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The objective of the class of LOPs is to minimize different functionals by finding a suitable
permutation of the graph vertices commonly used for general graphs or matrices [1,18]. Due
to its interest in practice, it has received considerable attention and consequently a variety of
approaches have been proposed to the solution of these NP-Hard problems[19]. Moreover,
Exact algorithms presented differ generally from each other confronting with binary variables
constraints. In [28], an algorithm was proposed using a LP-relaxation of the LOP for the lower
bound. A branch and cut algorithm have been studied in [24] and authors in [34] investigated
a combined interior point/cutting plane algorithm. Efforts have been made [2, 21-23] to obtain
improvements on the exact methods with some success, where considerably large instances
have been solved to optimality for example the work done on the Traveling Salesman Problem.
The idea is to relax the integer constraints in the formulation of the problem and solve it as a
continuous problem. Although it is not possible to think to obtain all facets associated with an
NP-hard problem, the relaxation was solved [35] by using the known facets. In doing so, if
the optimal solution is not found, a branch and bound procedure can be used to finish up the
problem. State of the art exact algorithms can solve fairly large instances from specific instance
classes up to a few hundred columns and rows, although they fail on much smaller instances of
other classes.
The LOP was also tackled by a number of heuristic algorithms including constructive algorithms
such as BeckerâŁ™s greedy algorithm [6], local search algorithms an example of which is the
CK heuristic [9], metaheuristic approaches such as elite tabu search and scatter search [7,8,31]
and iterated local search (ILS) algorithms [12,41]. Many heuristic algorithms were developed
in order to achieve near optimal solution. Among the most successful are spectral sequencing
(SS) [13], optimally oriented decomposition tree [4], multilevel based [30,26] and simulated
annealing [36]. SS approach, one of the most popular methods, consists of ordering the graph
vertices according to the sorted coordinates of the second eigenvector of the graph Laplacian.
The heuristic argumentation of SS is based on the fact that the continuous version of the minimum
2-sum problem can be solved to the optimum by this method [10]. In practice, for the (discrete)
minimum 2-sum, it was shown [39] that the direct application of SS does not achieve satisfactory
results, while the lower bounds based on SS are very far from the best known ordering costs
[39]. In [27,43,13] better results were obtained using different approximated SS (by calculating
the second eigenvector less precisely).
Furthermore, many approximating approaches have been suggested [37, 14, 29, 33, 32, 25, 38,
3, 34, 17, 40, 16] to find the solution to the problems (or a lower or upper bound for an optimal
solution). Seymour [42] was the first to propose a directed graph decomposition divide-and-
conquer approach for the minimum feedback arc set problem. Even et al. [15] extended the
recursive decomposition technique used by Seymour for minimum containing interval graph
problems.
Finally, there has been recent interest in studying minimization problems with submodular cost
functions. However, almost all of these problems turn out to be quite intractable and have
large polynomial lower bounds. There are some exceptions such as the submodular vertex
cover problem [28,20] and the submodular multiway partition [11]. However, many interesting
approximating algorithms and improvements [3,17,40] were studied in min sum set cover, which
is a special instance of LOP with a supermodular cost function. Authors in [3] provided a
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small improvement (with a rather technically involved analysis) by obtaining a 1.99995 factor
approximation, and raised the question of further improving the bound [3]. Then a theorem can
provide a substantial improvement, with an alternative rounding and a simpler analysis, in giving
a 1.79 factor approximation.
This paper is an attempt to propose a generalized model of the LOPs can be considered as
second-order. Second-order ordering problem is a problem, we assume, in which the ordering
induced by an optimal path is restricted to the number of pre-assumed arrangement constraints
on nodes. Such conditions are commonly considered by some management requirements as new
conditions on a network. More precisely, we would like to find a spanning path in a network, that
optimizes an objective function (calssical ordering problem) provided that some special criterion
on nodes or/and edges are satisfied; for example, prespecified positions of some special nodes
on the path (some nodes are assumed to have fixed known positions in an optimal ordering of
nodes), the priority of some nodeâŁ™s positions (some nodes have to be visited before or after
other nodes), admissible travel-time interval in the path in where some nodes have to be visited.
In section 2, first we characterize a mathematical modeling of LOP and analyze the significance
of role playing the constraints in the formulation of the problem. These constraints are added
step by step to the problem and convert an arbitary subgraph into one with directed cycle (if any)
and then a spanning directed out-tree rooted at a node will be presented and finally a spanning
path (a feasible solution for the LOP) will be put forward. The model is formed as a linear
programming problem in which some variables are binary. This optimization model can find the
exact solution to the problem, and having a linear structure, it can be well implemented whenever
desired by softwares such as matlab, lingo, and maple. Although binary variables, generally,
cause some computational difficulties, we can overcome this problem desirably using well-
known approaches in the field of integer programming such as cutting plane methods or interior
point algorithms. However, the linear structure of the problem is useful both in theoretical
point of view (using powerful methods such as simplex as well as a special kind of cutting
plane technique [5]) and approximating implementation (applying simplex algorithm where all
variables are continuous between 0 and 1).
Section 3 illustrates the application of the proposed model on a network. In closing section, we
present several applicability of the model handling some other constraints in different applied
problems. This section has been divided into three subsections including theoretical, computa-
tional, and applied results. By way of conclusion, we will suggest that the model can cover more
generalized and complicated problems and it can also be reduced to classical ordering problem
in its special case. These generalizations do not increase the number of binary variables and
keep this cardinality twice the number of the edges in a graph.

