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Abstract 

In this study, a static and free vibration analysis of single layer FG and sandwich FG plates is carried 

out using a fifth order shear and normal deformation theory. The displacement field of the present 

theory includes the terms considering the effect of transverse shear and normal deformation. Also, the 

terms of the thickness co-ordinate are expanded upto fifth order to predict the accurate bending 

behavior of the plates. The equations of motion are derived based on Hamilton’s principle, and further 

solved using Navier’s solution scheme. The present results of displacement, stresses and natural 

frequencies in sandwich FG plates are obtained and compared with other higher order theories 

available in literature to check the validity and efficacy of the theory.     
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    Introduction 

Functionally graded material is a new class of material which is having a wide applications in the field of 

aerospace, aircraft, marine, offshore, energy sector, industrial, construction etc. FGM is made up of ceramic and metal 

in which the material properties are varying through the thickness. High temperature resistance, lightweight, good 
strength-to-weight ratio, high stiffness are the significant features of FGM material over other composite material. 

Therefore, the use of FGM material is highly demanded. The FGM sandwich plate is made up isotropic homogeneous 

core and FGM face sheet or FGM core and homogeneous face sheets. Therefore, many researchers have presented a 

different analytical and mathematical models to study the static and dynamic analysis of FGM sandwich plates.  

    Kirchhoff [1] and Mindlin [2] developed CPT and FSDT respectively for the static and free vibration analysis of 

beams, plates and shells. As CPT and FSDT are the assumption based theories, are not applicable for the analysis of 
thick beams and plates. Therefore, many researchers have developed a higher order shear deformation theories for the 

analysis of laminated composite and FGM thick plates. Sayyad and Ghugal [3] presented the non-linear hygro-thermo-

mechanical analysis of FGM plates resting using four unknown theory. Shinde and Sayyad  [4] presented a quasi-3D 

polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams. 

Thai et al. [5] presented an analysis of functionally graded sandwich plates using the FSDT. Thai and Kim [6] 

employed a four variable shear deformation theory for the bending and free vibration analysis of functionally graded 
sandwich plates. Li et al.[7] studied free vibration analysis of functionally graded material sandwich plates, based on 

three-dimensional linear theory of elasticity. Daszkiewicz et al. [8] presents geometrical nonlinear analysis of 

functionally graded shells using 2-D constitutive model. A large deformation analysis of functionally graded shell 

based on the first order shear deformation theory is presented by Aciniega and Reddy [9]. Demirhan and Taskin [10] 

applied a four variable shear deformation theory based on Levy solution, for bending analysis of functionally graded 

sandwich plates. Abdelaziz et al. [11] have presented a static analysis of functionally graded sandwich plates using a 
four variable theory. Zenkour [12] presented the bending and free vibration analysis of functionally graded sandwich 

plates using the sinusoidal plate theory. Zenkour and Alghamdi  [13, 14] presented the effect of thermal and 

mechanical load on the bending analysis of FGM sandwich plates.  Free vibration of functionally graded shallows 

shells with complex planforms is studied by Kurpa et al. [15] using the R-function theory and Ritz approach. Dong and 

Dung [16] investigated the governing equations for nonlinear vibration of FGM sandwich doubly curved shallow 

shells reinforced by FGM stiffners, based on FSDT. A four variable refined plate theory is applied for free vibration 
analysis of functionally graded sandwich plates made up of soft and hard cores by Hadji et al. [17]. A refined Zigzag 

theory based on Ritz method is applied for the bending and free vibration analysis of FG sandwich plates by Sciuva 

and Sorrenti [18]. Rouzegar and Gholami [19] presented thermo-elastic bending analysis of functionally graded 

sandwich plates using the hyperbolic shear deformation theory. Belabed et al.[20] developed a new 3-unknown 
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hyperbolic shear deformation theory for the free vibration analysis of FG sandwich plates. Attia et al. [21] has 

presented a four variable refined plate theories, accounts parabolic, sinusoidal, hyperbolic and exponential 

distributions of transverse shear strain for the free vibration analysis of FG sandwich plates. A static response of FG 

plates and shells using the optimized sinusoidal higher order shear deformation theory is presented by Mantari and 

