
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Tenacity and some related results

D. Moazzami∗1

1University of Tehran, College of Engineering, Department of Engineerng Science.

ABSTRACT ARTICLE INFO

Conceptually graph vulnerability relates to the study of
graph intactness when some of its elements are removed.
The motivation for studying vulnerability measures is
derived from design and analysis of networks under hos-
tile environment. Graph tenacity has been an active
area of research since the the concept was introduced in
1992.
The tenacity T(G) of a graph G is defined as

T (G) = min
A⊂V (G)

{| A | +τ(G− A)

ω(G− A)
}

where τ(G − A) denotes the order (the number of ver-
tices) of a largest component of G-A and ω(G − A) is
the number of components of G-A.
In this paper we discuss tenacity and its properties in
vulnerability calculation.
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1 Introduction

We consider only finite undirected graphs without loops and multiple edges. Let G be a
graph. We denote by V(G), E(G) and | V (G) | the set of vertices, the set of edges and the
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order of a graph G, respectively. A set of vertices in G is independent if no two of them are
adjacent. The largest number of vertices in any such set is called the vertex independence
number of G and is denoted by α(G) or α. The vertex connectivity, κ = κ(G), of a
finite, undirected, simple graph G (without loops or multiple edges) is the minimum
number of vertices whose removal results in a disconnected graph or results in the trivial
graph K1. Graph G is called n-connected if κ ≥ n. Analogously, the edge-connectivity,
λ = λ(G), of a finite, undirected, connected simple graph G is the minimum number of
edges whose removal results in a disconnected or trivial graph K1. A graph G is called
n-edge- connected if λ(G) ≥ n. Given a graph G, the graph G2 has V (G2) = V (G) and
uv ∈ E(G2) if and only if uv ∈ E(G) or the distance from u to v is 2. The complement
G of a graph G also has V (G) as its vertex set, but two vertices are adjacent in G if
and only if they are not adjacent in G. The line graph of a graph G, denoted L(G), is
the graph whose vertices are the edges of G, and two vertices are adjacent whenever the
corresponding edges of G are adjacent.
The concept of tenacity of a graph G was introduced as a useful measure of the ”vul-
nerability” of G. we compared integrity, connectivity, binding number, toughness, and
tenacity for several classes of graphs. The results suggest that tenacity is a most suitable
measure of stability or vulnerability in that for many graphs it is best able to distinguish
between graphs that intuitively should have different levels of vulnerability. In [3-25],
they studied more about this new invariant. The tenacity of a graph G, T(G), is defined

by T (G) = min{ |S|+τ(G−S)
ω(G−S)

}, where the minimum is taken over all vertex cutsets S of G.

We define τ(G − S) to be the number of the vertices in the largest component of the
graph G - S, and ω(G− S) be the number of components of G - S. A connected graph G
is called T-tenacious if | S | +τ(G − S) ≥ Tω(G − S) holds for any subset S of vertices
of G with ω(G − S) > 1. If G is not complete, then there is a largest T such that G is
T-tenacious ; this T is the tenacity of G. On the other hand, a complete graph contains
no vertex cutset and so it is T-tenacious for every T. Accordingly, we define T (Kp) =∞
for every p (p ≥ 1). A set S ⊆ V (G) is said to be a T-set of G if T (G) = |S|+τ(G−S)

ω(G−S)
.

Any undefined terms can be found in the standard references on graph theory, including
Bondy and Murty [1].
Vulnerability Calculation

Let Cn = (v1v2 · · · vn) be the n-cycle and define the k-th power of the n-cycle, Ck
n by

Ck
n = Cn + {vivj || i− j |≤ k}.

We have the following four propositions.
Proposition 1 : If G is a spanning subgraph of H, then T (G) ≤ T (H).

Proposition 2 : For any graph G, T (G) ≥ κ(G)+1
α(G)

.

Proposition 3 : If G is not complete, then T (G) ≤ n−α(G)+1
α(G)

.

Proposition 4 : If k ≤ n− k, then T (Kk,n−k) = k+1
n−k .

We can prove the following two lemmas:
Lemma 1 : If A is a minimal T-set for Ck

n, then A consists of the union of sets of k
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consecutive vertices such that there exists at least one vertex not in A between any two
sets of consecutive vertices in A.

Lemma 1 gives us an indication of the size of the cut-set for the tenacity of Ck
n ; the next

lemma gives us the size of the largest component.
Lemma 2 : There is a T-set, A, for Ck

n such that all components of Ck
n have order

τ(Ck
n − A) or τ(Ck

n − A)− 1.

These two lemmas allow us to determine precisely the tenacity of the power of cycles.
Theorem 1 : Let Ck

n be a power of cycles and n = r(k+ 1) + s, for 0 ≤ s < k+ 1. Then

T (Ck
n) = k +

1+d s
r
e

r
.