2 Problem characterization
In this section, we formulate a problem that finds a directed spanning path with minimum cost and
analyze the importance of each constraint that must be included in the formulation to characterize
one of such these paths.
Consider an undirected connected graph G = (N,E) consisting of a set N of n nodes (|N | = n)
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Figure 1: (a), (b) are directed out-tree rooted at node 1

whose elements (nodes) have been numbered from 1 to n and a set E of m edges (|E| = m).
We refer to an undirected edge joining the node pair i and j as {i, j} and a directed one from
node i to node j as (i, j). Edge (i, j) is an outgoing edge of node i and an incoming edge of
node j. Each directed edge (i, j) has an associated cost coefficient tij (in general, tij may not
be equal to tji). Also, let P denote the set of all spanning directed paths in G (the paths under
consideration in the ordering problems).
Since any solution of the feasible region in the ordering problem (set P ) is directed (actually,
directed spanning path), it is reasonable to work with a directed network as the network under
consideration. So, we have the following definition.

Definition 2.1. Let Ē = {(i, j) and (j, i) : {i, j} ∈ E} and Ḡ = (N, Ē).

By definition1, each undirected edge {i, j} ∈ E is replaced by two directed edges (i, j) and
(j, i) ∈ Ē, and Ḡ is the network obtained from G by this transformation. We recall some
terminologies in network flows studied, for example, in combinatorial optimization and then
prove a theorem (Theorem 1) that will be of use later.

Definition 2.2. A tree is said to be a directed out-tree rooted at a node if the unique path in the
tree from that node to every other node is a directed path (figure1). We show the unique directed
path from node i1 to node ik by notation i1 − i2 − · · · − ik and let |p0| denote the length of p0
(the number of edges in p0) i.e, p0 = |{(i, j) ∈ Ē : (i, j) ∈ p0}|.
Also, we say that node i is the predecessore of node j in path p0, if (i, j) ∈ p0

Definition 2.3. Let T (including n nodes numbered from 1 to n) be a directed out-tree rooted at
a node i1 ∈ {1, · · · , n}. If Li denotes the lable value of node i, we set, Li1 = 1 and Lj = 1 +Li

for each (i, j) ∈ T .

Lemma 2.4. Let T and label values Li(1 = 1, · · · , n) be defined as in definitions 2 and 3.
Suppose that ks denotes the set of nodes having the same lable value equal to s i.e. ks = {i ∈
N : Li = s}. Then,

a) If i1 − i2 − · · · − ik is the unique directed path p0 in T from i1 to ik, then Lik = 1 + |p0|.