Soares [22]. Thai and Kim [23] presented a review article on modeling and analysis of FG plates and shells. Recently, 

Irfan and Siddiqui [24] reviews recent advancements in finite element formulation for sandwich plates. Tornabene et 
al. [25] studied the dynamic behavior of FG conical, cylindrical shells and annular plate structures using FSDT. Do 

and Thai [26] presented a modified Kirchhoff theory for the free vibration analysis of FGM plates. Wu et al. [27] 

presented RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of 

multilayered composite and FGM plates. 

Mohammadi et al. [28], Mohammadi et al. [29], Mohammadi et al. [30], Mohammadi et al. [31], Mohammadi et al. 

[32], Mohammadi et al. [33], Mohammadi et al. [34], Mohammadi et al. [35], Mohammadi et al. [36], Farajpour et al. 
[37] presented free vibration and shear bukling analysis of orthotropic rectangular graphene sheets in elastic and 

thermal environment. Mohammadi et al. [38], Mohammadi et al. [39], Moosavi et al. [40], Asemi at al. [41], Asemi at 

al. [42], Asemi at al. [43], Asemi et al. [44], Danesh et al. [45], Farajpour et al. [46], Farajpour et al.  [47], [48], 

Goodarzi et al. [49] presented non-linear free vibration ananlysis of piezoelectric nano-plates using nonlocal elasticity 

theory. Mohammadi and Rastgoo [50], Mohammadi and Rastgoo [51], Mohammadi et al. [52] studied the primary and 

secondary resonance analysis of porous FG nanoplate and nanobeam in non-linear elastic medium. Mohammdi et al. 
[53], Safarabadi and Mohammdi [54], Baghani et al. [55] studied the vibration analysis of rotating nanobeam 

considering the surface energy effect. Farajpour and Rastgoo [56], Farajpour and Rastgoo [57], Farajpour et al. [58], 

Ghayour et al. [59] studied the vibration and buckling analysis of microtubules in nanoshells and plates in elastic and 

thermal environment. 

A review of FG thick cylindrical and thick shells is presented by Zamani et al. [60]. Hosseini et al. [61], Hosseini et 

al. [62], Nejad et al. [63], Nejad et al. [64], Gharibi et al. [65] presented a thermoelastic analysis of FG rotating 
pressure vessels. A torsional vibration of FG nanobeam under magnetic field based on the nonlocal elasticity theory is 

presented by Zarezadeh et al. [66], Noroozi et al. [67], Barati et al. [68], [69], Khoram et al. [70]. Hadi et al. [71], 

Shishesaz et al. [72], Mazarei et al. [73], Zamani et al. [74], investigates the termo-elasto-plastic analysis of FG 

spherical shells.  

 

Shortcomings of other studies 
1) In the other studies, the effect of transverse normal strain is not fully explored while predicting the static and 

dynamic analysis of laminated composite and FG plates, due to more complex mathematics and to avoid more 

number of unknown parameters. But, the inclusion of the effect of transverse normal strain and higher order 

expansion of polynomial shape function in terms of thickness co-ordinate is highly recommended by Carrera et al.  

[75, 76]  and Koiter [77] in his study to predict the accurate bending behavior of thick plates and shells.  

2) Most of the recently developed higher order theories involve four unknowns which are not sufficient and accurate 
to predict the correct global response (bending, buckling, and vibration) of the structure. 

 

Novelty of the Present Work 

Hence, with reference to Carrera’s and Koiter’s recommendation a new fifth order shear and normal deformation 

theory is developed by Naik and Sayyad [78], Sayyad and Naik [79] and Ghumare and Sayyad [80] for the static and 

dynamic analysis of laminated composite and functionally graded plates.  The features of the present theory are 
summarized as follows, 

1. Through the literature review it has been observed that, the studies on static and dynamic analysis of FGM 

sandwich plates is limited. Therefore in the present study, static and dynamic analysis of single layer and 

FGM sandwich plates are presented. 

