy in which some additional local information about nodes is known. Obviously,
the number of initial infected nodes, say k̄, must be less than or equal to k1. Specially,
if k̄ = k1 and k = k0, problem (5) is converted into the primary problem in which opti-
mal quarantining and the robustness of networks are investigated after the extent of an
infection.

Remark 4.2. If penalty multiplier M = 1, problem (5) may have alternative optima in
terms of the numbers of rescued nodes and deleted links. Figure 1 depicts one example.

Initial infected nodes have been shown in black. According to Remark 4.1, we have k̄ = 3.

Let k1 = 4 and objective function f(x, k) = k +
n∑

i=1

xi (M = 1). Since each isolation in-

troduces naturally a set of infected nodes and a set of deleted links, let PN = {i : xi = 1}
and PY = {{i, j} ∈ E : Yij = 1 and i < j} for each isolation Px ∈ {0, 1}n. So, for each

isolation Px, we have f(Px,P k) =P k +
n∑

i=1

Pxi = |PY | + |PN |. Hence, problem (4) has

four optimal solutions 1x, 2x, 3x and 4x which are as follows:
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1

Figure 1: A network with three initial infected nodes 1, 2, 3

1x = [1, 1, 1, 1, 0, 0]t : 1N = {1, 2, 3, 4},
1Y = {{4, 5}, {4, 6}},
1k = 2, f(1x,1 k) = 6

2x = [1, 1, 1, 1, 1, 0]t : 2N = {1, 2, 3, 4, 5},
2Y = {{4, 6}},
2k = 1, f(2x,2 k) = 6

3x = [1, 1, 1, 1, 0, 1]t : 3N = {1, 2, 3, 4, 6},
3Y = {{4, 5}},
3k = 1, f(3x,3 k) = 6

4x = [1, 1, 1, 1, 1, 1]t : 4N = {1, 2, 3, 4, 5, 6},
4Y = ø,
4k = 0, f(4x,4 k) = 6

Anyway, the theorem below shows that if M is adequately large, such these Pareto-optimal
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solutions are converted into the unique optimum.

Theorem 3. Suppose that M = m+1 in problem (5), where m = |E|. Then, the optimal
solution of the problem is unique in terms of the numbers of infected nodes and deleted
links.

Proof. By contradiction, suppose that 1x and 2x are optimal solutions with different
numbers of infected nodes and deleted links. So, we have f(1x,1 k) = f(2x,2 k). Without
loss of generality, let |1N | ≤ |2N | (by the notation iN in Remark 4.2).
Firstly, assume that the inequality is strict i.e. |1N | < |2N |. Since 1k,2 k ≤ m we have:

f(1x,1 k) = 1k + (m+ 1)
n∑

i=1

xi = 1k + (m+ 1)|1N |

< (m+ 1)|2N |
≤ 2k + (m+ 1)|2N | = f(2x,2 k)

that contradicts f(1x,1 k) = f(2x,2 k). Otherwise, |1N | = |2N |, equality f(1x,1 k) =
f(2x,2 k) implies 1k = 2k. Hence, 1x and 2x have the same number of infected nodes
( |1N | = |2N | ) and the same number of deleted links (1k = 2k). This contradiction
completes the proof.

To apply theorem 3 for the case stated in Remark 4.2, we have m = 6, f(1x,1 k) =
30, f(2x,2 k) = f(3x,3 k) = 36 and f(4x,4 k) = 42. Therefore, 1x is introduced as the
unique optimum.

5 Some Related Models

In some situations, it is desirable to find an isolation having or preserving additional
properties, for example, an isolation with no single nodes or with a number of infected
nodes as close as possible to a certain percentage of the number of all nodes. Conversely,
the analysis of some properties in a network leads to an isolation problem. For example,
the findings of the weakest relationships in a network show that if they are cut, the
network is separated exactly into two components. Induced by problems (3) and (5), three
models are proposed to solve the stated examples. These models can also be combined
with problems (3) and (5) or with either problem as other generalizations of the primary
problem.

5.1 Minimum Removed Links Problem

In this problem, there is an attempt to find a feasible quarantining with the least number
of deleted links (regardless of the increase in the number of rescued nodes). This set of
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links introduces the minimum cut in a graph. The problem is written in the following
way:

min k

∑
{i,j}∈E

Yij ≤ k, i = 1, 2, · · · , n− 1

1 ≤
n∑

i=1

xi ≤ n− 1 (6)

(x, Y, P,N) ∈ X̄

If we set
n∑

i=1

xi = 1, problem (6) finds a node having the minimum links (minimum degree)

in a graph. Such a node can be interpreted as the weakest node in some applications in
view of the connectivity in a contact network. For example, in Figure 2 the weakest node
is node 7 with 3 edges (i.e. node 7 has the minimum number of edges in the network).

Similarly, if we set
n∑

i=1

xi = 2, problem (6) finds a 2 nodes-component (a component having

only two nodes) with the least number of links with the rest of a network. This component
can be also treated as the weakest 2 nodes-component in the network. In Figure 2, 2
nodes-component including nodes 13 and 20 is the weakest 2 nodes-component with 5
connections with the rest of the network. Table 1 shows the weakest k nodes-component
and the number of it’s connections in the network shown in Figure 2 for k = 1, 2, · · · , 11.

Remark 5.1. Inequalities 1 ≤
n∑

i=1

xi ≤ n − 1 remove vectors 1t
1×n and 0t

1×n from the

feasible region of problem (6). Hence, each feasible solution has at least one infected node
xi = 1 and at least one rescued node xj = 0.

Theorem 5.2 below says that each feasible solution of problem (6) separates a given
connected network into exactly two components.