105 Rezaei / Journal of Algorithms and Computation 47 (2016) PP. 101 - 117

b) k1 = {i1}

c) 1 ≤ Li ≤ n,∀i ∈ N .

d) If ks = ∅, then kt = ∅ for each t ≥ s.

e)
n∑

s=1

|ks| = n (|ks| denotes the cardinality of ks).

f)
n∑

s=1

|ks|.s =
n∑

i=1

Li

Proof. a) The existence of p0 is resulted from definition 2. By definition 3, we have Lik =
1 + Lik−1

= 2 + Lik−2
= · · · = (k − 1) + Li1 = |p0| + 1. So Lik = 1 + |p0|. If i1 = ik,

p0 is a trivial path consisting of one node i1 and no edge. Hence, |p0| = 0 and we have
Li1 = 1.

b) By definition 3, Li1 = 1 that implies i1 ∈ k1. By part (a), for each ik ∈ N , Lik = 1 + |p0|.
If i1 6= ik, then |p0| > 0 that implies Lik ≥ 2. Thus, ik /∈ k1.

c) For each ik ∈ N , Lik = |p0| + 1. Since p0 has at most n nodes, then p0 ≤ n − 1. Thus,
1 ≤ Lik = 1 + |p0| ≤ n (if ik = i1, |p0| = 0 and Li1 = 1).

d) Since, ks = ∅, we have from part (b), s 6= 1. Hence, t ≥ s > 1. By contradiction, suppose
that i ∈ kt (i.e. Li = t) and p0 is the unique directed path from i1 to i. If, j1 denotes
the predecessor of node i in p0, definition 3 implies Li = 1 + Lj1 . Then, Lj1 = t − 1.
Similarly, for a node j2, the predecessor of node j1, we have Lj1 = 1 + Lj2 that implies
Lj2 = t−2. By repeating, there is a node jt−s with Ljt−s = s, so jt−s ∈ ks that contradicts
Ks = ∅

e) Since ks ⊆ N(s = 1, · · · , n), we have
⋃n

s=1 ks ⊆ N . Also, for each i ∈ N , we have i ∈ kLi

(1 ≤ Li ≤ n, from part (c)) that implies N ⊆
⋃n

s=1 ks. Thus,
⋃n

s=1 ks = N . From

definitions 2 and 3, if s 6= t, then ks ∩ kt = ∅. Therefore,
n∑

s=1

|ks| = |N | = n.

f) From the proof of part (e), N =
⋃n

s=1 ks and ks ∩ kt = ∅, if s 6= t. Hence,
n∑

i=1

Li =
n∑

s=1

∑
i∈ks

Li =
n∑

s=1

(
∑
i∈ks

s) =
n∑

s=1

(S.
∑
i∈ks

1) =
n∑

s=1

S.|ks|

.
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Lemma 2.5. Let T and label values Li(i = 1, · · · , n) be defined as in definitions 2 and 3.

Suppose that A =
n∑

s=1

ϕ(ks) where

ϕ(ks) =



|k1|∑
i=1

i s=1

|ks|∑
i=1

(|k1|+ |k2|+ · · ·+ |ks−1|+ i) ks 6= ∅, s 6= 1

0 ks = ∅
Then,

a) A = n(n+1)
2

b)
∑n

i=1 Li ≤ A in which equality holds iff |ks| = 1

Proof. a) From lemma 1 (part (b)), k1 6= ∅. We set kn+1 = ∅ (it is justifiable because |N | = n).
Then, without loss of generality, suppose that t+1(t ∈ {1, · · · , n}) is the least index such
that kt+1 = ∅. So, we have from lemma 1 (part(d)), kt+1 = kt+2 = · · · = kn = ∅ .

