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when it is defined with max-Yager composition. Based on some theoretical results,
conditions are derived for determining the feasibility. Moreover, in order to simplify
the problem, some procedures are presented. It is shown that a lower bound is always
attainable for the optimal objective value. Also, it is proved that the optimal solution
of the problem is always resulted from the unique maximum solution and a minimal
solution of the feasible region. A method is proposed to generate random feasible max-
Yager fuzzy relational inequalities and an algorithm is presented to solve the problem.
Finally, an example is described to illustrate these algorithms.

1 Introduction

In this paper, we study the following linear problem in which the constraints are
formed as the intersection of two fuzzy systems of relational inequalities defined by
Yager family of t-norms:
min Z =cTx
Apx < bl
Dox > b?
x€[0,1]"

(1)

where I} ={1,2,.,m}, I, = {my + 1,my +2,.,m; + mp} and ] = {1,2,.,n}. A =(a;j)m,xn
and D = (d;j)m,xn are fuzzy matrices such that 0 <4;; <1 (Yi€l; and Yj €])and 0 <
dij<1(Yiel,and Vj€]). bl = (bil)mlxl is an m;—-dimensional fuzzy vector in [0, 1]™!
(i-e., gplc) Vi €1y), b? = (biz)mle is an mp—dimensional fuzzy vector in [0,1]"2 (i.e.,
o<p2<1,7i € I), and c is a vector in R". Moreover, “¢p ” is the max-Yager composition,

that is, ¢ (x,v) = T{;(x,y) = max {1 —((1=x)P+(1 —y)p)l/P, 0} in which p > 0.
By these notations, problem (1) can be also expressed as follows:

min Z=cTx

I'I}élX{T{/J (al-]-,x]-)} < bll , i€ Il
j€] (2)

ma]x{Tg(dij,xj)} >b?,iel,
1S

x€[0,1]"

Especially, by setting A = D and b! = b?, the above problem is converted to max- Yager
fuzzy relational equations. As mentioned, the family {T{; } is strictly increasing in p. It

can be easily shown that Yager t-norm T{;(x,y) converges to the basic fuzzy intersec-
tion min {x,p} as p goes to infinity and converges to Drastic product t-norm [8] as p
approaches zero. Also, it is interesting to note that Ty (x,y) = max {x +y — 1,0}, that is,
the Yager t-norm is converted to Lukasiewicz t-norm if p = 1.

The theory of fuzzy relational equations (FRE) as a generalized version of Boolean re-
lation equations was firstly proposed by Sanchez and applied in problems of the medi-
cal diagnosis [40]. Nowadays, it is well known that many issues associated with a body
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knowledge can be treated as FRE problems [36]. In addition to the preceding appli-
cations, FRE theory has been applied in many fields, including fuzzy control, discrete
dynamic systems, prediction of fuzzy systems, fuzzy decision making, fuzzy pattern
recognition, fuzzy clustering, image compression and reconstruction, fuzzy informa-
tion retrieval, and so on. Generally, when inference rules and their consequences are
known, the problem of determining antecedents is reduced to solving an FRE [34]. We
refer the reader to [26] in which the authors provided a good overview of FRE and
classified basic FREs by investigating the relationship among operators used in the
definition of fuzzy relational equations.

The solvability determination and the finding of solutions set are the primary (and the
most fundamental) subject concerning with FRE problems. Di Nola et al. proved that
the solution set of FRE (if it is nonempty) defined by continuous max-t-norm composi-
tion is often a non-convex set that is completely determined by one maximum solution
and a finite number of minimal solutions [5]. This non-convexity property is one of
two bottlenecks making major contribution to the increase of complexity in problems
that are related to FRE, especially in the optimization problems subjected to a system
of fuzzy relations. The other bottleneck is concerned with detecting the minimal so-
lutions for FREs. Chen and Wang [2] presented an algorithm for obtaining the logical
representation of all minimal solutions and deduced that a polynomial-time algorithm
to find all minimal solutions of FRE (with max-min composition) may not exist. Also,
Markovskii showed that solving max-product FRE is closely related to the covering
problem which is an NP-hard problem [33]. In fact, the same result holds true for
a more general t-norms instead of the minimum and product operators [2,3,29,30].
Over the last decades, the solvability of FRE defined with different max-t composi-
tions have been investigated by many researchers [35,37,38,41,43,44,46,49,52]. More-
over, some researchers introduced and improved theoretical aspects and applications
of fuzzy relational inequalities (FRI)[13,15,16,22,27,51]. Li and Yang [27] studied a
FRI with addition-min composition and presented an algorithm to search for minimal
solutions. They applied FRI to meet a data transmission mechanism in a BitTorrent-
like Peer-to-Peer file sharing systems. Ghodousian and Khorram [13] focused on the
algebraic structure of two fuzzy relational inequalities Apx < b'and Dox > b?, and
studied a mixed fuzzy system formed by the two preceding FRIs, where ¢is an oper-
ator with (closed) convex solutions. Generally, if @is an operator with closed convex
solutions, the solutions set of Dpx > b? is determined by a finite number of maximal
solutions as well as the same number of minimal ones. In particular, if ¢is a contin-
uous non-decreasing function (specially, a continuous t-norm), all maximal solutions
overlap each other [13]. Guo et al. [15] investigated a kind of FRI problems and the
relationship between minimal solutions and FRI paths. They also introduced some
rules for reducing the problems and presented an algorithm for solving optimization
problems with FRI constraints.

The problem of optimization subject to FRE and FRI is one of the most interesting and
on-going research topic among the problems related to FRE and FRI theory [1,8,11-
23,28,31,39,42,47,51]. Fang and Li [9] converted a linear optimization problem sub-
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jected to FRE constraints with max-min operation into an integer programming prob-
lem and solved it by branch and bound method using jump-tracking technique. In
[24] an application of optimizing the linear objective with max-min composition was
employed for the streaming media provider seeking a minimum cost while fulfilling
the requirements assumed by a three-tier framework. Wu et al. [45] improved the
method used by Fang and Li, by decreasing the search domain and presented a simpli-
fication process by three rules resulted from a necessary condition. Chang and Shieh
[1] presented new theoretical results concerning the linear optimization problem con-
strained by fuzzy max-min relation equations. They improved an upper bound on
the optimal objective value, some rules for simplifying the problem and proposed a
rule for reducing the solution tree. The topic of the linear optimization problem was
also investigated with max-product operation [11,18,32]. Loetamonphong and Fang
defined two sub-problems by separating negative and non-negative coefficients in the
objective function and then obtained the optimal solution by combining those of the
two sub-problems [32]. The maximum solution of FRE is the optimum of the sub-
problem having negative coefficients. Another sub-problem was converted into a bi-
nary programming problem and solved by branch and bound method. Also, in [18]
and [11] some necessary conditions of the feasibility and simplification techniques
were presented for solving FRE with max-product composition. Moreover, some gen-
eralizations of the linear optimization with respect to FRE have been studied with the
replacement of max-min and max-product compositions with different fuzzy compo-
sitions such as max-average composition [21,47], max-star composition [14,23] and
max-t-norm composition [19,28,42]. For example, Li and Fang [28] solved the linear
optimization problem subjected to a system of sup-t equations by reducing it to a 0-1
integer optimization problem. In [19] a method was presented for solving linear op-
timization problems with the max-Archimedean t-norm fuzzy relation equation con-
straint. In [42], the authors solved the same problem whit continuous Archimedean
t-norm and used the covering problem rather than the branch-and-bound methods for
obtaining some optimal variables.

