Journal of Computational Applied Mechanics 2021, 52(1)
DOI: 10.22059/jcamech.2020.313152.569

RESEARCH PAPER

A new higher-order theory for the static and dynamic responses of
sandwich FG plates

Bharti M. Shinde and Atteshamuddin S. Sayyad *

Department of Civil Engineering, SRES’s Sanjivani College of Engineering, Savitribai Phule Pune
University, Kopargaon-423601, Maharashtra, India

Abstract

In this study, a static and free vibration analysis of single layer FG and sandwich FG plates is carried
out using a fifth order shear and normal deformation theory. The displacement field of the present
theory includes the terms considering the effect of transverse shear and normal deformation. Also, the
terms of the thickness co-ordinate are expanded upto fifth order to predict the accurate bending
behavior of the plates. The equations of motion are derived based on Hamilton’s principle, and further
solved using Navier’s solution scheme. The present results of displacement, stresses and natural
frequencies in sandwich FG plates are obtained and compared with other higher order theories
available in literature to check the validity and efficacy of the theory.
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Introduction

Functionally graded material is a new class of material which is having a wide applications in the field of
aerospace, aircraft, marine, offshore, energy sector, industrial, construction etc. FGM is made up of ceramic and metal
in which the material properties are varying through the thickness. High temperature resistance, lightweight, good
strength-to-weight ratio, high stiffness are the significant features of FGM material over other composite material.
Therefore, the use of FGM material is highly demanded. The FGM sandwich plate is made up isotropic homogeneous
core and FGM face sheet or FGM core and homogeneous face sheets. Therefore, many researchers have presented a
different analytical and mathematical models to study the static and dynamic analysis of FGM sandwich plates.

Kirchhoff [1] and Mindlin [2] developed CPT and FSDT respectively for the static and free vibration analysis of
beams, plates and shells. As CPT and FSDT are the assumption based theories, are not applicable for the analysis of
thick beams and plates. Therefore, many researchers have developed a higher order shear deformation theories for the
analysis of laminated composite and FGM thick plates. Sayyad and Ghugal [3] presented the non-linear hygro-thermo-
mechanical analysis of FGM plates resting using four unknown theory. Shinde and Sayyad [4] presented a quasi-3D
polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams.
Thai et al. [5] presented an analysis of functionally graded sandwich plates using the FSDT. Thai and Kim [6]
employed a four variable shear deformation theory for the bending and free vibration analysis of functionally graded
sandwich plates. Li et al.[7] studied free vibration analysis of functionally graded material sandwich plates, based on
three-dimensional linear theory of elasticity. Daszkiewicz et al. [8] presents geometrical nonlinear analysis of
functionally graded shells using 2-D constitutive model. A large deformation analysis of functionally graded shell
based on the first order shear deformation theory is presented by Aciniega and Reddy [9]. Demirhan and Taskin [10]
applied a four variable shear deformation theory based on Levy solution, for bending analysis of functionally graded
sandwich plates. Abdelaziz et al. [11] have presented a static analysis of functionally graded sandwich plates using a
four variable theory. Zenkour [12] presented the bending and free vibration analysis of functionally graded sandwich
plates using the sinusoidal plate theory. Zenkour and Alghamdi [13, 14] presented the effect of thermal and
mechanical load on the bending analysis of FGM sandwich plates. Free vibration of functionally graded shallows
shells with complex planforms is studied by Kurpa et al. [15] using the R-function theory and Ritz approach. Dong and
Dung [16] investigated the governing equations for nonlinear vibration of FGM sandwich doubly curved shallow
shells reinforced by FGM stiffners, based on FSDT. A four variable refined plate theory is applied for free vibration
analysis of functionally graded sandwich plates made up of soft and hard cores by Hadji et al. [17]. A refined Zigzag
theory based on Ritz method is applied for the bending and free vibration analysis of FG sandwich plates by Sciuva
and Sorrenti [18]. Rouzegar and Gholami [19] presented thermo-elastic bending analysis of functionally graded
sandwich plates using the hyperbolic shear deformation theory. Belabed et al.[20] developed a new 3-unknown
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hyperbolic shear deformation theory for the free vibration analysis of FG sandwich plates. Attia et al. [21] has
presented a four variable refined plate theories, accounts parabolic, sinusoidal, hyperbolic and exponential
distributions of transverse shear strain for the free vibration analysis of FG sandwich plates. A static response of FG
plates and shells using the optimized sinusoidal higher order shear deformation theory is presented by Mantari and
Soares [22]. Thai and Kim [23] presented a review article on modeling and analysis of FG plates and shells. Recently,
Irfan and Siddiqui [24] reviews recent advancements in finite element formulation for sandwich plates. Tornabene et
al. [25] studied the dynamic behavior of FG conical, cylindrical shells and annular plate structures using FSDT. Do
and Thai [26] presented a modified Kirchhoff theory for the free vibration analysis of FGM plates. Wu et al. [27]
presented RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of
multilayered composite and FGM plates.