Proof : Let A be a minimal T-set of Ck
n. By lemma 1 and lemma 2, | A |= kω, and

τ(Ck
n − A) = dn−kω

ω
e. Thus, from the definition of tenacity we have

T = min{
kω + dn−kω

ω
e

ω
| 2 ≤ ω ≤ r}.

Now consider the function f(ω) =
kω+dn−kω

ω
e

ω
= k +

dn
ω
−ke
ω

. Let ω1 and ω2 be any two in-

tegers in [2 , r] with ω1 ≤ ω2, then d n
ω2
e ≤ d n

ω1
e. Thus f(ω2) = k+

d n
ω2
−ke
ω2

≤ k+
d n
ω1
−ke
ω1

=
f(ω1). Hence the function f(ω) is a non increasing function and the minimum value

occurs at the boundary. Thus ω = r and dn−kω
ω
e = d r(k+1)+s−kr

r
e = 1 + d s

r
e. Therefore,

T (Ck
n) = k +

1+d s
r
e

r
.�

Now we can discuss about tenacity and its operation on graphs. If the removal of a vertex
from a graph results in a complete graph, the tenacity becomes infinite. On the other
hand, the removal of a vertex cannot lower by too much. We can easily prove the following
two theorems and corollaries:
Theorem 2: For any nontrivial, incomplete graph G with n vertices and any vertex v,
T (G− v) ≥ T (G)− 1

2
.

The following theorem allow us to find the tenacity of several important classes of graphs.
Theorem 3: If G is a bipartite, r-regular, r-connected graph on n vertices, then T (G) =
n+2
n

.

This result gives several interesting corollaries.

Corollary 1: If G1 is a bipartite, d-regular, d-connected graph with n1 vertices and G2

is a bipartite, q-regular, q-connected graph with n2 vertices, then T (G1 ×G2) = n1n2+2
n1n2

.

Corollary 2: For any integer n, T (Qn) = 2n+2
2n

.
Corollary 3: For any integers n and m, T (Cn × Cm) = nm+2

nm
.

Corollary 4: For any even integer n, T (Cn ×K2) = n+1
n

.
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In 1972, Chvátal [2] introduced the concept of the toughness of a graph. It measures in
a simple way how tightly various pieces of a graph hold together; therefore he called it
toughness. Let G be a graph and t a real number such that the implication ω(G− A) >
1 ⇒| A |≥ t · ω(G − A) holds for each set A of vertices of G. Then G will be said to be
t-tough.
Proposition 5: G ⊂ H ⇒ t(G) ≤ t(H).

Thus toughness is a nondecreasing invariant whose values range from zero to infinity. A
graph G is disconnected if and only if t(G) = 0; G is complete if and only if t(G) = +∞.
Theorem 4: t(Km ×Kn) = 1

2
(m+ n)− 1, (m,n ≥ 2).

Without attempting to obtain the best possible result, we can prove quite easily the fol-
lowing relation between T(G) and t(G). This result gives us a number of corollaries.
Theorem 5: For any graph G, T (G) ≥ t(G) + 1

α(G)
.

Proof: Let A ⊆ V (G) be a t-set and B ⊆ G be a T-set. Then |B|+τ(G−B)
ω(G−B)

≥ |B|
ω(G−B)

+
1

ω(G−B)
+ ≥ |A|

ω(G−A)
+ 1

α(G)
.�

We next obtain some bounds on the tenacity of products of graphs.

Theorem 6: If n ≥ m, then m2+mn−2m+2
2m

≤ T (Km ×Kn) ≤ mn−n+d n
m
e

m
.

Proof: By Theorem 4, t(Km×Kn) = m+n−2
2

. It is easy to see that α(Km×Kn) = m. Let
V (Kn) = {1, 2, 3, · · · , n} and V (Km) = {1, 2, 3, · · · ,m}. Then V (Km × Kn) = {(i, j) |
1 ≤ i ≤ m, 1 ≤ j ≤ n}. Also let n = am + b, for 0 ≤ b < m, so if b = 0 then
a = d n

m
e = n

m
and otherwise a + 1 = d n

m
e. Now, if b = 0, then define the sets Wi as

Wi = {(i, ia− a+ 1), · · · , (i, ia)} for 1 ≤ i ≤ m , otherwise define the sets Wi as follows:

Wi =

{
{(i, ia+ i− a), · · · , (i, ia+ i)} 1 ≤ i ≤ b

{(i, ia+ b− a+ 1), · · · , (i, ia+ b)}, b+ 1 ≤ i ≤ m,

and let W =
m⋃
i=1

Wi. Define A = V (G)−W and so | A |= mn−n. It is easy to see that the

Wi, 1 ≤ i ≤ m, are the components of G-A and so τ(G− A) = d n
m
e and ω(G− A) = m.