Recently, many interesting generalizations of the linear programming subject to a sys-
tem of fuzzy relations have been introduced and developed based on composite opera-
tions used in FRE, fuzzy relations used in the definition of the constraints, some devel-
opments on the objective function of the problems and other ideas [6,10,16, 25,31,48].
For example, Wu et al. [48] represented an efficient method to optimize a linear frac-
tional programming problem under FRE with max-Archimedean t-norm composition.
Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem by consid-
ering fuzzy coefficients. Dubey et al. studied linear programming problems involving
interval uncertainty modeled using intuitionistic fuzzy set [6]. The linear optimiza-
tion of bipolar FRE was studied by some researchers where FRE defined with max-min
composition [10] and max-Lukasiewicz composition [25,31]. In [31], the authors pre-
sented an algorithm without translating the original problem into a 0-1 integer linear
problem.

The optimization problem subjected to various versions of FRI could be found in the
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literature as well [12,13,15,16,22,50,51]. Yang [50] applied the pseudo-minimal in-
dex algorithm for solving the minimization of linear objective function subject to FRI
with addition-min composition. Xiao et al. [51] introduced the latticized linear pro-
gramming problem subject to max-product fuzzy relation inequalities with applica-
tion in the optimization management model of wireless communication emission base
stations. Ghodousian and Khorram [12] introduced a system of fuzzy relational in-
equalities with fuzzy constraints (FRI-FC) in which the constraints were defined with
max-min composition. They used this fuzzy system to convincingly optimize the edu-
cational quality of a school (with minimum cost) to be selected by parents.

The remainder of the paper is organized as follows. In section 2, some preliminary
notions and definitions and three necessary conditions for the feasibility of problem
(1) are presented. In section 3, the feasible region of problem (1) is determined as a
union of the finite number of closed convex intervals. Two simplification operations
are introduced to accelerate the resolution of the problem. Moreover, a necessary and
sufficient condition based on the simplification operations is presented to realize the
feasibility of the problem. Problem (1) is resolved by optimization of the linear objec-
tive function considered in section 4. In addition, the existence of an optimal solution
is proved if problem (1) is not empty. The preceding results are summarized as an
algorithm and, finally in section 5 an example is described to illustrate. Additionally,
in section 5, a method is proposed to generate feasible test problems for problem (1).
2. Basic properties of max-Yager FRI

This section describes the basic definitions and structural properties concerning prob-
lem (1) that are used throughout the paper. For the sake of simplicity, let ST5 (A,b')and

ST{;(D’ b?) denote the feasible solutions sets of inequalities Apx < b' and Dgx > b?, re-
spectively, that is, STg(A,bl) = {x €[0,1]" : Apx < bl} and STg(D,bz) = {x €[0,1]" : Dpx > bz}.
Also, let STp(A D,b',b?) denote the feasible solutions set of problem (1). Based on the
foregoing notations, it is clear that STp (A,D,b',b?) = STp (A,bHN STp(D b?).

Definition 1. For each i € I; and each j € ], we define STlf(“ij'b}) = {x €[0,1] : Tp(aij,x) < bll}

Similarly, for eachi € I, and each j €], S (dl],bz) {x e€[0,1] : Tp(dl],x) > bz} Fur-

thermore, the notations

]1 {] ejJ: STp(a,], ):t(Z)} Vi el;, and ]2 {] ejJ: STp( ijs ) 0} Vi € I,, are used

in the text.

Remark 1. From the least-upper-bound property of R, it is clear that l[r(l)fl] [STp(ai]-, b.1 )}
xe

and sup {STg(a,-]-,bil)} exist, if STp(aZ], 1) % 0. Moreover, since Tp is a t-norm, its mono-
x€[0,1]

tonicity property implies that ST{,’(“ijf b!) is actually a connected subset of [0,1]. Addi-

tionally, due to the continuity of T? , we must have
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inf {ST5(aij,b})} = min {STg(ai]-,bil)} and sup {STg(ai]’:b})} = max {ST{;(ai]-,bil)}. There-

x€[0,1] x€[0,1] x€[0,1] x€[0,1]
fore,
S:rg(aij’ bz.l) = Lrerhi),r}] {STg(aij,b})},xrg(si)f] {STg(aij, b})}], ie., STg(ai]-,bil) is a closed sub-

interval of [0,1]. By the similar argument, if STg(d-- bf) # (), then we have Sle;(d-- bl-z) =

ijs v
[min] {STﬁ(dij'bzg)}’ max {STg(dij,biz)}

c[0,1].
x€[0,1 x€[0,1]

From Definition 1 and Remark 1, the following two corollaries are resulted.

Corollary 1. Foreachi € Iy and eachj €], S, (ai; b1 )20 Also, STg(ai]',bil) = [0, rrh)a)l(] {ST{,’(“ij'bil)}l'
vy x€[0,

Proof. Since T{;(ai]-,O) = 0, we have T{,)(aij,O) < bz-l, Vi € I; and Vj € J. Therefore,
0 e STg(a,-]-,bil) and then xrer[lé’rh {ST5(aij,bi1)} =0, Vi € I; and Vj € J. Now, by noting

Remark 1 we also have, STg(ai]-,bil) = [O, m[(e)u1<] {ST}’,’(aij’ b})}] ,Viel, and Vj € J. This
xe|0,

completes the proof.

Corollary 2. If STg(dij,biz)i(D for somei €I, and j €], then STg(dijr bz-z) = Lrerhi),rh {STg(dij: bl-z)}, 1].
i]-,biz). Suppose that
STﬁ(dij’ biz) # (). Therefore, there exists some x € [0,1] such that Tf; (dij,x) > biz. Now,
the monotonicity property of T{; implies Tf(d 1) > T{:(d x) > b? that means 1 €
ST;’(dij' b?).

Remark 2. Corollary 1 together with Definition 1 implies J! =], Vi € I;.

Proof. Noting Remark 1, it is sufficient to show that 1 € STp(d
Y

ijr ijr

Definition 2. For each i € I; and each j € J, we define

1 Lli]‘<b1~1
T\ - ga-nhr-(-ayr a0

Also, for each i € I, and each j € ], we set

+ oo d1]<b12

2 _ 2

1- V(l—b?)p—(l—dlj)p bf:tO, dl]be

Remark 3. From Definition 2, if 4;; = bl-l, then U;; = 1. Also, we have L;; = 1, if
dij = blz = 0.
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Lemma 1 below shows that U~- and L~ stated in Definition 2, determine the maximum

and minimum solutions of sets STp(a,],b ) (i € I) and STp(dl],b )(i € I), respectively.