2. In this study, the fifth order shear and normal deformation theory is applied to obtain the displacement, 

stresses and frequencies in the plates. 

3. The theory includes, the effect of both transverse normal and transverse shear deformation to predict the 

accurate the bending behavior of the FGM sandwich plates/shells, as recommended by Carrera. 

4. Also, as the polynomial shape function is extended upto fifth term in the present study, it predicts the bending 

behavior more precisely with less percentage of error.  

5. To find the non-dimensional numerical results of displacements and stresses the nine variationally consistent 

governing equations are derived using Hamiltons principle and solved using the Navier solution technique.  

6. To validate the accuracy and efficacy of the present theory the displacement, stresses and natural frequencies 

for plates, are compared with other theories available in literature.  

7. The results obtained are presented in tabular and graphical formats to understand the bending behavior of 

plates/shells through thickness. 
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Methodology 

In the present study, a simply supported single layer FG and FG sandwich plates are considered. A plate having 

width a along x- direction, breadth b in y- direction, thickness h in z- direction and radii of curvature R1 and R2 is 

considered. FG sandwich plate, top and bottom face sheets are made up of functionally graded material and the core is 

assumed to be homogeneous isotropic material. The variation of material properties in FG sandwich plate along the 

thickness h is as shown in Fig. 1. The upper face sheet section is between h1 to h2, the homogeneous core section is 

between h2 to h3 and lower face sheet section is between h3 to h4. 

 

Figure 1. Material gradation of FG sandwich plate.  

The modulus of elasticity in the FG shells varying through the thickness, and expressed as,  
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where, p denotes the power-law index. When the value of p =0 shell is fully ceramic and when p= shell is fully 

metallic. In the present study various lamination schemes of FG sandwich shells are considered as 1-0-1, 1-1-1, 1-2-1, 

2-1-2, and 2-2-1. The thickness of each layer is given as below. 

1. For 1-0-1 sandwich scheme:   1 2 3 4/ 2 , 0, 0 and / 2h h h h h h          

2. For   1-1-1 sandwich scheme: 1 2 3 4/ 2, / 6, / 6, and / 2h h h h h h h h          

3. For   1-2-1 sandwich scheme: 1 2 3 4/ 2, / 4 / 4 and / 2h h h h h h h h         

4. For   2-1-2 sandwich scheme:  1 2 3 4/ 2 /10 /10 and / 2h h h h h h h h        

5. For   2-2-1 sandwich scheme:  1 2 3 4/ 2 /10 3 /10 and / 2h h h h h h h h        

Development of theory 

Displacement Field 

Based on the assumptions of classical shell theory and the displacement field for a fifth order shear and normal 

deformation theory is written as, 
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where, u, v, are the in-plane displacements in x-, y- directions and w is the transverse displacement in z- direction at 

any point.   , , , , ,x y z x y z       are the shear slopes in x-, y- and z- direction respectively.  

Strain-Displacement Relationship 

 The normal and shear strains associated with the displacement field can be obtained as, 
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where, 
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Stress- Strain Relationship 

        The stresses occurred can be obtained using the Hooke’s law and expressed as, 
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where,  , , , , ,x y z xy xz yz       represents the normal and shear stress components. E(z) is the modulus of elasticity  and 

µ is Poisson ratio. 

3.4 The equations of motion 

Hamilton’s Principle is used to derive the equations of motion, as, 
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Substituting the values of stresses and strains from eq. (4) to eq.(6) in eq.(8) and collecting the terms, the nine 

equations of motion are derived as below, 
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where, vibration and mechanical integration constants are expressed as,   
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The boundary conditions satisfying the top and bottom conditions associated with the present theory are expressed as,  
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Navier’s Closed Form Solution  

The double trigonometric form,the Navier solution technique is employed to solve the nine equations of motion for the 

simply supported FG sandwich plate. 
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where,      , , , , , , , , ,mn xmn xmn mn ymn ymn mn zmn zmnu v w      are the unknown coefficients of displacements and shear slopes. 

