تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,112,424 |
تعداد دریافت فایل اصل مقاله | 97,216,191 |
ارزیابی رفتار خودپالایی رودخانه ها با استفاده از مدلسازی تک بعدی عددی | ||
اکوهیدرولوژی | ||
مقاله 4، دوره 8، شماره 1، فروردین 1400، صفحه 29-43 اصل مقاله (1.21 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2020.308851.1376 | ||
نویسندگان | ||
عباسعلی قزل سوفلو1؛ مبین افتخاری2؛ محمد اکبری* 3 | ||
1ریاست پژوهشکدۀ محیط های خشک، استادیار گروه مهندسی عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران | ||
2دانش آموختۀ کارشناسی ارشد مهندسی عمران آب و سازه های هیدرولیکی و عضو باشگاه پژوهشگران جوان و نخبگان، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران | ||
3استادیار گروه مهندسی عمران، دانشگاه بیرجند، بیرجند، ایران | ||
چکیده | ||
با توجه به رشد آلودگی آبهای سطحی، تحقیق پیش رو در نظر دارد با بهکارگیری مدلسازی عددی، رفتار خودپالایی و حذف آلاینده در رودخانهها را ارزیابی کند. در تحقیق پیش رو با استفاده از دادهها و اطلاعات ثبت و برداشت شده در رودخانۀ کارده بهعنوان یک منبع در تأمین آب شرب شهر مشهد، به بررسی فرایندهای پایش رودخانهای با استفاده از مدل عددی MIKE11 پرداخته شده است. در این مدل شرایط مرزی شامل دبی، آلودگی (Ecoli) و رقوم سطح آب بوده که از طریق اندازهگیری و نمونهبرداریهای صحرایی تعریف شد. اندازهگیری در دو بازۀ زمانی؛ یکی در فروردین ۱۳۹۳ (معرف فصل پرآب سال) و دیگری در مردادماه ۱۳۹۳ (معرف فصل کمآب سال) با اخذ ۱۲ نمونه از آب رودخانه کارده، انجام شده است. نتایج تحقیق حاضر نشان میدهد ضریب زبری مانینگ با کمک کالیبراسیون مدل هیدرولیکی در بازۀ بررسیشده برابر با 058/0 به دست آمد و ضریب زوال رودخانه برای پارامتر Ecoli در فصل گرما با فاکتور پخش 20 و توان ضریب پخش 5/0 برابر با 08/0 و در فصل سرما با فاکتور پخش 5 و توان ضریب پخش 2 برابر با 207/0 است. بر اساس نتایج بهدستآمده، تأثیر ضریب مانینگ در برآورد آلودگی ۹۰ درصد و سهم پارامترهای دیگر درمجموع ۱۰ درصد است. بهمنظور کالیبراسیون مدل از آنالیز حساسیت استفاده شد که از آنالیز حساسیت یادشده نتیجه میشود که ضریب مانینگ تأثیر زیادی بر مدلسازی پخش و انتقال آلودگی دارد. | ||
کلیدواژهها | ||
پیش بینی آلودگی؛ رودخانۀ کارده؛ ضریب خودپالایی؛ ضریب زوال؛ مدل MIKE11 | ||
عنوان مقاله [English] | ||
Evaluation of River Self - Purification Behavior Using One - Dimensional Numerical Modeling | ||
نویسندگان [English] | ||
Abbas Ali Ghezelsofloo1؛ Mobin Eftekhari2؛ Mohammad Akbari3 | ||
1Head of Arid Environment Research Center, Assistant Professor, Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
2Master of Science (MSc), Civil Engineering, Water and Hydraulic Structures, Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
3Assistant Professore at Dept. of Civil Engineering, University of Birjand, Birjand, Iran | ||
چکیده [English] | ||
Due to the growth of surface water pollution, this study intends to evaluate the behavior of self-purification and pollution removal in rivers by using numerical modeling. In this research, using data and information provided by water sampling in the Kardeh River, in Mashhad as a source for supplying drinking water in Mashhad city, we have investigated the river quality monitoring processes using the MIKE11 numerical software. In this model, boundary conditions include discharge, pollution (Ecoli) and water level, which has been done through field measurements. Measurements were performed in two time periods, one in April 2014 (indicating the high water season of the year) and the other in August 2014 (indicating the low water season of the year) by taking 12 samples of Kardeh river. The resulted outcomes of this research show that Manning roughness coefficient with the help of hydraulic model calibration in the study period is 0.058 and the river decay coefficient for Ecoli parameter in the warm season with a diffusion factor of 20 and diffusion coefficient of 0.5 is 0.08 and in the cold season with a diffusion factor of 5 and diffusion coefficient of 2 equals to 0.207. According to the results, the effect of Manning coefficient in estimating pollution is 90% and the share of other parameters is 10% in total. In order to calibrate the model, sensitivity analysis was used, which concludes from the above sensitivity analysis that the Manning coefficient has a great effect on modeling the spread and transmission of contamination. | ||