Lemma 1. (a) Uj; = rr%oaa(] {STp(a,],b )} Viel, and Vje]. (b) If STg(dij'biz)i@ for some

I, and then L;; = Sre(d;j, b;
i€lyand j€], then L;; xrerhl)rh{ (1] )}

Proof. (a) Leti e l;,j €] and x € STg(ﬂij; bil). Firstly, suppose that a;; < bil. In this
case, y,=1 from Definition 2 and Remark 3. Since g e bly then ,¢[o,1jand therefore

x < Ujj. Hence, it is sufficient to show that U;; € STp(al], b.) But, the identity law of
T{,’ implies T{;(al],U ) = Tp (a;j,1) = a;; < bl Therefore Ujj € STp(al],b ) and x < Uj;

(VxEST{j(“ijrb})) that mean } Otherwise, suppose that 4;; > b!. In thlS

1
= mx {Sptais o)

case, Ujj = 1- v(l — bi1 )P —(1—a;j)P. Since Tf; (aij, Uij) = bi1 and T{; has the monotonicity
property, we have UijeS. p(ai; b)) and T{; (ajj,x) = bi1 for each x > Uj;. Therefore, U, must
i T ijol i

be the maximum of the set ¢ p(u,, bl

1]’ l] =
cause, if d;; < b?, then Ty (d;j,x) < Ty(d;;, 1) = d <b?,¥Yxe[0,1]). If b7 = O,then L;; = 0
from Deﬁnltlon 2 and Remark 3. Therefore, T (dij, Lij) = Tp (dij,0) =0 = bzand ob-
viously L;; = 0 < x, VxeS p(dijb?)" Consequently, L;; = IeIE(I)I}] {STp(d,],b )}. Otherwise,

suppose that b.2 # 0. In this case, we have L;; = 1 - \/(1 —bf)P—(l —d;;)P. Again,

(b)Letiel,,je]and x e STp(d b ). Since g p(d b2)207 then we must have d;; > b2 (be-

since T) y (dij, Lij) = b2 and Tp has the monotonicity property, we have LijeSp(d; b2) and

T? y (dij, x) < b2 for each x < L;;. Therefore, L;; must be the minimum of the set s, (d b2)r
This completes the proof.
Lemma 1 together with the corollaries 1 and 2 results in the following consequence.

Corollary 3. (a) Foreachiel;and j €], STp(a,],b )=1[0,U;;]. (b) If S, (db2)20 for some
Y 1

iel,and j €], then STp(dlj,b) [Lij,1].

Definition 3. For each i € [}, let STg(ai,bil) = {x e[0,1]" : m’élx{Tp(alj, )} <b! } Sim-
]:

ilarly, for each i € I,, we define STlf(di’biZ) = {x e[0,1]" : m’éllx{ (dlj,x )} > blz}

]:

According to Definition 3 and the constraints stated in (2), sets ST5 (a;, b. )and STp (d;, b2)
actually denote the feasible solutions sets of the i’th inequality ma]x{Tp (aij,xj)} < b1
JE

(iel)and ma]x{ (d,],x )} > bl-z (i € I) of problem (1), respectively. Based on (2) and
je
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Definitions 1 and 3, it can be easily concluded that for a fixed i € I, STp(al, ) = 0iff

STP(az, 1«00 VJ € J. On the other hand, by Corollary 1 we know that 4 ol b1)=00 Viely

and Vje]. As aresult, STg(al, ; )= 0 for each i € I;. However, in contrast to STg(al, bll)

set STg(di,biz) may be empty. Actually, for a fixed i € I, STlf(di:biz) is nonempty if and
only if ST{;(dij,bf) is nonempty for at least some j € J. Additionally, for each i € I, and
j € ] we have STg(dijvbg)ioif and only if dij2b? These results have been summarized in the
following lemma. Part (b) of the lemma gives a necessary and sufficient condition for
the feasibility of set STg(d,-,biz) (Vi € I,). It is to be noted that the lemma 2 (part (b))
also provides a necessary condition for problem (1).

Lemma 2. (a) STp(a,, 1Y20,Viel,. (b)Forafixediel,, ST;z(di, biz) = (iff Un, STYp(dij,bf)vt@'
Additionally, for eachiel, and j €], STg(dij,bf)i(biff dij b

Definition 4. For each i € I, and j € ]l-z, we define STg(di,biz,j) =[0,1] x...x[0,1] x

[Lij,1]x[0,1] x...x[0,1], where [L;;, 1] is in the j’th position.

In the followmg lemma, the feasible solutions set of the i’th fuzzy relational inequality

is characterized.

Lemma 3. (a) STp(al, =[0,U;1] x [0,Ujp] X ... x [0,U;,], Vi € I;. (b) STg(d,-,bf) =

Uje].z STp(di: bzr]) Vie IZ

Proof. (a) Fixi € I; and let x € STp(aZ,b ). By Definition 3, x; € [0,1] for each j €], and

m%lx{Tp(al], )} < bl The latter inequality implies T? (a,], ) < bil, ¥j €]. Thus, by Def-

]:

inition 1 and Corollary 3 we have x; € STg(a,-]-,bi ) =[O0, UZ-]-], Vj € J, which necessitates

x€[0,U;1]x[0,U;p] x... x [0, Uj,]. Conversely, suppose that x € [0, U;1] %[0, Ujp] x.

[0, U;,]. Then, by Corollary 3, x; € [0, U;;] = Tp(al],b ), ¥j € ], which implies x; € [O 1]

and T{;(aij,xj) < bil, V¥je]. Thus, x €[0,1]" and malx{Tp(az;, )} < b Therefore, by
]:

Definition 3, x € ST{,’(”I’! bll)

(b)Fixi €I, and let x € ng(di;biz)- By Definition 3, x € [0,1]" and nlealx{ vy (dij, x; )} > biZ.

) > b2 Therefore, from Definition 1

L;;
ijor bi) = [Lijos
4 we have x € STg(di,biz,jo). Thus, x € Uje]? STﬁ(dz'bi ,]). Conversely, suppose that x €

Then there exists some jj, € ]i2 such that T{;(dij )X,

and Corollary 3, it is concluded that x;, € STﬁ(d 1]. Now, from Definition

Uje],? ST5(di, biz,j). Then there exists some jj, € ]i2 such that x € STp(dl-, bz,jo) Therefore,
by Definition 4, x € [0,1]" and x;, € STp(d' bzz) = [Lij,, 1], which implies ! y(d ) >

ijo’

biz. Thus, x € [0,1]" and m%lx{ (dZ],x )} > biz, which requires x € STp(di,bi ).
]:

lJo’xJo

Definition 5. Let X (i) = [U;;, Uj», ..., Ui, ], Vi € I;. Also, let X(i,7) = [X(i,7)1,X(i,7) 2 X(i,7)u],
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Vi€l and Yj € J?, where
. ) Lij k=j