/ , /m a n b     ; 1i   ; is the natural frequency. The expression for the transverse load is also expressed in 

double trigonometric form as, 

, 1,3,5..

( , ) sin sinmn

m n

q x y q x y 




                                                                 (23) 
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where, qmn is the unknown coefficient of the transverse load, taken as  0
=1

mn
q q m n 

     
 for sinusoidal load and 

 0

2

16
 =1, 3, 5......

mn

q
q m n

mn
 ,  for uniformly distributed load. 

Therefore, substituting Eq. (22-23) into the Eq. (9-17), the resultant equations can be expressed in matrix form. The 

transverse load is taken as zero for free vibration analysis and the time dependent terms are discarded for static 

analysis.  

For static analysis the resultant equation is expressed as, 

    K f                                                                                         (24) 

whereas for free vibration analysis the resultant equation expressed as, 

       2 0K M                                                                            (25) 

where,   K  represents the stiffness matrix,   f represents the force vector and    represents the vector of 

unknowns. Appendix shows the elements of stiffness matrix, force vector and vector of unknowns. 

 

Numerical Results 

The static and free vibration analysis of single layer and sandwich functionally graded plate are presented in the 

present study. The present results are compared with results available in the literature to validate the accuracy and 

efficacy of the present theory. For the comparison purpose the numerical results are presented in the following non-

dimensional form. 
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          (26) 

where, 0 =1.0 and E0 =1.0            

Table 1. The material properties of the functionally graded material used are given as below, 

Material Properties 
Metal : 

Aluminum(Al) 
Ceramic: 

Alumina(Al2O3) 

1 

Modulus of 
Elasticity (E) 

Em=70 GPa Ec=380 GPa 

Poisson Ratio (µ) µ=0.3 µ=0.3 

Density () m= 2707 kg/m3 c= 3800 kg/m3 

2 

Modulus of 

Elasticity (E) 
Em=70 GPa Ec=151 GPa 

Poisson Ratio (µ) µ=0.3 µ=0.3 

Density () m= 2707 kg/m3 c= 3800 kg/m3 
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Table 2. Non-dimensional transverse displacement and stresses in single layer FG plate at various power law index 

(a/h=10)  

 (Material 1)   

p Theory SSL UDL 

w  
x  (h/3) 

xz  (h/6) w  
x  (h/2) 

xz  (0) 