The result follows.�
The following our conjecture proved recently:

Conjecture : If n ≥ m ≥ 2 then T (Km ×Kn) =
mn−n+d n

m
e

m
.

Corollary 5: For any integer n, T (Kn ×Kn) = n− 1 + 1
n
.

Corollary 6: For any graph G, T (G2) > κ(G).
Corollary 7: Let G be a non-empty graph and let m be the largest integer such that
K1,m is an induced subgraph of G. Then T (G) ≥ κ(G)

m
+ 1

α(G)
.

Theorem 7: If G is connected and a non-complete K1,3-free graph then T (G) > κ(G)
2

.
Proof: Suppose G is a non-complete, K1,3-free graph with connectivity κ(G). Let A be
a T-set, and let W1,W2, · · · ,Wm be the components of G-A.
Since G has a connectivity κ(G), it is κ(G)-connected and so there exist κ(G) internally
disjoint paths from ui ∈ Wi to uj ∈ Wj for all 1 ≤ i, j ≤ m with i 6= j. Each of these
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paths must contain a vertex of A. Then for each i there are at least κ(G) edges coming
from Wi to distinct vertices of A. Thus in all there are at least mκ(G) edges from G-A to
A counting at most one from any component Wi to a particular vertex of A.
Suppose v ∈ A is adjacent to vertices u1, u2, and u3 in distinct components of G-A. Then,
since {u1, u2, u3} is an independent set the graph induced by {v, u1, u2, u3} is a K1,3, a
contradiction. Hence we can conclude any vertex of A is adjacent to at most two com-
ponents of G-A. Thus, there are at most 2 | A | edges coming from G-A to vertices of
A, counting at most one edge from any component to a particular vertex of A. Hence
mκ(G) ≤ 2 | A |, or mκ(G)

2
≤| A |. Therefore mκ(G)

2
<| A | +1, or |A|+1

m
> κ(G)

2
. Thus

T (G) = |A|+τ(G−A)
ω(G−A)

≥ |A|+1
m

> κ(G)
2

.�

The effect of removing a vertex is considered first. If the removal of a vertex from a
graph results in a complete graph, the tenacity becomes infinite. On the other hand, the
removal of a vertex cannot lower T by too much.
Theorem 8: For any nontrivial non-complete graph G on n vertices and any vertex v,
T (G− v) ≥ T (G)− 1

2
.

Proof: Let G′ = G− v. If G′ = Kn−1, then T (G′) =∞, and the theorem holds. Hence,

assume G′ 6= Kn−1. Let A’ be a T-set for G’, and let | A′ |= m, then T (G′) = m+τ(G′−A′)
ω(G′−A′) .

Now define A = A′∪{v}. Clearly A is a disconnecting set for G and so T (G) ≤ |A|+τ(G−A)
ω(G−A)

.

But | A |= m+ 1 and G−A = G′−A′, so T (G) ≤ m+1+τ(G′−A′)
ω(G′−A′) = m+τ(G′−A′)

ω(G′−A′) + 1
ω(G′−A′) =

T (G′) + 1
ω(G′−A′) ≤ T (G′) + 1

2
, since ω(G′ − A′) ≥ 2. Hence T (G) ≤ T (G′) + 1

2
.�

We next obtain some bounds on the tenacity of a graph.
Proposition 6: If G is connected, then T (G) ≥ 1

∆(G)
.

Proof: Kn is a special case, otherwise the removal of any vertex of a connected graph G
yields at most ∆(G) components. Similarly, the removal of any n vertices yields at most
n∆(G) components. Then, from the definition we have T (G) ≥ n+1

n∆(G)
≥ 1

∆(G)
.�

Lemma 3: If A is a minimal T-set for the graph G then, for each vertex v of A, the
induced subgraph < V (G)− A+ v > has fewer components than does G-A.
Proof: Let A′ = A − v. If G-A’ has at least as many components as G-A, then |
A′ |=| A | −1 and τ(G − A′) ≤ τ(G − A) + 1. Therefore |A

′|+τ(G−A′)
ω(G−A)

= |A|−1+τ(G−A′)
ω(G−A)