X(l'])k _{ O] ki]
Lemma 3 together with Definitions 4 and 5, results in Theorem 1, which completely
determines the feasible region for the i’th relational inequality.
Theorem 1. (a) Syp(a;, b;) = [0,X(0)], Vi € I (b) Spp(d;,b7) = Ujepe[X(i,f),1], Vi € I,
where 0 and 1 are n—dimensional vectors with each component equal to zero and one,
respectively.
Theorem 1 gives the upper and lower bounds for the feasible solutions set of the i’th
relational inequality. Actually, for each i € I}, vectors 0 and X (i) are the unique min-
imum and the unique maximum of set ST{;(ai,bil). In addition, for each i € I,, set

STg(di; bl-z) has the unique maximum (i.e., vector 1), but the finite number of minimal

solutions X(i,7)(Vj € ]12) Furthermore, part (b) of Theorem 1 presents another feasible
necessary condition for problem (1) as stated in the following corollary.
Corollary 4. If S7¢(A, D, b',b?) =0, then1 e Sye(di, b7),Viel, (e, 1€y, S0 (di, b?) =
Y
S T8 (D, b?)).
Proof. Let STg(A,D,bl,bz) # (. Then, STlg(D,bz) # (0, and therefore, STp(di,bl-z) =0,
Y

Vi e I,. Now, Theorem 1 (part (b)) implies 1 € STg(di,biz), Viel,.
Lemma 4 describes the shape of the feasible solutions set for the fuzzy relational in-
equalities Apx < b! and Dox > b?, separately.

Lemma 4. (a) S7r(A, b') = Mier, [0, Uil X Nier, [0, Ui % .. X N, [0, Uiy (b) Sr2(D, b?) =
mielz U]-e]i2 ST{,’(di' bl.z,j).

Proof. The proof is obtained from Lemma 3 and equations ST5 (A, b') = Mier, S

and ST5(D,b2) = MNiey, sTg(di,bf).

Definition 6. Lete: [, — ]i2 so that e(i) =j € ]1.2, Vi € I, and let Ep be the set of all

vectors e. For the sake of convenience, we represent each e € E as an m,—dimensional

vector e = [ji, j2,.-, jm,] in which ji =e(k), k =1, 2,...,m.

Definition 7. Let e = [ji, ]2, .., jm,] € Ep. We define X = r_niln{y(i)}, that is, Xj =
1ely

min{f(i)]-}, Vj €]. Moreover, let X(e) = [X(e), X(e)s, ..., X(e),], where X(e); = max{g(i,e(i))-} =

iEIl i€I2 J

max{X (i, ji);}, Vj €.

iEIZ

T}I/’(ail bll)

Based on Theorem 1 and the above definition, we have the following theorem charac-
terizing the feasible regions of the general inequalities Apx < b! and Dgx > b? in the
most familiar way. o

Theorem 2. (a) ST$(A,b1) =[0,X], Vi eI;. (b) ST5(D,b2) = Ueer, [X(e),1].

Proof. (a) By considering Definitions 5 and 7, for each j € ] we have (¢, [0, U;;] =
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[O,min{Ui]-} lO m}n {X i); }l [0,X; j]- Therefore, part (a) of lemma 4 can be rewrit-

iely
ten as STﬁ(A' b = [O,XI] X [O,XZ] X ... X [O,Xn] = [O,X], where 0 is the zero vector. This
proves part (a).
(b) From part (b) of lemma 4, STﬁ(D’ b?) = Mier, Uje]l? STg(di: b?,j). Now, by Definitions
4 and 5, we have

Se(D,b%) = [ J10,1] % x[0,1]x [Lis, 1]x [0, 1] x .. x [0,1] = [ )| [X(

iEIzje]iz 1612]612

Therefore, from Definitions 6 and 7 we have

ST{,’(D, b?) = ﬂielz UeeED [X(i,e(i)), 1] = UeeED ﬂie[z [X(i,e(i)), 1] = UeeED [rlrg}zx {X(i,e(i))}, 1] =

U €€EfD [X(e), 1]where, the last equality is resulted from Definition 7. This completes the
proof.
Corollary 5. Assume that ST5 (A, D, bl, bz) # (). Then, there exists some e € Ep such that

[0, XTN[X(e), 1] 0.

Corollary 6. Assume that ST§’ (A,D,b',b%) = 0. Then, X € STg(D, b?).

Proof. Let STg(A, D,b',b?) = 0. By Corollary 5, [0,X]\[X(¢’),1] = 0 for some ¢’ € Ep,.
Thus, X € [X(¢’),1] that means X € Ueer, [X(€),1]. Therefore, from Theorem 2 (part
(b)), X € STg(D, b?).

3. Feasible solutions set and simplification operations

In this section, two operations are presented to simplify the matrices A and D, and a
necessary and sufficient condition is derived to determine the feasibility of the main
problem. At first, we give a theorem in which the bounds of the feasible solutions
set of problem (1) are attained. As is shown in the following theorem, by using these

bounds, the feasible region is completely found. _
Theorem 3. Suppose that Syr(4, D, b',b?) = 0. Then S7v(A,D, b',b?) = U,ep, [X(e), X].

Proof. Since STP(A D,b', %) = Tp(A bl)ﬂSTp(D b?), then by Theorem 2, STP(A D,b', %) =

[0, X]N( (Ueer,[X(e),1]) and the statement is established.

In practice, there are often some components of matrices A and D, which have no effect
on the solutions to problem (1). Therefore, we can simplify the problem by changing
the values of these components to zeros. We refer the interesting reader to [13] where
a brief review of such these processes is given. Here, we present two simplification
techniques based on the Yager family of t-norms.

Definition 8. If a value changing in an element, say a;;, of a given fuzzy relation
matrix A has no effect on the solutions of problem (1), this value changing is said to be
an equivalence operation.

Corollary 7. Suppose that i € I; and T{;(aijo,xjo) <b;Vx e STg(A,bl). In this case, it
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is obvious that max {Tp(a,], ])} < b is equivalent to max {Tp(a”, )} < b that is,
j=1 j=1
J#]Jo

“resetting 4;;, to zero” has no effect on the solutions of problem (1) (since component

ajj, only appears in the i‘th constraint of problem (1)). Therefore, if T? y (@i, X)) <

]o)
1 1 « . . .
b; Vx € ST5 (A,b"), then “resetting a;;, to zero” is an equivalence operation.

Lemma 5 (simplification of matrix A). Suppose that matrix A = (@;)m,xn is resulted
from matrix A as follows:
[0 a< b}
v aij al] > bl

for each i €I and j € J. Then, Szr(4, b') = STp(A bl).
Proof. From corollary 7, it is sufficient to show that T/ (a,JO,x ) < b Vx e STp (A, bh).

But, from the monotonicity and identity laws of T}, we have T} V(@i xj,) < TP( aij, 1) =
ajj, <b},¥x;, €[0,1]. Thus, T{ (a;j,,x;,) < b} ,¥x € Spr(A, bl).