1 Present  0.5695 1.4588 0.2607 0.8985 4.4385 0.5369 

 Thai et al. [5] 0.5875 1.5062 0.2510 -- -- -- 

 Demirhan and Taskin [10] 0.5889 1.4894 0.2622 0.9287 4.4745 0.5446 

 Demirhan and Taskin [10] -- -- -- 0.9288 4.0131 0.5454 

 Thai et al. [5] 0.5890 1.4898 0.2599 -- -- -- 

 Thai et al. [5] 0.5890 1.4898 0.2608 -- -- -- 

2 Present  0.7225 1.3688 0.2763 1.1393 5.1083 0.5682 

 Thai et al. [5] 0.7570 1.4147 0.2496 -- -- -- 

 Demirhan and Taskin [10] 0.7573 1.3954 0.2763 1.1940 5.2296 0.5734 

 Demirhan and Taskin [10] -- -- -- 1.1940 5.1376 0.5725 

 Thai et al. [5] 0.7573 1.3960 0.2721 -- -- -- 

 Thai et al. [5] 0.7573 1.3960 0.2737 -- -- -- 

4 Present  0.8429 1.1456 0.2630 1.3275 5.7773 0.5395 

 Thai et al. [5] 0.8823 1.1985 0.2362 -- -- -- 

 Demirhan and Taskin [10] 0.8819 1.1783 0.2580 1.3890 5.8915 0.5346 

 Demirhan and Taskin [10] -- -- -- 1.3884 5.5911 0.5307 

 Thai et al. [5] 0.8815 1.1794 0.2519 -- -- -- 

 Thai et al. [5] 0.8815 1.1794 0.2537 -- -- -- 

8 Present  0.9446 0.9088 0.2145 1.4868 6.8889 0.4402 

 Thai et al. [5] 0.9738 0.9687 0.2262 -- -- -- 

 Demirhan and Taskin [10] 0.9750 0.9466 0.2121 1.5343 6.8999 0.4392 

 Demirhan and Taskin [10] -- -- -- 1.5337 6.4234 0.4367 

 Thai et al. [5] 0.9747 0.9477 0.2087 -- -- -- 

 Thai et al. [5] 0.9746 0.9477 0.2088 -- -- -- 

 

 

Table 3. Non-dimensional transverse displacement and stresses in FG sandwich plate subjected to sinusoidal load at 

various power law index (a/h=10) (Material 2) 

 p Theory Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

ŵ  0 Present 0.1948 0.1948 0.1950 0.1948 0.1948 

  Zenkour  [12] 0.1961 0.1961 0.1961 0.1961 0.1961 

  Thai and Kim [6] 0.1961 0.1961 0.1961 0.1961 0.1961 
 1 Present 0.3215 0.3043 0.2900 0.2787 0.2615 

  Zenkour [12] 0.3235 0.3062 0.2919 0.2808 0.2709 
  Thai and Kim [6] 0.3237 0.3064 0.2920 0.2809 0.2710 

 2 Present 0.3712 0.3502 0.3308 0.3135 0.3006 

  Zenkour [12] 0.3732 0.3522 0.3328 0.3161 0.3026 
  Thai and Kim [6] 0.3737 0.3526 0.3330 0.3163 0.3027 

 5 Present 0.4072 0.3900 0.3694 0.3466 0.3326 
  Zenkour [12] 0.4091 0.3916 0.3713 0.3495 0.3347 

  Thai and Kim [6] 0.4101 0.3927 0.3720 0.3501 0.3350 
 10 Present 0.4154 0.4025 0.3837 0.3590 0.3460 

  Zenkour [12] 0.4175 0.4037 0.3849 0.3492 0.3412 
  Thai and Kim [6] 0.3988 0.3894 0.3724 0.3492 0.3361 

x  0 Present 1.9963 1.9963 1.9963 1.9963 1.9963 
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  Zenkour [12] 2.0545 2.0545 2.0545 2.0545 2.0545 

  Thai and Kim [6] 1.9758 1.9758 1.9758 1.9758 1.9758 
 1 Present 1.5490 1.4683 1.4002 1.2891 1.2987 

  Zenkour [12] 1.5820 1.4986 1.4289 1.3234 1.3259 
  Thai and Kim [6] 1.5324 1.4517 1.3830 1.2775 1.2810 

 2 Present 1.7865 1.6911 1.6000 1.4336 1.4555 

  Zenkour [12] 1.8245 1.7241 1.6303 1.4739 1.4828 
  Thai and Kim [6] 1.7709 1.6750 1.5824 1.4253 1.4358 

 5 Present 1.9501 1.8780 1.7849 1.5642 1.6124 
  Zenkour [12] 1.9957 1.9155 1.8184 1.6148 1.6411 

  Thai and Kim [6] 1.9358 1.8648 1.7699 1.5640 1.5931 
 10 Present 1.9832 1.9337 1.8510 1.6117 1.6768 

  Zenkour [12] 2.0336 1.9731 1.8815 1.6198 1.6485 
  Thai and Kim [6] 1.9678 1.9216 1.8375 1.6160 1.6587 

xz  0 Present 0.2383 0.2383 0.2383 0.2383 0.2383 

  Zenkour [12] 0.2462 0.2462 0.2462 0.2462 0.2462 
  Thai and Kim [6] 0.2387 0.2387 0.2387 0.2387 0.2387 