Theorem 5.2. Suppose that (x∗, Y ∗, P ∗, N∗) is the optimal solution of problem (6) with
optimal value k∗ and G1, G2, · · · , Gl are components of network G = (N,E) that are
generated by (x∗, Y ∗, P ∗, N∗). Then, l = 2.

5.2 An Isolation with no Single Nodes

A node is said to be a single node if it has no connections to other nodes. To guarantee
that an isolation has no single nodes, constraints

∑
j:{i,j}∈E(1− Yij) ≥ 1 , i = 1, 2, · · · , n

and Yij = Yji,∀{i, j} ∈ E are considered. These constraints can be added to problems
(3), (5) and (6).
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Theorem 5.3. Suppose that (x, Y, P,N) is an isolation satisfying constraints
∑

j:{i,j}∈E
(1−

Yij) ≥ 1, i = 1, 2, · · · , n and Yij = Yji,∀{i, j} ∈ E. Then, this isolation has no single
nodes.

5.3 Partitioning Problem

Let P be a certain percentage of n = |N |. We would like to find an isolation (with a
minimum number of deleted links) in which the number of infected nodes is as close as
possible to P . Specially, if P = n

2
, the problem is to partition a graph by deleting a

minimum number of links into two parts (including probably several components) such
that the numbers of their elements are as equal as possible to each other. By combining
this problem with problem (6), these two parts are converted into two components with
approximately the same number of elements. For this purpose, we consider firstly the

similar substitutions to (2): P0 + N0 = Y0, P0 −N0 =
n∑

i=1

xi − P and P0, N0, Y0 ≥ 0. The

next theorem proves that for an optimal solution of the problem, we have Y0 = |
n∑

i=1

xi−P |.

The problem is formulated as:

min k + (m+ 1)Y0∑
{i,j}∈E

Yij ≤ k, i = 1, 2, · · · , n− 1

P0 +N0 = Y0

P0 −N0 =
n∑

i=1

xi − P (7)

P0, N0, Y0 ≥ 0

(x, Y, P,N) ∈ X̄

where m = |E|. The penalty multiplier of the objective function is equal to m + 1, by
similar argument stated in Theorem 3.

Theorem 5.4. Suppose that (x, Y, P,N, Y0, P0, N0) is an optimum of problem (7) with

optimal value k + (m+ 1)Y0. Then, Y0 = |
n∑

i=1

xi − P |.

Proof. At first, suppose that P0 > 0 and N0 = 0. In this case, P0 =
n∑

i=1

xi − P > 0

and Y0 = P0 that means Y0 = |
n∑

i=1

xi − P | (other cases in which P0 = 0 and N0 > 0 or

P0 = N0 = 0 are similarly proved). Otherwise, let P0, N0 > 0. Then, there exists some

δ > 0 such that P ∗0 = P0− δ > 0 and N∗0 = N0− δ > 0. So, we have P ∗0 −N∗0 =
n∑

i=1

xi−P
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and Y ∗0 = P ∗0 + N∗0 = P0 + N0 − 2δ < Y0. Hence, (x, Y, P,N, Y ∗0 , P
∗
0 , N

∗
0 ) is a feasible

solution with objective value k+(m+1)Y ∗0 < k+(m+1)Y0 that contradicts the optimality
of (x, Y, P,N, Y0, P0, N0).

6 Numerical Examples

6.1 Primary Problem or Problem (3)

Assume the following network in which the number of removable links is equal to k0 = 13.
Initially infected nodes have been depicted by star.

Figure 2:

Figure 2. shows the optimal solution of problem (3). Infected nodes are illustrated in
black and deleted links by dotted lines.

The number of infected nodes = 8
The minimum number of deleted links = 13

If we insist on the health of some nodes, say node 5, we set x5 = 0 in the beginning.
Then, the solution is attained as depicted in Figure 3.

Figure 3:
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The number of infected nodes = 14
The minimum number of deleted links = 11

This solution (attained by enforcing the model to rescue node 5) involves an increase
in the number of infected nodes from 8 to 14 as a compromise.
Combining Section 5.2 with problem (3), we can find an isolation with no single nodes as
is illustrated in Figure 4.

Figure 4:

The minimum number of deleted links = 12

6.2 Maximum Rescued Nodes - Minimum Deleted Links (Prob-
lem (5))

Assume problem (5) with M = m + 1 = 48 and k1 = 5. We set k1 (minimum amount of
an infection) equal to the number of initially infected nodes in Figure 2. The solution of
problem (5) depicted in Figure 5. which shows the best reaction of the network (compare
with the solution in Figure 2.)

Figure 5:

The number of infected nodes = 5
The minimum number of deleted links = 5
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Table 1:

k Nodes Number of
connections

1 7 3
2 13,20 5
3 4,10,16 5
4 4,9,10,16 6
5 4,9,10,15,16 5
6 1,5,6,11,17,18 6
7 1,5,6,11,12,17,18 6
8 1,5,6,11,12,13,17,18 6
9 1,5,6,11,12,13,17,18,19 6
10 1,5,6,11,12,13,17,18,19,20 5
11 2,3,4,7,8,9,10,14,15,16,21 5

6.3 Minimum Removed Links Problem (generalized minimum
cut)

Table 1 shows the weakest k nodes-component and the number of it’s connections in the
network shown in Figure 2 for k = 1, 2, · · · , 11. This table is the result of problem (6)

where we set
n∑

i=1

xi = k, k = 1, 2, · · · , 11.

6.4 Partitioning Problem (Problem (7))

Assume problem (7) with P = n
2

= 10.5 . Therefore, the target is to separate the network
by deleting minimum links into two parts whose number of nodes are as equal as possible.
The solution is shown in Figure 6. in which deleted links are marked by dotted lines.

Figure 6:

The minimum number of deleted links = 5
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