Lemma 5 gives a condition to reduce the matrix A. In this lemma, A denote the sim-
plified matrix resulted from A after applying the simplification process. Based on this

notation, we define ]1 {] eJ: STp(a,], 1) = (Z)}(Vz € I;) where 4;; denotes (i,j)'th com-

ponent of matrix A. So, from Corollary 1 and Remark 2, it is clear that ]il = ]Z-1 =7].
Moreover, since STp(A D,b',b?) = STp(A bl)ﬂSTp(D,b2), from Lemma 5 we can also

conclude that STp(A D,b',b?) = STp(A D,bl,b?).

By considering a fixed vector e € Ep in Theorem 3, interval_[&(e),f] is meaningful iff
X(e) < X. Therefore, by deleting infeasible intervals [X(e), X] in which X(e) £ X, the
feasible solutions set of problem (1) stays unchanged. In order to remove such infea-

sible intervals from the feasible region, it is sufficient to neglect vectors e generating
infeasible solutions X(e) (i.e., solutions X(e) such that X(e) £ X). These considera-

tions lead us to introduce a new set E}, = {e €Ep : X(e) < X} to strengthen Theorem
3. By this new set, Theorem 3 can be written as STﬁ(A' D,bl,bz) = UeeEb [X(e),y], if
STf(A' D,b',b%) = 0.

Lemma 6. Let Ij(e) ={i € I : e(i)=j}and J(e) ={j €] : Ij(e) =0}, Ve € Ep. Then,

max i{L;,; ieJe
X(e)j :{ ieI]-(e){ ()} je](e)
0 jeJ
Proof. From Definition 7, X(e); = m?X{X(l e(i)); } ¥j € J. On the other hand, by Defi-
iel,

nition 5, we have
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Now, the result follows by combining these two equations.

Corollary 8. e € Ej, if and only if L;,(;) < X, j), Vi € I,.

Proof. Firstly, from the definition of set E},, we note that e € E}, if and only if X(e)j < X]-,
Vj € ]. Now, let e € E}, and by contradiction, suppose that L; ., > X, (i, for some
ig € I,. So, by setting e(iy) = jp, we have j, € J(e), and therefore lemma 6 implies
X(e); = max {Lie(i)} > Lie(iy) > Xe(io)' Thus, X(e);, > Xe(,-o) that contradicts e € E},. The

Jo i€l (e)
converse statement is easily proved by Lemma 6.
As mentioned before, to accelerate identification of the meaningful solutions X(e), we
reduce our search to set El’) instead of set Ep. As a result from Corollary 8, we can
confine set J? by removing each j € J? such that Li; > X]- before selecting the vectors
e to construct solutions X(e). However, lemma 7 below shows that this purpose can
be accomplished by resetting some components of matrix D to zeros. Before formally
presenting the lemma, some useful notations are introduced.
Definition 9 (simplification of matrix D). Let D = (cfij)mzxn denote a matrix resulted
from D as follows: o _
d*'l]:{do ]6]1 andLl]>X]

ii otherwise
Also, similar to Definition 1, assume that flz = {] eJ: ST{,’(dijfbiz) # (Z)} (Vi € I) where
d~l-]' denotes (i, j)th components of matrix D.
According to the above definition, it is easy to verify that J* C J?, Vi € I,. Furthermore,
the following lemma demonstrates that the infeasible solutions X(e) are not generated,
if we only consider those vectors e generated by the components of the matrix D, or
equivalently vectors e generated based on the set fiz instead of ]iz.

Lemma 7. Ej = E;,, where Ej is the set of all functions e : [, — ]? sothate(i)=j € ]?,
Viel,.

Proof. Let e € E},. Then, by Corollary 8, L;, ;) < Ye(i), Vi € I,. Therefore, we have d~ie(i) =
d;e(i), Yi € I, that necessitates J?=J?, Viel,. Hence, e(i) € J?, Vi € I,, and then e € Ej5.
Conversely, let e € Ej5. Therefore, e(i) € [?, Vi € I,. Since J? C J?, Vi € I,, then e(i) € ]2,
Vi € I,, and therefore e € Ep. By contradiction, suppose that e ¢ E/,. So, by Corollary
8, there is some ij € I, such that L; .(; ) > Xe(,-o). Hence, d~i0 e(ip) = 0 (since e(ip) € ]1‘20 and
L e(ig) > Ye(io)) and L; .(,) > 0. The latter inequality together with Definition 2 and
Remark 3 implies bizo > 0. But in this case, T{;(cfioe(,-o),x) = Tf(O, x)=0< bizo, Vx e [0,1],
that contradicts e(ip) € ]l%.

By Lemma 7, we always have X(e) < X for each vector e, which is selected based on
the components of matrix D. Actually, matrix D as a reduced version of matrix D,
removes all the infeasible intervals from the feasible region by neglecting those vec-
tors e generating the infeasible solutions X(e). Also, similar to Lemma 5 we have
ST5(A, D,b',b?) = ST5 (A,D,b',b?). This result and Lemma 5 can be summarized by
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S72(A,D, b, b?) = sTg(A, D,b',b?).

Definition 10. Let L = (L;;);,x, be a matrix whose (i, j)’th component is equal to L;;.
We define the modified matrix L* = (L;f]-)mzxn from the matrix L as follows:

I = + 0o Lz] > X]

2 Li; otherwise
As will be shown in the following theorem, matrix L* is useful for deriving a necessary
and sufficient condition for the feasibility of problem (1) and accelerating identifica-
tion of the set S7»(4, D, b, b?%).

Theorem 4. ST5 (A, D, bl, bz) # () iff there exists at least some j € ]l-2 such that L’lf]. # + 00,
Vie 12.
Proof. Let x € ST{;(A’ D,b',b?). Then, from Corollary 5, there exists some ¢’ € Epp such
that [X(e’), X] # 0. Therefore, X(¢’) < X that implies ¢’ € E},. Now, by Corollary 8, we
haveL;, ;) < Yef(i), Vi € I,. Hence, by considering Definition 10, L’;e,(i) % +oo Vi € I,.
Conversely, suppose that L;‘ji # + oo for some j; € ]1.2, Vi € I,. Then, from Definition 10
we have B

Liji SX]:’VZ 612 (3)
Consider vector €’ =[]y, j2, -, jm| € Ep- So, by noting Lemma 6, X(¢’);, = .n}a(lx){L,-e/(i)} =

i€lj(e’

ma(u(){LZ-]-.} , Vi € I, and X(e’); = 0 for each j € ] —{ji, ]2, jm}- These equations to-
iEIj e’ !
gether with (3) imply X(e’) < X that means [X(e’), X] # 0. Now, the result follows from
Corollary 5.
4. Optimization of the problem
According to the well-known schemes used for optimization of linear problems such
as (1) [9,13,16,28], problem (1) is converted to the following two sub-problems:

min Z; = Z?:l c]“ij
Apx < b!
Dox > b?
x€[0,1]"

and

min Z, = 2?21 c; Xj
Apx < bl
Dox > b?
x€[0,1]"

(5)

Where c}” = max{cj,O} and c]-_ = min{c]-,O} for j =1,2,..,n. It is easy to prove that X is
the optimal solution of (5), and the optimal solution of (4) is X(e’) for some e’ € E},.
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Theorem 5. Suppose that STg (A,D,b',b%) # 0, and X and X(e*) are the optimal solu-

tions of sub-problems (5) and (4), respectively. Then c!x* is the lower bound of the
optimal objective function in (1), where x* = [x},x5,..., x},] is defined as follows:

%] :{ X(@); ¢>0 (6)

forj=1,2,..,n.
Proof. Let x € ST5 (A,D,b',b?). Then, from Theorem 3 we have x € Ueek,, [X(e), X].