 1 Present 0.2722 0.2551 0.2517 0.2547 0.2528 
  Zenkour [12] 0.2991 0.2777 0.2681 0.2668 0.2600 

  Thai and Kim [6] 0.2566 0.2593 0.2602 0.2582 0.2593 
 2 Present 0.2894 0.2563 0.2502 0.2572 0.2539 

  Zenkour [12] 0.3329 0.2942 0.2781 0.2763 0.2654 
  Thai and Kim [6] 0.2552 0.2617 0.2650 0.2624 0.2655 

 5 Present 0.3369 0.2613 0.2448 0.2583 0.2494 
  Zenkour [12] 0.3937 0.3193 0.2915 0.2890 0.2715 

  Thai and Kim [6] 0.2468 0.2576 0.2649 0.2627 0.2694 
 10 Present 0.3892 0.2723 0.2445 0.2606 0.2454 

  Zenkour [12] 0.4415 0.3364 0.2953 0.2967 0.2768 
  Thai and Kim [6] 0.2419 0.2534 0.2627 0.2611 0.2698 

Table 4 Non-dimensional transverse displacement and stresses in FG sandwich plate subjected to uniformly 

distributed load at various power law. (a/h=10) (Material 1) 

p Theory Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

w  

0 Present 0.4639 0.4639 0.4639 0.4639 0.4639 
 Demirhan and Taskin [10] 0.4666 0.4666 0.4666 0.4666 0.4666 

1 Present 1.1694 1.0344 0.9341 0.8662 0.8043 
 Demirhan and Taskin [10] 1.1765 1.0409 0.9402 0.8745 0.8093 

2 Present 1.7018 1.4524 1.2565 1.1222 1.0086 
 Demirhan and Taskin [10] 1.7100 1.4606 1.2644 1.1372 1.0153 

5 Present 2.2844 1.9950 1.6909 1.4529 1.2757 
 Demirhan and Taskin [10] 2.2877 1.9996 1.6999 1.4792 1.2845 

10 Present 2.4399 2.2160 1.8981 1.6090 1.4116 
 Demirhan and Taskin [10] 2.4438 2.2154 1.9045 1.6408 1.4296 

x  

0 Present 2.8960 2.8960 2.8960 2.8960 2.8960 

1 Present 1.3787 1.2212 1.1030 0.9522 0.9482 
2 Present 2.0080 1.7210 1.4924 1.2064 1.1986 

5 Present 2.6741 2.3534 2.0063 1.5070 1.5216 
10 Present 2.8406 2.6036 2.2456 1.6350 1.6832 

xz  

0 Present 0.4867 0.4867 0.4867 0.4867 0.4867 
1 Present 0.6209 0.5614 0.5495 0.5561 0.5495 

2 Present 0.6843 0.5714 0.5591 0.5780 0.5710 
5 Present 0.8704 0.5560 0.5271 0.5848 0.5740 

10 Present 1.1889 0.5810 0.5024 0.5853 0.5609 
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Table 5 .Non-dimensional natural frequencies in single layer FG plate at various power law. (Material 1) 

 

a/h Mode Theory p 

   0 0.5 1 4 10 

5 1 Present 0.2121 0.1824 0.1658 0.1407 0.1316 
  Thai and Kim [6]  0.2113 0.1807 0.1631 0.1378 0.1301 

  Li et al. [7] 0.2112 0.1805 0.1631 0.1397 0.1324 
  Thai and Kim [6]  0.2113 0.1807 0.1631 0.1378 0.1301 

 2 Present 0.4658 0.4039 0.3674 0.3038 0.2807 
  Thai and Kim [6]  0.4623 0.3989 0.3607 0.2980 0.2771 

  Li et al. [7] 0.4618 0.3978 0.3604 0.3049 0.2856 
  Thai and Kim [6]  0.4623 0.3989 0.3607 0.2980 0.2771 

 3 Present 0.6752 0.6556 0.5357 0.4365 0.4000 
  Thai and Kim [6]  0.6688 0.5803 0.5254 0.4284 0.3948 

  Li et al. [7] 0.6676 0.5779 0.5245 0.4405 0.4097 
  Thai and Kim [6]  0.6688 0.5803 0.5254 0.4284 0.3948 