Mohammadi et al. [28], Mohammadi et al. [29], Mohammadi et al. [30], Mohammadi et al. [31], Mohammadi et al.
[32], Mohammadi et al. [33], Mohammadi et al. [34], Mohammadi et al. [35], Mohammadi et al. [36], Farajpour et al.
[37] presented free vibration and shear bukling analysis of orthotropic rectangular graphene sheets in elastic and
thermal environment. Mohammadi et al. [38], Mohammadi et al. [39], Moosavi et al. [40], Asemi at al. [41], Asemi at
al. [42], Asemi at al. [43], Asemi et al. [44], Danesh et al. [45], Farajpour et al. [46], Farajpour et al. [47], [48],
Goodarzi et al. [49] presented non-linear free vibration ananlysis of piezoelectric nano-plates using nonlocal elasticity
theory. Mohammadi and Rastgoo [50], Mohammadi and Rastgoo [51], Mohammadi et al. [52] studied the primary and
secondary resonance analysis of porous FG nanoplate and nanobeam in non-linear elastic medium. Mohammdi et al.
[53], Safarabadi and Mohammdi [54], Baghani et al. [55] studied the vibration analysis of rotating nanobeam
considering the surface energy effect. Farajpour and Rastgoo [56], Farajpour and Rastgoo [57], Farajpour et al. [58],
Ghayour et al. [59] studied the vibration and buckling analysis of microtubules in nanoshells and plates in elastic and
thermal environment.

A review of FG thick cylindrical and thick shells is presented by Zamani et al. [60]. Hosseini et al. [61], Hosseini et
al. [62], Nejad et al. [63], Nejad et al. [64], Gharibi et al. [65] presented a thermoelastic analysis of FG rotating
pressure vessels. A torsional vibration of FG nanobeam under magnetic field based on the nonlocal elasticity theory is
presented by Zarezadeh et al. [66], Noroozi et al. [67], Barati et al. [68], [69], Khoram et al. [70]. Hadi et al. [71],
Shishesaz et al. [72], Mazarei et al. [73], Zamani et al. [74], investigates the termo-elasto-plastic analysis of FG
spherical shells.

Shortcomings of other studies

1) In the other studies, the effect of transverse normal strain is not fully explored while predicting the static and
dynamic analysis of laminated composite and FG plates, due to more complex mathematics and to avoid more
number of unknown parameters. But, the inclusion of the effect of transverse normal strain and higher order
expansion of polynomial shape function in terms of thickness co-ordinate is highly recommended by Carrera et al.
[75, 76] and Kaoiter [77] in his study to predict the accurate bending behavior of thick plates and shells.

2) Most of the recently developed higher order theories involve four unknowns which are not sufficient and accurate
to predict the correct global response (bending, buckling, and vibration) of the structure.