Therefore, for each j € J such that ¢; > 0, inequality x}f < x; implies c;x; < c].+

X;. Hence,

Xj. In

addition, for each j € J such that ¢j <0, inequality x; > Xj implies c]Tx; < ¢

n * n

Corollary 9. Suppose that STg(A, D,b',b%) = 0. Then, x* = [x],%},...,x}] as defined in
(6), is the optimal solution of problem (1).

Proof. As in the poof of Theorem 5, cTx* is the lower bound of the optimal objective
function. According to the definition of vector x*, we have X(e*)j < x; < Yj, Vie],

which implies x* € (J,eg,, [X(e),X] = ST5 (A,D,bl,b?).
We now summarize the preceding discussion as an algorithm.

Algorithm 1 (solution of problem (1))

Given problem (1):

1. Compute U;; (Vi€ and Vj€])and L;; (Vi€ I, and Vj €]) by Definition 2.

2.If 1€ ST;v(D, bz), then continue; otherwise, stop, the problem is infeasible (Corollary
4).
3. Compute vectors X (i) (Vi € I;) from Definition 5, and then vector X from Definition
7.

4. IfX € STﬁ(D’ bz), then continue; otherwise, stop, the problem is infeasible (Corollary
6).
5. Compute simplified matrices A and D from Lemma 5 and Definition 9, respectively.
6. Compute modified matrix L* from Definition 10.

7. For each i € I,, if there exists at least some j € ]iz such that L’;j # + 00, then continue;
otherwise, stop, the problem is infeasible (Theorem 4).

8. Find the optimal solution X(e*) for the sub-problem (4) by considering vectors e € Ej5
and set J?, Vi € I,( Lemma 7).

9. Find the optimal solution x* = [x], x3,..., x},] for the problem (1) by (6) (Corollary 9).

It should be noted that there is no polynomial time algorithm for complete solution of
FRIs with the expectation N = NP. Hence, the problem of solving FRIs is an NP-hard

problem in terms of computational complexity [2].

5. Construction of test problems and numerical example
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In this section, we present a method to generate random feasible regions formed as the
intersection of two fuzzy inequalities with Yager family of t-norms. In section 5.1, we
prove that the max-Yager fuzzy relational inequalities constructed by the introduced
method are actually feasible. In section 5.2, the method is used to generate a ran-
dom test problem for problem (1), and then the test problem is solved by Algorithm 1
presented in section 4.

5.1. Construction of test problems

There are several ways to generate a feasible FRI defined with max-Yager composition.
In what follows, we present a procedure to generate random feasible max-Yager fuzzy
relational inequalities:

Algorithm 2 (construction of feasible Max-Yager FRI)

1. Generate randon scalars a;; € [0,1],i=1,2,..,mjandj=1,2,..,n, and bl-1 €[0,1],i=1,2,..,mj.
2. Compute X by Definition 7.
2. Randomly select m;, columns {jy, j2,..., jm,} from J={1,2,...,n}.
2.Forie{l,2,..,my}, assign a random number from [O,Y]-i] to biz.
3.Foriell,2,..my},if bi2 = 0, then

Assign a random number from interval [max {biz, 1- V(l - bl.z)P —(1 —in )P}, 1] tod

End
4.Foriell,?2,..m;}
Foreach k€ {1,2,...my} —{i}

Assign a random number from [0, 1] to dy,.
End

iji

End
5.For eachi € {1,2,..,my} and each j € {j1, jo, - jm,}
Assign a random number from [0, 1] to d;;.
End

By the following theorem, it is proved that Algorithm 2 always generates random fea-
sible max-Yager fuzzy relational inequalities.

Theorem 6. Problem (1) with feasible region constructed by Algorithm (2) has the
nonempty feasible solutions set (i.e., ST{; (A, D, bl, bz) 2= 0).
Proof. By considering the columns {jj, jo,..., ju,} selected by Algorithm 2, let ¢’ =

[j1, 27+ Jm,]- We show that ¢’ € Ep and X(e’) < X. Then, the result follows from Corol-
lary 5. From Algorithm 2, the following inequalities are resulted for each i € I:

, =
1. b? <X,

2. br<d

1 — it



70 Amin Ghodousian / JAC 49 issue 1, June 2017, PP. 55 - 82

3.1—du—ww—u—ippsﬁﬁ

By (I), we have 1 — v(l —b?)P - (1 —in )P < 1. This inequality together with b7 € [0, 1],

Vi € I, implies that the interval [max {b?, 1- ’(/(1 - biz)P —(1 —in)P}, 1] is meaningful.
Also, by (II), e’'(i) = j; € ]iz, Vi € I,. Therefore, ¢’ € Ep. Moreover, since the columns
{j1, jor-r Jm,} are distinct, sets I; (¢’) (i € I) are all singleton, i.e.,

1) ={i},Viel, (7)

As a result, we also have J(e’) = {ji, j2, - jm,} and I;(e’) = 0 for each j € {ji, jo s i, }-

On the other hand, from Definition 5, we have X (i, ¢'(i)).;) = X(i, j;);, = L;j, and X(i,€(i)); =
0 for each j ] —{j;}. This fact together with (7) and Lemma 6 implies X(¢’);, = L;;,,
Vi€ I, and X(€'); = 0 for j & {j1, j2,.s jm,}- So, in order to prove X(e’) < X, it is suffi-
cient to show that X(e’); < X, Vi € I,. But, from Definition 2 and Remark 3,

0 b7 =0
X / . =L:. =
X(e);; 1]i 1- (/(1 - b;’—)p —(1—d;j,)P bl‘.2 =0 8)

Now, inequality (III) implies

- Y-y - (1-dyp <X (9)

Therefore, by relations (8) and (9), we have X(¢’);, < in, Vi € I,. This completes the
proof.