10 1 Present 0.0577 0.0493 0.0448 0.0389 0.0368 
  Thai and Kim [6]  0.0577 0.0490 0.0442 0.0381 0.0364 

  Li et al. [7] 0.0577 0.0490 0.0442 0.0382 0.0366 
  Thai and Kim [6]  0.0577 0.0490 0.0442 0.0381 0.0364 

 2 Present 0.1380 0.1184 0.1076 0.0921 0.0867 
  Thai and Kim [6]  0.1377 0.1174 0.1059 0.0903 0.0856 

  Li et al. [7] 0.1376 0.1173 0.1059 0.0911 0.0867 
  Thai and Kim [6]  0.1377 0.1174 0.1059 0.0903 0.0856 

 3 Present 0.2121 0.1825 0.1659 0.1407 0.1317 
  Thai and Kim [6]  0.2113 0.1807 0.1631 0.1378 0.1301 

  Li et al. [7] 0.2112 0.1805 0.1631 0.1397 0.1324 
  Thai and Kim [6]  0.2113 0.1807 0.1631 0.1378 0.1301 

 

Table 6. Non-dimensional natural frequencies in FG sandwich plate at various power law (Material 1) 

p Theory Scheme 

  1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

 a/h 5 10 5 10 5 10 5 10 5 10 

0 Present 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268 
 Li et al.[7]  1.6771 1.8268 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268 

 Thai et al.[5]  1.6974 1.8244 1.6697 1.8244 1.6697 1.8244 1.6697 1.8244 1.6697 1.8244 
0.5 Present 1.3536 1.4461 1.3905 1.4860 1.4217 1.5213 1.4461 1.5501 1.4694 1.5766 

 Li et al.[7]  1.3536 1.4461 1.3905 1.4861 1.4218 1.5213 1.4454 1.5493 1.4694 1.5767 
 Thai et al.[5]  1.3473 1.4442 1.3841 1.4841 1.4152 1.5192 1.4386 1.5471 1.4626 1.5745 

1 Present 1.1748 1.2447 1.2291 1.3018 1.2777 1.3553 1.3162 1.3998 1.3534 1.4413 

 Li et al.[7]  1.1749 1.2447 1.2292 1.3018 1.2777 1.3533 1.3143 1.3956 1.3524 1.4394 
 Thai et al.[5]  1.1691 1.2429 1.2232 1.3000 1.2414 1.3533 1.3078 1.3956 1.3467 1.4393 

5 Present 0.8913 0.9449 0.9337 0.9810 0.9980 1.0453 1.0635 1.1169 1.1193 1.1757 
 Li et al.[7]  0.8909 0.9448 0.9336 0.9810 0.9980 1.0453 1.0561 1.1088 1.1190 1.1757 

 Thai et al.[5]  0.8853 0.9431 0.9286 0.9796 0.9916 1.0435 1.0488 1.1077 1.1056 1.1735 
10 Present 0.8690 0.9275 0.8928 0.9409 0.9498 0.9952 1.0194 1.0695 1.0733 1.1247 

 Li et al.[7]  0.8683 0.9273 0.8923 0.9408 0.9498 0.9952 1.0095 1.0610 1.0729 1.1247 
 Thai et al.[5]  0.8599 0.9246 0.8860 0.9390 0.9428 0.9932 1.0012 1.0587 1.0648 1.1223 
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Figure 2. Through thickness variation of in-plane stress in single layer FG plate subjected to sinusoidal load. 
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Figure 3. Through thickness variation of in-plane stress in single layer FG plate subjected to uniformly distributed 