Novelty of the Present Work

Hence, with reference to Carrera’s and Koiter’s recommendation a new fifth order shear and normal deformation
theory is developed by Naik and Sayyad [78], Sayyad and Naik [79] and Ghumare and Sayyad [80] for the static and
dynamic analysis of laminated composite and functionally graded plates. The features of the present theory are
summarized as follows,

1. Through the literature review it has been observed that, the studies on static and dynamic analysis of FGM
sandwich plates is limited. Therefore in the present study, static and dynamic analysis of single layer and
FGM sandwich plates are presented.

2. In this study, the fifth order shear and normal deformation theory is applied to obtain the displacement,
stresses and frequencies in the plates.

3. The theory includes, the effect of both transverse normal and transverse shear deformation to predict the
accurate the bending behavior of the FGM sandwich plates/shells, as recommended by Carrera.

4. Also, as the polynomial shape function is extended upto fifth term in the present study;, it predicts the bending
behavior more precisely with less percentage of error.

5. To find the non-dimensional numerical results of displacements and stresses the nine variationally consistent
governing equations are derived using Hamiltons principle and solved using the Navier solution technique.

6. To validate the accuracy and efficacy of the present theory the displacement, stresses and natural frequencies
for plates, are compared with other theories available in literature.

7. The results obtained are presented in tabular and graphical formats to understand the bending behavior of
plates/shells through thickness.
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Methodology

In the present study, a simply supported single layer FG and FG sandwich plates are considered. A plate having
width a along x- direction, breadth b in y- direction, thickness h in z- direction and radii of curvature R; and R is
considered. FG sandwich plate, top and bottom face sheets are made up of functionally graded material and the core is
assumed to be homogeneous isotropic material. The variation of material properties in FG sandwich plate along the
thickness h is as shown in Fig. 1. The upper face sheet section is between h; to h,, the homogeneous core section is
between h; to h; and lower face sheet section is between h; to ha.
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Figure 1. Material gradation of FG sandwich plate.

The modulus of elasticity in the FG shells varying through the thickness, and expressed as,

E™(2)=E, +(E, —E,)V.", @)

Cc

where, E ,E_ are the modulus of elasticity of metal and ceramic respectively. VC(N) is the volume fraction in N™ layer,
and expressed as,

Vlz( Z_hl)p for ze[h,h,]

hz_hl
vi=1 for ze[h, h] 2
v3=(z_—h4] for ze[hy,h,]

ha_h4

where, p denotes the power-law index. When the value of p =0 shell is fully ceramic and when p=oo shell is fully
metallic. In the present study various lamination schemes of FG sandwich shells are considered as 1-0-1, 1-1-1, 1-2-1,
2-1-2, and 2-2-1. The thickness of each layer is given as below.

1. For 1-0-1 sandwich scheme: h =-h/2, h,=0, h,=0 and h,=h/2

2. For 1-1-1 sandwich scheme: h =-h/2, h,=-h/6, h,=h/6,and h,=h/2

3.For 1-2-1 sandwich scheme: h=-h/2, h,=-h/4 h,=h/4 andh,=h/2

4. For 2-1-2 sandwich scheme: h=-h/2 h,=-h/10 h;=h/10 and h,=h/2

5. For 2-2-1 sandwich scheme: h =-h/2 h,=-h/10 h,=3h/10 and h,=h/2

Development of theory

Displacement Field

Based on the assumptions of classical shell theory and the displacement field for a fifth order shear and normal
deformation theory is written as,
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where, u, v, are the in-plane displacements in x-, y- directions and w is the transverse displacement in z- direction at
any point.  ¢,,9, ,¢Z,V/X,l//y,l//z are the shear slopes in x-, y- and z- direction respectively.

Strain-Displacement Relationship

The normal and shear strains associated with the displacement field can be obtained as,
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Stress- Strain Relationship
The stresses occurred can be obtained using the Hooke’s law and expressed as,
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where, o,,0,,0,,7,,7,,.7, represents the normal and shear stress components. E(z) is the modulus of elasticity and
M is Poisson ratio.