≤
|A|−1+τ(G−A)+1

ω(G−A)
= T (G), contrary to our choice of A.�

Theorem 9: Let G = G1 + G2, where | V (G) |= n, | V (Gi) |= pi, T (G) = T and
T (Gi) = Ti for i = 1, 2. Then if G 6= Kn we have

min{ [n+ τ(G1 − A1)]T1

p1 + τ(G1 − A1

,
[n+ τ(G2 − A2)]T2

p2 + τ(G2 − A2)
} < T ≤ min{n− α1 + 1

α1

,
n− α2 + 1

α2
},

where αi is the independence number of Gi, and Ai is a disconnecting set of Gi for i = 1, 2.
Proof: Because of the structure of G, the graph cannot be disconnected without removing
one of V (G1) or V (G2). Having removed the appropriate set, we can then disconnect
the graph by disconnecting the remaining graph, either G1 or G2. Candidates for T
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are of the form n1+p2+τ(G1−A1)
ω(G1−A1)

or n2+p1+τ(G2−A2)
ω(G2−A2)

where ni =| Ai | for i = 1, 2. Then

T = min{n1+p2+τ(G1−A1)
ω(G1−A1)

, n2+p1+τ(G2−A2)
ω(G2−A2)

}, where the minimum is taken over all A1 and

A2 as defined. Also T1 ≤ n1+τ(G1−A1)
ω(G1−A1)

which implies ω(G1 − A1) ≤ n1+τ(G1−A1)
T1

. Thus
n1+p2+τ(G1−A1)

ω(G1−A1)
≥ [n1+p2+τ(G1−A1)]T1

n1+τ(G1−A1)
. Similarly,n2+p1+τ(G2−A2)

ω(G2−A2)
≥ [n2+p1+τ(G2−A2)]T2

n2+τ(G2−A2)
. Thus

T ≥ min{[1+ p2
n1+τ(G1−A1)

]T1, [1+ p1
n2+τ(G2−A2)

]T2}. Also we know that n1 < p1 and n2 < p2,

therefore T > min{ [n+τ(G1−A1)]T1
p1+τ(G1−A1)

, [n+τ(G2−A2)]T2
p2+τ(G2−A2)

}. From Proposition 3, we observe that

two candidates for T are (p1−α1)+1+p2
α1

and (p2−α2)+p1
α2

, which yield T ≤ min{n−α1+1
α1
},

n−α2+1
α2
}.�

Theorem 10: Let G be a graph with n vertices and G 6= Kn, then T (G) + T (G) ≥ 1
n−1

.

Proof: We observe that at least one of G or G is connected. Suppose G is not connected.
We proved (Proposition 6) that T (G) ≥ 1

∆(G)
≥ 1

n−1
for any graph G. Thus, T (G)+T (G) ≥

1
n−1

. Now suppose G is not connected but G is connected. Again by Proposition 6, we

have T (G) ≥ 1
n−1

. Therefore T (G) + T (G) ≥ 1
n−1

.�
Theorem 11: Let G be a graph with 0 < T (G) <∞, and let λ(G) = λ, then T (L(G)) >
λ
2
.

Proof: Assume there exist vertex cutsets A for L(G) such that A is a t-set. By Theorem 5,
T (L(G)) > t(L(G)). Let E be those edges of G which are incident to vertices of A. Then E

is an edge-cutset of G. Thus we have t(L(G)) = min{ |A|
ω(L(G)−A)

} ≥ min{ |E|
ω(G−E)

} = t′(G),
where A is a cutset and E is an edge cutset of G.
Using the result of Chvátal [2] we have t′(G) = min{ |E|

ω(G−E)
} = λ

2
. Therefore T (L(G)) >

λ
2
.�

The binding number of a graph G was defined by Woodall in [26] as

bind(G) = min
A
{| N(A) |
| A |

}

where φ 6= A ⊆ V (G) and N(A) 6= V (G). The binding number was called the melting-
point of the graph. the reason for the name ”binding number” is that, roughly speaking,
if bind(G) is large, then the vertices of G are bound tightly together, in the sense that G
has many edges fairly well distributed.
Theorem 12: For any graph G, T (G) ≥ bind(G)− 1.
Proof: Let bind(G) = c. If c < 1, then c − 1 < 0 and the result follows since T(G)
is nonnegative. Consider c ≥ 1. Suppose that A is a subset of V(G) such that ω =

ω(G − A) ≥ 2. We want to prove that |A|+1
ω

> (c − 1). If each of the ω components of
G-A has at least two vertices, let S consist of the vertices in all the components except
the smallest, so that

| S |≥ | V (G)− A | (ω − 1)

ω
≥ 2ω(ω − 1)

ω
= 2(ω − 1) ≥ ω.

If, on the other hand, V(G)-A contains an isolated vertex, let S = V (G) − A. So that
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| S |=| V (G)− A |≥ ω. In either case N(S) 6= V (G), and since bind(G) = c ≥ 1,

| S | + | A | +1 >| S | + | A |≥| N(S) |≥ c | S | .

It follows that | A | +1 > (c− 1) | S |≥ (c− 1)ω. Therefore |A|+1
ω

> c− 1, so T > c− 1.�
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