load. 
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Figure 4. Through thickness variation of in-plane stress in 1-0-1 FG sandwich plate subjected to sinusoidal load 
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Figure 5. Through thickness variation of in-plane stress in 1-1-1 FG sandwich plate subjected to sinusoidal load 
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Figure 6. Through thickness variation of in-plane stress in 1-2-1 FG sandwich plate subjected to sinusoidal load 
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Figure 7. Through thickness variation of in-plane stress in 2-1-2 FG sandwich plate subjected to sinusoidal load 
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Figure 8. Through thickness variation of in-plane stress in 2-2-1 FG sandwich plate subjected to sinusoidal load 
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Figure 9. Through thickness variation of transverse shear stress in 1-0-1 FG sandwich plate subjected to sinusoidal 

load 
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Figure 10. Through thickness variation of transverse shear stress in 1-1-1 FG sandwich plate subjected to sinusoidal 

load 
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Figure 11. Through thickness variation of transverse shear stress in 1-2-1 FG sandwich plate subjected to sinusoidal 

load 
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Figure 12.Through thickness variation of transverse shear stress in 2-1-2 FG sandwich plate subjected to sinusoidal 

load 
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Figure 13. Through thickness variation of transverse shear stress in 2-2-1 FG sandwich plate subjected to sinusoidal 

load. 
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Discussion 

Static Analysis  

Table 2 through 4 shows the transverse displacement and stresses in single layer FG and sandwich FG plate subjected 

to sinusoidal and uniformly distributed load for various power law index. The present results are compared and found 

in close agreement with Thai et al. [5], Thai and Kim [6], Li et al. [7], Demirhan and Taskin [10], Zenkour [12]. Table 

2 shows the transverse displacement and stresses for various power law index (p = 1, 2, 4, 8) at aspect ratio a/h=10. 

From Table 1 it is clearly observed that the transverse displacement increases with increase in power law index value 

for sinusoidal and uniformly distributed load , whereas the in-plane stresses decreases with increase in power law 

index for sinusoidal load and increases for uniformly distributed load. For both type of loading the transverse shear 

stresses are decreases with increase in power law index value. Table 3 and Table 4 shows the transverse displacement 

and stresses in sandwich FG plate subjected to sinusoidal and uniformly distributed load respectively. In case of 

sandwich FG plate the transverse displacement and stresses are found to be maximum in 1-0-1 scheme and minimum 

in 1-2-2 or 2-2-1 scheme which shows that the transverse displacement and stresses increases with increase in the 

thickness of middle core. The results for the stresses in sandwich FG plate subjected to uniformly distributed load is 

presented first time in the present study which is the major contribution of the present study. Fig. 2 and 3 shows the 

through thickness variation of in-plane stresses in single layer FG plate under sinusoidal and uniformly distributed load 

respectively at various values of power law index. Fig. 4 through Fig. 8 shows the in-plane stress variation in sandwich 

FG plate and Fig. 9 through Fig. 13 shows the transverse shear stress variation of sandwich FG plate through the 

thickness.  

 

Free Vibration  

The numerical results for the free vibration analysis of single layer FG and Sandwich FG plate are presented in Table 5 

and Table 6 respectively for various power law index (p= 0, 0.5, 1, 4, 10). In Table 5 the frequencies are obtained for 

different mode i.e. 1, 2, 3.  The present results are compared and found in good agreement with the results presented 

by Thai and Kim [6], Li at al.[7] and Thai et al.[5]. Also, from Table 4 it is observed that the frequencies are increases 

with increase in mode of frequency and decreases with increase in the power law index. Table 5 shows natural 

frequencies in sandwich FG plate for a/h=5, 10. The natural frequencies in sandwich FG plate are found to be 

maximum in 1-2-1 scheme and minimum in 1-0-1 which shows that the natural frequency decreases with decrease in 

the thickness of middle core.  

Conclusions 

In the present study, a static and free vibration analysis of single layer FG and sandwich FG plate is presented using a 

new fifth order shear and normal deformation theory. The present results are compared with those available in 

literature and found to be in excellent agreement. The major contribution of the present theory is that it presents 

displacement and stresses results for sandwich FG plate subjected to uniformly distributed load which can be treated as 

benchmark for future research work.   
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