3.4 The equations of motion

Hamilton’s Principle is used to derive the equations of motion, as,
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[ (8U -6V +5K)dt=0 )

b

where § is the variational operator, t; and t; is the initial and final time respectively, (8U, 8V, 6K) represents the

various forms of energies as strain, potential and Kkinetic. Substituting values of these energies in Eq. (7), one can
rewrite the Eq. (7) as
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ot—y
ot—0c

—~h/2

(O'X(iex +0,08, +0,08, + 1,07, +7,,07,, +7,,07, )dZ dy dx— ”q(x y)Swdy dx + p.[ {—5u + E;t\z/é'v+aatwé'wjdv 0 (8)

Substituting the values of stresses and strains from eq. (4) to eq.(6) in eq.(8) and collecting the terms, the nine
equations of motion are derived as below,
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The boundary conditions satisfying the top and bottom conditions associated with the present theory are expressed as,
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Along the edges x =0 and x =a,
either u,=0 or N, is prescribed

either v,=0 or N, is prescribed
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Navier’s Closed Form Solution

(20)

1)

The double trigonometric form,the Navier solution technique is employed to solve the nine equations of motion for the

simply supported FG sandwich plate.
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where, {umn,qﬁxmn,yxxmn},{vmn,¢ymn,y/ymn,},{Wmn,qﬁzmn,x//zmn} are the unknown coefficients of displacements and shear slopes.

a=mrla, B=nz/b;i=+—1; wis the natural frequency. The expression for the transverse load is also expressed in

double trigonometric form as,

o

ax.y)= Y. Gy, sinaxsin gy

m,n=135..

(23)
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where, gm, is the unknown coefficient of the transverse load, taken as q,, =q, (m=n=1) for sinusoidal load and

Uy = ;iq“z (m, n=1,3,5......) for uniformly distributed load.
T

Therefore, substituting Eq. (22-23) into the Eq. (9-17), the resultant equations can be expressed in matrix form. The
transverse load is taken as zero for free vibration analysis and the time dependent terms are discarded for static
analysis.

For static analysis the resultant equation is expressed as,

[K){a}={f} (24)
whereas for free vibration analysis the resultant equation expressed as,
{[x]-e’m]H{a}={o} (25)

where, [K] represents the stiffness matrix, {f} represents the force vector and {A} represents the vector of
unknowns. Appendix shows the elements of stiffness matrix, force vector and vector of unknowns.

Numerical Results

The static and free vibration analysis of single layer and sandwich functionally graded plate are presented in the
present study. The present results are compared with results available in the literature to validate the accuracy and
efficacy of the present theory. For the comparison purpose the numerical results are presented in the following non-
dimensional form.

_(ab 10h°E (ab 1000h3E0
Wl —,—,0 = W, W —,—,0 |=————W,
22 god

(26)

where, o =1.0 and Eq =1.0

Table 1. The material properties of the functionally graded material used are given as below,

. . Metal : Ceramic:
Material Properties Aluminum(Al) Alumina(Al,Os)
Modulus of _ _
Elasticity (E) Em=70 GPa Ec=380 GPa
1
Poisson Ratio () p=0.3 u=0.3
Density (p) = 2707 kg/m?® .= 3800 kg/m®
Modulus of _ _
, Elasticity (E) Em=70 GPa Ec=151 GPa
Poisson Ratio () p=0.3 u=0.3

Density (p)

= 2707 kg/m?®

.= 3800 kg/m®
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Table 2. Non-dimensional transverse displacement and stresses in single layer FG plate at various power law index

(a/h=10)
(Material 1)