Let B1 =
t∑

i=1

|ki| and B2 =
n∑

i=t+1

|ki|. Therefore, B2 = 0 and

A=
∑n

s=1 ϕ(ks) =
∑t

s=1 ϕ(ks) =∑|k1|
i=1 i +

∑|k2|
i=1(|k1|+ i) + · · ·

∑|kt|
i=1(|k1|+ · · ·+ |kt−1|+ i)

= 1 + 2 + · · ·+
∑t

i=1 |ki|

=
∑B1

i=1 i =
∑B1+B2

i=1 i

in which the last equality hold from lemma1 (part(e)).Thus , A = n(n+1)
2

b) Consider ϕ(ks) (sth term in A). At first, suppose that ks 6= ∅ and s > 1. By definition,

ϕ(ks) =
|ks|∑
i=1

(|k1| + · · · + |ks−1| + i). From lemma 1 (part (d)), we have ki 6= ∅, ∀i ∈

{1, 2, · · · , s − 1}that implies |ki| ≥ 1, ∀i ∈ {1, 2, · · · , s − 1}. Hence, s − 1 ≤ |k1| +
· · ·+ |ks−1| that implies

s ≤ |k1|+ · · ·+ |ks−1|+ i, ∀i ∈ {1, 2, · · · , |ks|} (*1)

and (*1) is an equality iff |k1| = · · · = |ks−1| = i = 1. By summing inequalities (*1) for
i = 1, 2, ..., |ks|

|ks|.S ≤
|ks|∑
i=1

(|k1|+ · · ·+ |ks−1|+ i) = ϕ(ks) (*2)
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Since each side in (*1) is non-negative, (*2) is an equality iff (*1) is an equality for each
i ∈ {1, 2, · · · |ks|} iff |k1| = · · · = |ks−1| = |ks| = 1. In special cases, if ks = ∅,
then |ks| = ϕ(ks) = 0, that converts (*2) into trivial equality 0 = 0. Also, if s = 1,
we have, 1 = |k1| =

∑|k1|
i=1 i = ϕ(k1) in which |k1| = 1, from lemma 1 (part (b)).

Therefore, (*2) is true for each ϕ(ks), s = 1, 2, · · · , n. By summing inequalities (*2) for
s = 1, 2, · · · , n, we have

∑n
s=1 |ks|.s ≤

∑n
s=1 ϕ(ks) = A in which the equality holds iff

for each s ∈ {1, · · · , n}, (*2) is an equality iff for each s ∈ {1, · · · , n}, either ks = ∅ or
|k1| = · · · = |ks| = 1

Theorem 2.6. Let T and label values Li(i = 1, · · · , n) be defined as in definitions 2 and 3. T

is a directed path (from i1 as the beginning node) iff
n∑

i=1

Li = n(n+1)
2

.

Proof. At first, we note from definition 2 that if T is a path, it is a directed path. However, if
T is a directed path, the result follows directly by definition 3. Conversely, suppose that the
equality holds. On the contrary, if T is not a path, there must exist a node p in T having more
than one outgoing edge, say (p, j1), · · · , (p, jk) ∈ T (node 3 in figure 1.a, for example). Thus,
by definition 3, we have Lj1 = · · · = Ljk = 1 + Lp. let Lj1 = · · · = Ljk = q. Since |kq| ≥ 2,

lemma 2 (part(b)) implies
n∑

i=1

Li <
n(n+1)

n
. This contradiction completes the proof.

Definition 4 below introduces the variables of our problem.

Definition 2.7. Let W be a subgragh of Ḡ denoted by W ⊆ Ḡ. Set,

xij =

{
1 if (i, j) ∈ W
0 otherwise

Equivalently, every variable assignment xij ∈ {0, 1} characterizes a subgraph of Ḡ. We write
{i, j} ∈ W , if (i, j) ∈ W or (j, i) ∈ W . The following lemma gives a useful equivalence.

Lemma 2.8. Let T ⊆ Ḡ be a directed out-tree rooted at a node i1 ∈ {1, · · · , n}. We set, Li1 = 1
and

Lj − Li ≤ (xij − xji) + (n− 1)(1− xij − xji) (1)

Lj − Li ≥ (xij − xji) + (n− 1)(xij + xji − 1) (2)

Then, values Li(i = 1, · · · , n) are the same as in definition 3.