5.2. Numerical example
Consider the following linear optimization problem (1) in which the fea-
sible region has been randomly generated by Algorithm 2 presented in
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section 5.1.

min Z = -4.6323x;+2.4489x, + 6.0913 x5 — 7.9206 x4+ 4.5848 x5
+2.9718x¢ —0.5069 x7 + 8.6582 xg

[ 0.0964 0.2050 0.7567 0.2050 0.8179 0.2755 0.1249 0.9049 | [ 0.8690 |
0.5991 0.6213 0.5421 0.4340 0.7084 0.9516 0.6172 0.2817 0.5570
0.2336 0.1740 0.2821 0.1422 0.0432 0.3467 0.3555 0.6139 0.0214
0.0323 0.2895 0.2449 0.3756 0.1459 0.2973 0.3629 0.6619 0.4827
0.5799 0.0185 0.2863 0.7936 0.2333 0.4044 0.0685 0.2000 |¥* = 0.8080
0.8422 0.7015 0.9631 0.8128 0.2467 0.3022 0.8672 0.9600 0.7360
0.5569 0.9521 0.2307 0.9038 0.1703 0.7573 0.4579 0.6651 0.5723

| 0.8399 0.7490 0.5373 0.5404 0.2351 0.3597 0.0776 0.5413 | | 0.0090 |

[ 0.4067 0.1700 0.3225 0.4529 0.4168 0.5262 0.8422 0.3476 | [ 0.0850 |
0.4631 0.3712 0.4638 0.0580 0.2803 0.2466 0.6319 0.7873 0.0338
0.2027 0.0398 0.0990 0.1063 0.5981 0.9493 0.2954 0.7177 0.2418
0.8695 0.7092 0.5710 0.9984 0.5084 0.5429 0.6220 0.0280 0.1997
0.5979 0.9655 0.3259 0.8663 0.0365 0.7809 0.0475 0.0668 |¥* > 0.0306
0.9166 0.6413 0.4505 0.6152 0.0637 0.5219 0.9946 0.9271 0.0189
0.0230 0.1741 0.5778 0.9603 0.3229 0.9319 0.2068 0.0878 0.0799

| 0.8994 0.0622 0.6030 0.0269 0.0984 0.1471 0.6074 0.3324 | | 0.0536 |

x€[0,1]"

where || = || = |J| = 8 and ¢ (x,) = T} (x,3) = max {1 - (1 -x)? + (1 -p)")!/?, 0} in which
p = 3. Moreover, Z; = 2.4489x, + 6.0913 x3+ 4.5848 x5+ 2.9718 x4 + 8.6582 xg is the objective
function of sub-problem (4) and Z, = -4.6323 x; —7.9206 x4 — 0.5069 x7 is that of sub-problem
(5). By Definition 2, matrices U = (Uj;)gxg and L = (L;;)gxg are as follows:

[ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9098 ]
0.8116 0.7703 1.0000 1.0000 0.6666 0.5597 0.7772 1.0000
0.3915 0.4752 0.3350 0.5290 0.7945 0.2714 0.2636 0.1008
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6085
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7884 1.0000 0.7386 0.8138 1.0000 1.0000 0.7719 0.7391
1.0000 0.5750 1.0000 0.5833 1.0000 0.6478 1.0000 0.7340

| 0.0220 0.0413 0.1236 0.1220 0.3699 0.2436 0.6376 0.1215 |

[ 0.3035 0.6149 0.3850 0.2666 0.2950 0.2173 0.0988 0.3585 ]
0.1967 0.2665 0.1963 0.7851 0.3554 0.3950 0.1067 0.0575
00 00 00 oo 0.3571 0.2435 0.7200 0.2963
0.2104 0.2544 0.3244 0.1997 0.3684 0.3431 0.2946 oo
0.1179 0.0312 0.3033 0.0398 0.8930 0.0556 0.8193 0.7372
0.0225 0.0868 0.1873 0.0975 0.7070 0.1433 0.0189 0.0216
co  0.5945 0.1825 0.0807 0.3770 0.0824 0.5338 0.8798
| 0.0589 0.8727 0.1409 oo 0.7122 0.5897 0.1388 0.3291

Therefore, by Corollary 3 we have, for example:
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Sre(ass, b;) =[0,U,5] =[0,0.6666] and ST5(a74,b;) =[0, U;4] = [0,0.5833].
Ste(das, b3) = [Lyy 1] =[0.1997,1] and Sr#(dss, bi) = [Lgs, 1] =[0.7122,1].

Also, from Definition 1, ]12 = ]22 = ]52 = ]62 ={1,2,..,8}, ]32 = {5,6,7,8},
J2 =1{1,2,..,7}, J3 = {2,3,..,8}and J¢ = {1,2,3,5,6,7,8}. Moreover, the
only components of matrix Dsuch that d;; < b? are as follows: ds;, ds,,
d;3 and ds4 (in the third row), d,g (in the fourth row), d;; (in the seventh
row) and dg4 (in the eighth row). Therefore, by Lemma 2 (part (b)),

Sre(d;, b?) = Uis Se(dij, b?)=0,Vi€l,.
By Definition 5, we have

X(1)=[1 1 1 1 1 1 1 0.9098]

X(2)=[0.8116 0.7703 1 1 0.6666 0.5597 0.7772 1]
X(3)=[0.3915 0.4752 0.3350 0.5290 0.7945 0.2714 0.2636 0.1008]
X(4)=[1 1 1 1 1 1 1 0.6085]
X5)=[1 11 1 1 1 1 1]
X(6)=[0.7884 1 0.7386 0.8138 1 1 0.7719 0.7391]
X(7)=[1 0.5750 1 0.5833 1 0.6478 1 0.7340]
X(8)=[0.0220 0.0413 0.1236 0.1220 0.3699 0.2436 0.6376 0.1215]

Also, for example
X(3,5)=[0 0 0 0 03571 0 0O 0],X(3,6)=[0 0 0 0O 0 0.2435 0 0],

X(3,7)=[0 00 0 0 0 0.7200 0,X(3,8)=[0 0 0 0 0 0 0 0.2963].
Therefore, by Theorem 1, STg(ai, b!)=1[0,X(i)], Vi € I}, and for example

STg(d?,, b3) = U?:5[§(3,j), 1], for the third row of matrix D(i.e., i = 3 € [,).
From Corollary 4, the necessary condition holds for the feasibility of the
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problem. More precisely, we have

Dol =

that means 1 € Sy»(D, b?).
From Definition 7,

[ 0.8422 |

0.7873
0.9493
0.9984
0.9655
0.9946
0.9603

| 0.8994 |

\Y%

[ 0.0850 |

0.0338
0.2418
0.1997
0.0306
0.0189
0.0799

| 0.0536 |

X =[0.0220 0.0413 0.1236 0.1220 0.3699 0.2436 0.2636 0.1008]

which determines the feasible region of the first inequalities, i.e., ST§’ (A, bh) =
[0, X] (Theorem 2, part (a)). Also,

0.1767
0.2527
0.2009
0.2125
0.2636
0.2405

[ 0.2469 ]

| 0.1655 |

\%

[ 0.0850 ]

0.0338
0.2418
0.1997
0.0306
0.0189
0.0799

| 0.0536 |

Therefore, we have X € STg(D, b?), which satisfies the necessary feasi-
bility condition stated in Corollary 6. On the other hand, from Defi-
nition 6, we have |Ep| = 5619712. Therefore, the number of all vec-
tors e € Ep is equal to 5619712. However, each solution X(e) generated
by vectors e € Ep is not necessary a feasible solution. For example, for
e=[1,5,6,7,2,6,6,7], we attain from Definition 7

X(e') = max{X(i,e’(i))}

iEIz

= max {X(1,1),X(2,5),X(3,6), X(4,7), X(5,2), X(6,6), X(7,6), X(8,7))
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where
X(1,1)=[0.3035 0 0 0 O O O O]

X(2,5)=[0 0 0 0 03554 0 0 0]
X(3,6)=[0 0 0 0 0 0.2435 0 0]
X(4,7)=[0 0 0 0 0 0 0.2946 0]
X(5,2)=[0 0.0312 0 0 0 0 0 0]
X(6,6)=[0 0 0 0 0 0.1433 0 0]
X(7,6)=[0 0 0 0 0 0.0824 0 0]
X(8,7)=[0 0 0 0 0 0 0.1388 0]

Therefore, X(e’) =[0.3035 0.0312 0 0.7851 0.3554 0.2435 0.1388 0].
It is obvious that X(e’) £ X (actually, X(e’); > X; and X(e’); > X,) which
means X(e') € Syr(A,D, b',b?) from Theorem 3.