Theory SSL UDL

w a, (h3) 7, (h/6) w a (h2) 7, (0)
Present 0.5695  1.4588 0.2607  0.8985  4.4385  0.5369
Thai et al. [5] 0.5875  1.5062 0.2510 - - -
Demirhan and Taskin [10] 0.5889  1.4894 0.2622  0.9287 4.4745  0.5446
Demirhan and Taskin [10] - - - 0.9288 4.0131  0.5454
Thai et al. [5] 0.5890  1.4898 0.2599 - - -
Thai et al. [5] 0.5890  1.4898 0.2608 - - -
Present 0.7225  1.3688 0.2763 11393 51083  0.5682
Thai et al. [5] 0.7570  1.4147  0.249 - - -
Demirhan and Taskin [10] 0.7573  1.3954 0.2763 11940 52296 0.5734
Demirhan and Taskin [10] - - - 1.1940 5.1376  0.5725
Thai et al. [5] 0.7573  1.3960 0.2721 - - -
Thai et al. [5] 0.7573  1.3960 0.2737 - - -
Present 0.8429  1.1456 0.2630 1.3275 57773  0.5395
Thai et al. [5] 0.8823  1.1985 0.2362 - - -
Demirhan and Taskin [10] 0.8819 1.1783 0.2580 1.3890 5.8915  0.5346
Demirhan and Taskin [10] - - - 1.3884 55911  0.5307
Thai et al. [5] 0.8815 1.1794 0.2519 - - -
Thai et al. [5] 0.8815  1.1794 0.2537 - - -
Present 0.9446  0.9088 0.2145 14868 6.8889  0.4402
Thai et al. [5] 0.9738  0.9687 0.2262 - - -
Demirhan and Taskin [10] 0.9750  0.9466 0.2121 15343  6.8999  0.4392
Demirhan and Taskin [10] - - - 15337 6.4234  0.4367
Thai et al. [5] 0.9747  0.9477 0.2087 - - -
Thai et al. [5] 0.9746  0.9477 0.2088 - - -

Table 3. Non-dimensional transverse displacement and stresses in FG sandwich plate subjected to sinusoidal load at
various power law index (a/h=10) (Material 2)

p  Theory Scheme
1-0-1 212 111 2-2-1  1-2-1

w 0  Present 0.1948 0.1948 0.1950 0.1948 0.1948
Zenkour [12] 0.1961 0.1961 0.1961 0.1961 0.1961
Thai and Kim [6] 0.1961 0.1961 0.1961 0.1961 0.1961
1  Present 0.3215 0.3043 0.2900 0.2787 0.2615
Zenkour [12] 0.3235 0.3062 0.2919 0.2808 0.2709
Thai and Kim [6] 0.3237 0.3064 0.2920 0.2809 0.2710
2 Present 0.3712 0.3502 0.3308 0.3135 0.3006
Zenkour [12] 0.3732 0.3522 0.3328 0.3161 0.3026
Thai and Kim [6] 0.3737 0.3526 0.3330 0.3163 0.3027
5  Present 0.4072 0.3900 0.3694 0.3466 0.3326
Zenkour [12] 0.4091 0.3916 0.3713 0.3495 0.3347
Thai and Kim [6] 0.4101 0.3927 0.3720 0.3501 0.3350
10 Present 0.4154 0.4025 0.3837 0.3590 0.3460
Zenkour [12] 0.4175 0.4037 0.3849 0.3492 0.3412
Thai and Kim [6] 0.3988 0.3894 0.3724 0.3492 0.3361
5, 0  Present 1.9963 1.9963 1.9963 1.9963 1.9963
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<

10

10

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]
Present

Zenkour [12]
Thai and Kim [6]

2.0545
1.9758
1.5490
1.5820
1.5324
1.7865
1.8245
1.7709
1.9501
1.9957
1.9358
1.9832
2.0336
1.9678
0.2383

0.2462
0.2387
0.2722
0.2991
0.2566
0.2894
0.3329
0.2552
0.3369
0.3937
0.2468
0.3892
0.4415
0.2419

2.0545
1.9758
1.4683
1.4986
1.4517
1.6911
1.7241
1.6750
1.8780
1.9155
1.8648
1.9337
1.9731
1.9216
0.2383