Proof. Since 1 ≤ Li ≤ n, ∀i ∈ N (lemma 1, part (c)) we have, −(n− 1) ≤ Lj − Li ≤ n− 1,
∀i, j ∈ N . By definition 4, xij = xji = 0 iff (i, j), (j, i) /∈ T . In this case, (1) and (2) imply
trivial inequalities−(n−1) ≤ Lj−Li ≤ n−1. By definition 4, (i, j) ∈ T (and then (j, i) /∈ T )
iff xij = 1 and xji = 0. From (1) and (2), we have Lj − Li = 1 that implies Lj = 1 + Li.
Similarily, definition 4 implies (j, i) ∈ T (and then (i, j) /∈ T ) iff xji = 1 and xij = 0. Thus,
we have from (1) and (2), Lj − Li = −1 that means Li = 1 + Lj . Finally, from definition 3, it
is impossible that (i, j) ∈ T and (j, i) ∈ T . However, if we set xij = xji = 1, then (1) , (2) are
converted to (n− 1) ≤ Lj − Li ≤ −(n− 1), that is not possible.
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For several reasons, we need to extend sets N and Ē by adding an artificial node s and n artificial
directed edges (s, i), i = 1, · · · , n (from s to every original node) to Ḡ. Some identities of this
new structure are demonstrated by lemma 4 and theorem 2 below required to prove the main
theorem of the paper. Other properties of G∗ will be expressed later in the conclusion section.
At first, we present this new structure formally as follows:

Definition 2.9. Let G∗ = {N ∪ {s}, E∗} where E∗ = Ē ∪ {(s, i) : i = 1, · · · , n}.

Lemma 2.10. Suppose that W ⊆ G∗ satisfies the following equalities:∑
j∈A(i)∪{s}

xji = 1, i = 1, · · · , n (3)

Where A(i) = {j ∈ N : {i, j} ∈ E} and xsi = 1(xsi = 0) iff (s, i) ∈ W ((s, i) /∈ W ), i =
1, · · · , n. Then,

a) each i ∈ N is in W (i.e. W is spanning subgraph of G∗).

b) for each cycle C ⊆ W , s /∈ C.

c) each cycle C ⊆ W is directed.

Proof. a) Let i ∈ N be an arbitrary node. By (3), there exists the unique node j ∈ A(i) ∪ {s}
such that xji = 1. Now definition 4 implies (j, i) ∈ W , that means i ∈ W .

b) By contradiction, suppose that s ∈ C. Let C be as a sequence of nodes ik − ik−1 − · · · −
i1− s− j1− j2−· · ·− jk− ik. From definition 5, (j1, s) /∈ C ⊆ G∗. Thus, we must have
(s, j1) ∈ C. From (3), (j1, j2) ∈ C. Or else, if (j2, j1) ∈ C. then j1 has two incoming
edges (s, j1) and (j2, j1), and then definition 4 implies xsj1 = xj2j1 = 1,that contradicts (3)
for i = j1. Using this argument repeatedly, it follows that (j2, j3), (j3.j4), · · · , (jk−1, jk)
and (jk, ik) ∈ C. Similarly, (s, i1) ∈ C and we have, by repeating the preceding argument,

(i1, i2), (i2, i3), · · · , (ik−2, ik−1)

and (ik−1, ik) ∈ C. Thus, node ik has two incoming edges (jk, ik) and (ik−1, ik) that
contradicts (3).

c) Let C be as i1 − i2 − · · · − ir − i1 (s /∈ C, from part (b)). Without loss of generality, let
(i1, i2) ∈ C. From (3) and definition 4, each node i ∈ N must have exactly one incoming
edge. Thus, since (i1, i2) ∈ C, we have (i2, i3) ∈ C. Using (3) repeatedly, we have
(i3, i4), · · · , (ir−1, ir) and (ir, i1) ∈ C. This proves that C is a directed cycle.
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Theorem 2.11. Let W ⊆ G∗ and variables Li(i = s, 1, · · · , n) be arbitrary (none of them is
pre-specified). If W satisfies (1),(2) and (3), then W is a spanning directed out-tree rooted at
node s.