From the first simplification (Lemma 5), “resetting the following com-
ponents a;; to zeros” are equivalence operations: a1, a3, 413, d14, 415, 416

» 4175 423, G24) G28; 471, 472, 473, 74, A75, A76 5 a77$“5j(j =1,2,..,8); a¢, ags,

dgg; 71, 473, A75 , A77. SO, matrix A is resulted as follows:

[0 0 0 0 0 0 0 0.9049

0.5991 0.6213 0 0 0.7084 0.9516 0.6172 0

0.2336 0.1740 0.2821 0.1422 0.0432 0.3467 0.3555 0.6139
i_|0 0 0 0 0 0 0 0.6619

0 0 0 0 0 0 0 0

0.8422 0 0.9631 0.8128 0 0 0.8672 0.9600

0 0.9521 0 0.9038 0 0.7573 0 0.6651

| 0.8399 0.7490 0.5373 0.5404 0.2351 0.3597 0.0776 0.5413 |

Also, by Definition 9, we can change the value of components d;;, d;,,
diz, diy, dig; day, dpy, dys, dyy, does Ay, dig; dyy, dyp, dys, dyy, dag, dazs
d511 d531 d551 d571 d581 d611 d621 d631 d651 d72/ d731 d751 d77, d781 d811 d821
dgs, dgs, dgs, dgg to zeros. For example, since 8 € J? and Lsg = 0.2963 >
0.1008 =X, then d;5 = 0. Simplified matrix D is obtained as follows:
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[ 0 0 0 0 0.4168 0.5262 0.8422 0

0 0 0 0 0.2803 0 0.6319 0.7873

0.2027 0.0398 0.0990 0.1063 0.5981 0.9493 0 0
b= 0 0 0 0 0.5084 0 0 0.0280

0 0.9655 0 0.8663 0 0.7809 0 0

0 0 0 0.6152 0 0.5219 0.9946 0.9271

0.0230 0 0 0.9603 0 0.9319 0 0

0 0 0 0.0269 0 0 0.6074 0

Additionally, J2 = {5,6,7}, J; = {5,7,8}, J3 = {5,6}, J; = {5}, J2 = {2,4,6},
Je=1{4,6,7,8}, J7 = {4,6} and J§ = {7}. Based on these results and Lemma
7, we have |Ep| = |Eb| = 432. Therefore, the simplification processes
reduced the number of the minimal candidate solutions from 5619712
to 432, by removing 5619280 infeasible points X(e). Consequently, the
feasible region has 432 minimal candidate solutions, which are feasible.
In other words, for each e € Ep5, we have X(e) € ST5 (A,D,b!,b?%). However,
each feasible solution X(e) (e € Ep) may not be a minimal solution for
the problem. For example, by selecting ¢’ = [6,8,5,5,2,4,6,7], the
corresponding solution is obtained as

X(e’) =[0 0.0312 0 0.0975 0.3684 0.2173 0.1388 0.0575]. Al-
though X(¢’) is feasible (because of the inequality X(e’) < X) but it is not
actually a minimal solution. To see this, let ¢” = [5,5,5,5,4,7,4,7].
Then, X(¢”) =[0 0 0 0.0807 0.3684 0 0.1388 0]. Obviously,
X(e”) < X(e’) which shows that X(e’) is not a minimal solution.
Now, we obtain the modified matrix L* according to Definition 10:

00 00 00 00 0.2950 0.2173 0.0988 00
00 00 00 ) 0.3554 ) 0.1067 0.0575
00 00 00 00 0.3571 0.2435 00 00

[ 00 00 00 00 0.3684 00 () 00

B 00 0.0312 oo 0.0398 ) 0.0556 ) 00

00 00 00 0.0975 ) 0.1433 0.0189 0.0216
00 00 00 0.0807 00 0.0824 00 00
00 0 %) 00 0 [ 0.1388 0

As is shown in matrix L%, for each i € I, there exists at least some j € J?
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such that L}; # + co. Thus, by Theorem 4 we have Sy»(A, D, bl,b%) = 0.

Finally, Vector X is optimal solution of sub-problem (5). For this solu-
tion, Z, = —4.6323X,-7.9206 X,—0.5069X, = —1.2018. Also, Z =X =
2.9448. In order to find the optimal solution X(e*) of sub-problems (4),
we firstly compute all minimal solutions by making pairwise compar-
isons between all solutions X(e) (Ve € Ep), and then we find X(e*) among
the resulted minimal solutions. Actually, the feasible region has two
minimal solutions as follows:

e,=[5,5,5,5,4,7,4,7]
X(e;)=[0 0 0 0.0807 0.3684 0 0.1388 0]

e,=[5,5,5,5,6,7,6,7]
X(e,)=[0 0 0 0 0.3684 0.0824 0.1388 0]

By comparison of the values of the objective function for the minimal
solutions, X(e;) is optimal in (4) (i.e., e* = ¢;). For this solution,

Zy =) ¢/ X(ey);
= 2.4489 X (e,), + 6.0913 X (e, )5+ 4.5848 X(e;)s+ 2.9718 X(e;)s + 8.6582 X(e,)s
=1.6893

Also, Z = cTX(e;) = 0.97931. Thus, from Corollary 9,

x*=1[0.022 0 0 0.122 0.3684 0 0.2636 0] and then Z* =
cTx*=0.48727.
Conclusion
In this paper, we proposed an algorithm to find the optimal solution
of linear problems subjected to two fuzzy relational inequalities with
Yager family of t-norms. The feasible solutions set of the problem is
completely resolved and a necessary and sufficient condition and three
necessary conditions were presented to determine the feasibility of the
problem. Moreover, depending on the max-Yager composition, two sim-
plification operations were proposed to accelerate the solution of the



77 Amin Ghodousian / JAC 49 issue 1, June 2017, PP. 55 - 82

problem. Finally, a method was introduced for generating feasible ran-
dom max-Yager inequalities. This method was used to generate a test
problem for our algorithm. The resulted test problem was then solved
by the proposed algorithm. As future works, we aim at testing our algo-
rithm in other type of linear optimization problems whose constraints
are defined as FRI with other well-known t-norms.
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