0.2462
0.2387
0.2551
0.2777
0.2593
0.2563
0.2942
0.2617
0.2613
0.3193
0.2576
0.2723
0.3364
0.2534

2.0545
1.9758
1.4002
1.4289
1.3830
1.6000
1.6303
1.5824
1.7849
1.8184
1.7699
1.8510
1.8815
1.8375
0.2383

0.2462
0.2387
0.2517
0.2681
0.2602
0.2502
0.2781
0.2650
0.2448
0.2915
0.2649
0.2445
0.2953
0.2627

2.0545
1.9758
1.2891
1.3234
1.2775
1.4336
1.4739
1.4253
1.5642
1.6148
1.5640
1.6117
1.6198
1.6160
0.2383

0.2462
0.2387
0.2547
0.2668
0.2582
0.2572
0.2763
0.2624
0.2583
0.2890
0.2627
0.2606
0.2967
0.2611

2.0545
1.9758
1.2987
1.3259
1.2810
1.4555
1.4828
1.4358
1.6124
1.6411
1.5931
1.6768
1.6485
1.6587
0.2383

0.2462
0.2387
0.2528
0.2600
0.2593
0.2539
0.2654
0.2655
0.2494
0.2715
0.2694
0.2454
0.2768
0.2698

Table 4 Non-dimensional transverse displacement and stresses in FG sandwich plate subjected to uniformly

distributed load at various power law. (a/h=10) (Material 1)

p  Theory Scheme
1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
w
0  Present 0.4639 0.4639 0.4639 0.4639 0.4639
Demirhan and Taskin [10] 0.4666 0.4666 0.4666 0.4666 0.4666
1 Present 1.1694 1.0344 0.9341 0.8662 0.8043
Demirhan and Taskin [10] 1.1765 1.0409 0.9402 0.8745 0.8093
2 Present 1.7018 1.4524 1.2565 1.1222 1.0086
Demirhan and Taskin [10] 1.7100 1.4606 1.2644 1.1372 1.0153
5  Present 2.2844 1.9950 1.6909 1.4529 1.2757
Demirhan and Taskin [10] 2.2877 19996 1.6999 1.4792 1.2845
10 Present 24399 22160 1.8981 1.6090 1.4116
Demirhan and Taskin [10] 2.4438 2.2154 19045 1.6408 1.4296
GX
0  Present 2.8960 2.8960 2.8960 2.8960 2.8960
1 Present 1.3787 12212 1.1030 0.9522 0.9482
2 Present 2.0080 1.7210 1.4924 1.2064 1.1986
5  Present 2.6741 2.3534 2.0063 1.5070 1.5216
10 Present 2.8406 2.6036 2.2456 1.6350 1.6832
TXZ
0  Present 0.4867 0.4867 0.4867 0.4867 0.4867
1 Present 0.6209 0.5614 0.5495 0.5561 0.5495
2 Present 0.6843 0.5714 0.5591 0.5780 0.5710
5  Present 0.8704 0.5560 0.5271 0.5848 0.5740
10 Present 1.1889 0.5810 0.5024 0.5853 0.5609
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Table 5 .Non-dimensional natural frequencies in single layer FG plate at various power law. (Material 1)