Proof. At first, we show that W has no cycle. By contradiction, suppose that a cycle C ⊆ W .
According to lemma 4 (part (c)), C is directed. Hence, C is a directed path j1 − j2 − · · · − jr
from j1 to jr together with (jr, j1). Therefore, (1) and (2) imply that Lj1 < Ljr (because of the
path) and Ljr < Lj1 (because (jr, j1) ∈ C). By this contradiction, the result follows. Now, since
W has at least n nodes as well as n edges (from lemma 4, part (a), and (3)), it must have n + 1
nodes in the first place (i.e. s ∈ W ), and then exactly n edges in the second place (or else, if
each of both cases is not true, W has a cycle). Therefore, W is spanning by the former statement
and a tree by the latter. Finally, suppose, by contradiction, that the path s− j1 − j2 − · · · − jk
in W is not directed. From the definition of G∗, we have (s, j1) ∈ W . If (j2, j1) ∈ W , then,
j1 contradicts (3). Hence, (j1, j2) ∈ W . In the same manner, we have, (jr−1, jr) ∈ W for
r = 3, 4, · · · , k. But, this contradicts, that the path is not directed. Therefore, the unique path
in W from s to every other node is directed. This completes the proof.

Corollary 2.12. Let W = (NW , EW ) be a subgraph of G∗ and satisfy (1),(2),(3) and following
constraints:

n∑
j=1

xsj = 1, Ls = 0 (4)

If xsi1 = 1 for some i1 ∈ {1, · · · , n}, then W̄ = (NW − {s}, EW − {(s, i1)}) is a spanning
directed out-tree rooted at node i1 in Ḡ with Li1 = 1

Proof. From theorem 2, W is a spanning directed out-tree rooted at node s. Hence, W has
n + 1 nodes (NW = N ∪ {s}) and n edges. From (4), node i1 is only node connected to s
with Li1 = 1 + Ls = 1. Thus, by deleting node s and edge (s, i1), W̄ = (N,EW − {(s, i1)})
is still a connected graph consisting of n nodes and n − 1 edges. Therefore, W̄ is a spanning
tree in Ḡ. On the other hand, for an arbitary node i ∈ N , there exists the unique directed path
s− i1− i2−· · ·− i in W from s to i. Thus, by removing node s and edge (s, i1), i1− i2−· · ·− i
is the unique directed path in W̄ from i1 to an arbitrary node i ∈ N . Therefore, W̄ is a directed
out-tree rooted at node i1. This completes the proof.

The following theorem characterizes the feasible solution set of the ordering problem.

Theorem 2.13. Let W ⊆ G∗. If W satisfies (1),(2),(3),(4) and
n∑

i=1

Li = n(n+1)
2

, then W̄ ∈ P

Proof. The result follows from corollary1 and Theorem1.

Finally, the objective function of the proposed model is considered as
n∑

j=1

n∑
i=1

tijxij for each

(i, j) ∈ Ē, where the cost coefficients of the artificial edges tsj , j = 1, · · · , n, are equal to 0.
From theorem 3, the model of the problem is written as follows:
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min
n∑

j=1

n∑
i=1

tijxij

for i, j = s, 1, · · · , n
Lj − Li ≤ (xij − xji) + (n− 1)(1− xij − xji)

Lj − Li ≥ (xij − xji) + (n− 1)(xij + xji − 1)∑
j∈A(i)∪{s}

xji = 1 , i = 1, · · · , n

n∑
j=1

xsj = 1, Ls = 0 (5)

n∑
i=1

Li =
n(n + 1)

2

xij ∈ {0, 1} i, j = s, 1, ..., n

Remark.

a) It is not necessary, to add a restriction on the outgoing edges of nodes in the problem i.e.∑
j

xij = 1, i = s, 1, · · · , n. This constraint is automatically satisfied, as shown in theo-

rems 2 and 3.

b) By theorem 3, the labels of the nodes in a path are ordered from 1 to n. We can find the
beginning node of a path simply in two ways; (I) as the node connected to node s (node
i1, say, for which xsi1 = 1) or (II) as the node with a label value equal to 1. The end node
of a path is the node with a label value equal to n. Other labels also show the position of
the interior nodes in a path.

c) Similar to variables Li, we can define variables pi(i = s, 1, · · · , n) as follows:

ps = 0

pj − pi ≤ tij(xij − xji) + (n− 1)(1− xij − xji)

pj − pi ≥ tij(xij − xji) + (n− 1)(xij + xji − 1)

It is easy to verify that pi gives actually the time consumed for traveling a path from its beginning
node to node i.
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Figure 2: (a) node-node adjacency matrix M = (mi)11×11 in which mij = tij , (b) undirected
graph G = (N,E)

3 Numerical example
Figure 2.a depicts an undirected graph G = (N,E) with 11 nodes and 41 edges. In figure 2.b,
M = (mij)11×11 shows the node-node adjacency matrix of G where mij = 0, if {i, j} /∈ E and
mij = tij ∈ E (tij is the cost coefficient of edge {i, j}). Figure 3 depics the minimum spanning
directed path (that is from node 2 to node 11) resulted from theorem 3 with the objective function
value 12 and minimum spanning directed out-tree (that is rooted at node 11) characterised by
theorem 2 with the objective function value 10 (in figure 3.(b), since the result is a tree, not a
path, then the objective function value is not equal to p11). Li ’s are the positions of nodes in
the optimal path. L2 = 1 introduces node 2 as the beginning node of the optimum path and
L11 = 11 says that node 11 is the end node. Also, for example, L7 = 9 shows that node 7 is
9th node in the path and p8 = 3 gives the time of travel from the beginning (node 2) to node 8.
Furthermore, we have p2 = 0 and p11 = 12 (total time needed for traveling all of the path)

4 Conclusion
In this section, we present the properties of the proposed model in three subsections.

4.1 Theoretical aspects
We investigated the constraints of the problem with emphasis on the assessment of their impor-
tance in the formulation. These constraints, step by step, confined the domain of the subgraphs
in the main network to find a directed spanning path as a feasible solution.
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Figure 3: (a) Minimum spanning directed path (from node 2 to node 11), (b) Minimum spanning
directed out-tree (rooted at node 11)

The properties proved by lemma 4 and theorem 2 can be used in problems in which other optimal
structures such as cycles and trees instead of spanning paths are interested to be found.
Similar to node s, one can add another artificial node t (with Lt = n + 1, if necessary) and n
directed edges (j, t), j = 1, · · · , n for other special applications.

4.2 Computational aspects
The model has 2m + n binary variables:
2m variables xij for each directed link and n variables xsj in order to construct of G∗. Variables
Li and Pi are automatically attained as integer. However, there are several ways to handle such
these situations as stated in the introduction.
The model has 2m + n + 2 constraints:
2m constraints by (1) and (2) to find a desired tree (Ḡ has at least m cycles for each pair of xij

and xji).
n constraints by (3) to find a spanning solution (n nodes must be included).
One constraint by (4) to find a beginning node (each node may play the role of the beginning
node in an optimal path).
One constraint by (5) to find a path.
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4.3 Applied aspects
Some problems that can be formulated as this model are presented as follows:

Solving the ordering problem by assuming pre-specified ordering on some nodes in the optimal
path. For example L4 = 6, L5 = 1, L6 = 2
Solving the ordering problem in which some nodes have to be visited before or after (locally)
some others. For example L4 ≤ L6, L4 ≤ L10 ≤ L2

Solving the ordering problem in which the orders of nodes satisfy an special formula (rule). For
example, P1 ≤ P3 + 4, P11 = P3 + P5, P2 = 2k + 1 (k ∈ N ), L3 = 2k, L4 + L10 = L2

Solving the ordering problem in which some nodes have to be visited after or before a certain
time or in a certain period of time. For example P1 ≤ 5, P3 ≥ 4, 7 ≤ P2 ≤ 9.
Solving the ordering problem in which some nodes have to be visited befor or after (temporally)
some other nodes. For example P3 ≥ P4

Finding the shortest path emanating from a certain node i0: we set initially, Li0 = 1, in problem
(5)
Finding the shortest path terminating at the certain node i0: we set initially, Li0 = n, in problem
(5)
Finding the shortest path from a certain node i0 to a certain node i1 such that node i2 is in the
middle of the path. For example, if n is an even number, we set Li0 = 1, Li1 = n, Li2 = n

2
.

Finding the shortest path with certain length or cost equal to R0 from node i0 to node i1. We
add the following constraints in problem (5):∑

j

∑
i

cijxij = R0

Li0 = 1, Li1 = n
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