a/h  Mode Theory p
0 0.5 1 4 10
5 1 Present 0.2121 0.1824 0.1658 0.1407 0.1316

Thai and Kim [6] 0.2113 0.1807 0.1631 0.1378 0.1301

Li etal. [7] 0.2112 0.1805 0.1631 0.1397 0.1324

Thai and Kim [6] 0.2113 0.1807 0.1631 0.1378 0.1301

2 Present 0.4658 0.4039 0.3674 0.3038 0.2807
Thai and Kim [6] 0.4623 0.3989 0.3607 0.2980 0.2771

Li etal. [7] 0.4618 0.3978 0.3604 0.3049 0.2856

Thai and Kim [6] 0.4623 0.3989 0.3607 0.2980 0.2771

3 Present 0.6752 0.6556 0.5357 0.4365 0.4000
Thai and Kim [6] 0.6688 0.5803 0.5254 0.4284 0.3948

Li etal. [7] 0.6676 0.5779 0.5245 0.4405 0.4097

Thai and Kim [6] 0.6688 0.5803 0.5254 0.4284 0.3948

10 1 Present 0.0577 0.0493 0.0448 0.0389 0.0368
Thai and Kim [6] 0.0577 0.0490 0.0442 0.0381 0.0364

Li etal. [7] 0.0577 0.0490 0.0442 0.0382 0.0366

Thai and Kim [6] 0.0577 0.0490 0.0442 0.0381 0.0364

2 Present 0.1380 0.1184 0.1076 0.0921 0.0867
Thai and Kim [6] 0.1377 0.1174 0.1059 0.0903 0.0856

Li etal. [7] 0.1376 0.1173 0.1059 0.0911 0.0867

Thai and Kim [6] 0.1377 0.1174 0.1059 0.0903 0.0856

3 Present 0.2121 0.1825 0.1659 0.1407 0.1317
Thai and Kim [6] 0.2113 0.1807 0.1631 0.1378 0.1301

Li etal. [7] 0.2112 0.1805 0.1631 0.1397 0.1324

Thai and Kim [6] 0.2113 0.1807 0.1631 0.1378 0.1301

Table 6. Non-dimensional natural frequencies in FG sandwich plate at various power law (Material 1)

p Theory Scheme
1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
a’h 5 10 5 10 5 10 5 10 5 10
0  Present 1.6771 18268 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268

Li etal.[7] 16771 1.8268 16771 1.8268 1.6771 1.8268 1.6771 1.8268 1.6771 1.8268
Thaietal.[5] 1.6974 1.8244 1.6697 1.8244 1.6697 1.8244 1.6697 1.8244 1.6697 1.8244

0.5 Present 1.3536 1.4461 1.3905 1.4860 1.4217 15213 1.4461 15501 1.4694 1.5766
Li etal.[7] 1.3536 1.4461 1.3905 1.4861 1.4218 15213 1.4454 15493 1.4694 1.5767
Thaietal.[5] 1.3473 1.4442 13841 14841 1.4152 15192 14386 15471 14626 15745

1  Present 11748 1.2447 12291 1.3018 1.2777 1.3553 13162 1.3998 1.3534 1.4413
Li etal.[7] 11749 1.2447 12292 1.3018 1.2777 13533 13143 1.3956 1.3524 1.4394
Thaietal.[5] 1.1691 1.2429 1.2232 13000 1.2414 1.3533 1.3078 1.3956 1.3467 1.4393

5  Present 0.8913 0.9449 0.9337 0.9810 0.9980 1.0453 1.0635 1.1169 1.1193 1.1757
Li etal.[7] 0.8909 0.9448 0.9336 0.9810 0.9980 1.0453 1.0561 1.1088 1.1190 1.1757
Thaietal.[5] 0.8853 0.9431 0.9286 0.9796 0.9916 1.0435 1.0488 1.1077 1.1056 1.1735

10 Present 0.8690 0.9275 0.8928 0.9409 0.9498 0.9952 1.0194 1.0695 1.0733 1.1247
Li etal.[7] 0.8683 0.9273 0.8923 0.9408 0.9498 0.9952 1.0095 1.0610 1.0729 1.1247
Thaietal.[5] 0.8599 0.9246 0.8860 0.9390 0.9428 0.9932 1.0012 1.0587 1.0648 1.1223
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Figure 3. Through thickness variation of in-
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Figure 4. Through thickness variation of in-plane stress in 1-0-1 FG sandwich plate subjected to sinusoidal load
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Figure 5. Through thickness variation of in-plane stress

in 1-1-1 FG sandwich plate subjected to sinusoidal load
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Figure 6. Through thickness variation of in-plane stress in 1-2-1 FG sandwich plate subjected to sinusoidal load
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Figure 7. Through thickness variation of in-plane stress in 2-1-2 FG sandwich plate subjected to sinusoidal load
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Figure 8. Through thickness variation of in-plane stress in 2-2-1 FG sandwich plate subjected to sinusoidal load
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Figure 9. Through thickness variation of transverse shear stress in 1-0-1 FG sandwich plate subjected to sinusoidal
load
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Figure 10. Through thickness variation of transverse shear stress in 1-1-1 FG sandwich plate subjected to sinusoidal

load
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Figure 11. Through thickness variation of transverse shear stress in 1-2-1 FG sandwich plate subjected to sinusoidal
load
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Figure 12.Through thickness variation of transverse shear stress in 2-1-2 FG sandwich plate subjected to sinusoidal
load
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Figure 13. Through thickness variation of transverse shear stress in 2-2-1 FG sandwich plate subjected to sinusoidal
load.
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Discussion
Static Analysis

Table 2 through 4 shows the transverse displacement and stresses in single layer FG and sandwich FG plate subjected
to sinusoidal and uniformly distributed load for various power law index. The present results are compared and found
in close agreement with Thai et al. [5], Thai and Kim [6], Li et al. [7], Demirhan and Taskin [10], Zenkour [12]. Table
2 shows the transverse displacement and stresses for various power law index (p = 1, 2, 4, 8) at aspect ratio a/h=10.
From Table 1 it is clearly observed that the transverse displacement increases with increase in power law index value
for sinusoidal and uniformly distributed load , whereas the in-plane stresses decreases with increase in power law
index for sinusoidal load and increases for uniformly distributed load. For both type of loading the transverse shear
stresses are decreases with increase in power law index value. Table 3 and Table 4 shows the transverse displacement
and stresses in sandwich FG plate subjected to sinusoidal and uniformly distributed load respectively. In case of
sandwich FG plate the transverse displacement and stresses are found to be maximum in 1-0-1 scheme and minimum
in 1-2-2 or 2-2-1 scheme which shows that the transverse displacement and stresses increases with increase in the
thickness of middle core. The results for the stresses in sandwich FG plate subjected to uniformly distributed load is
presented first time in the present study which is the major contribution of the present study. Fig. 2 and 3 shows the
through thickness variation of in-plane stresses in single layer FG plate under sinusoidal and uniformly distributed load
respectively at various values of power law index. Fig. 4 through Fig. 8 shows the in-plane stress variation in sandwich
FG plate and Fig. 9 through Fig. 13 shows the transverse shear stress variation of sandwich FG plate through the
thickness.

Free Vibration

The numerical results for the free vibration analysis of single layer FG and Sandwich FG plate are presented in Table 5
and Table 6 respectively for various power law index (p= 0, 0.5, 1, 4, 10). In Table 5 the frequencies are obtained for
different mode i.e. 1, 2, 3. The present results are compared and found in good agreement with the results presented
by Thai and Kim [6], Li at al.[7] and Thai et al.[5]. Also, from Table 4 it is observed that the frequencies are increases
with increase in mode of frequency and decreases with increase in the power law index. Table 5 shows natural
frequencies in sandwich FG plate for a/h=5, 10. The natural frequencies in sandwich FG plate are found to be
maximum in 1-2-1 scheme and minimum in 1-0-1 which shows that the natural frequency decreases with decrease in
the thickness of middle core.

Conclusions

In the present study, a static and free vibration analysis of single layer FG and sandwich FG plate is presented using a
new fifth order shear and normal deformation theory. The present results are compared with those available in
literature and found to be in excellent agreement. The major contribution of the present theory is that it presents
displacement and stresses results for sandwich FG plate subjected to uniformly distributed load which can be treated as
benchmark for future research work.
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