کلیدواژهها [English] | ||
: deterioration factor, Kardeh River, MIKE11 Model, pollution prediction, Self-purification factor | ||
مراجع | ||
[1]. Baffaut C. Upper Shoal Creek Watershed Water Quality Analysi. FAPRI-UMC Report 01-04, Food & Agricultural Policy Research Institute FAPRI, University of Missouri. 2004:26. [2]. Gibson C.J. Bacterial Loadings Watershed Model in Copano Bay, Master of Science in Engineering Thesis, University of Texas at Austin, USA. 2006 [3]. Miller A. Total Maximum Daily Load Development for Fecal Coliform Bacteria Lower Saluda River and Tributaries Stations: Lower Saluda S-149, Twelve Mile Creek S-294, Kinley Creek S-260. South Carolina Department of Health and Environmental Control.2004. [4]. Neitsch S.L, Arnold J.G, Kiniry J.R, Srinivasan R, Williams J.R. Soil and Water Assessment Tool Input/Output File Documentation. Version 2005. Texas: Texas Agricultral Experiment and services; 2004. [5]. Babakhani Z, Sarai Tabrizi M, Babazadeh H. Determination of river self-purification capacity using Qual2kw mode case study: divandare river. Ecohydrology. 2019; 6(3):673-684. [Persian] [6]. M.Y, Semenov Y.M, Silaev A.V, Begunova L.A. Assessing the Self-Purification Capacity of Surface Waters in Lake Baikal Watershed. Water. 2019; 11(7):1505. [7]. Hosseini H. Study of self-purification and quality using Qual2kw and WQI. Journal of Wetland Ecobiology. 2019; 11(41):41-60. [Persian] [8]. Beaudeau P, Tousset N, Bruchon F, Lefevre M, Taylor H.D. In Situ Measurement and Statistical Modeling of Escherichia Coli in Small Rivers. Water research. 2002; 35:13. [9]. Benham B.L, Baffaut C, Zeckoski R.W, Brannan K.M, Soupir M.L, Habersack M.J. Modeling Bacteria Fate and Transport in Watersheds to Support TMDL. Transactions of the ASABE.2006; 49:987-1002. [10]. P.B. SWAT bacteria sub-model evaluation and application. Doctorial Dissertation. Kansas State University, Department of Biological and Agricultural Engineering.2007. [11]. Kyeongsik R. Fecal Coliform TMDL for Crane Creek, WBIDs and 3085A. Bureau of Watershed Management, Florida Department of Environmental Protection.2008:14. [12]. Brissaud F. Hydrodynamic Behaviour and Faecal Coliform Removal in a Maturation Pond. Water Science and Technology.2006; 42:119-126. [13]. Sarikaya H.Z, Saatci A.M. Bacteria die-off in waste stabilizationponds. Journal of Environmental Engineering. 1987; 113:366-382. [14]. Ansari pour Ah, Ebrahimi k, Omid Mh. A mathematical model for river flow assimilation: A case study of pasikhan River, Iran. Journal of agricultural engineering research. 2013; 14(2):31-42. [Persian] [15]. Vanaei A, Marofi S. Investigation Self-purification and simulation of nitrogen and phosphorus changes along the Abbas Abad River of Hamedan using QUAL2KW. Journal of Irrigation and Water Engineering. 2018; 8(31):172-186. [Persian] [16]. Dolatabadi Farahani N, Taheri Shahraiyni H, Nasseri M, Ghasemi, M. Water quality and quantity modelling in Bahmanshir River and its channels. Journal of Environmental Science and Technology.2017; 19(5): 53-66. [17]. Babakhani Z, Sarai Tabrizi M, Babazadeh, H. Determination of River Self-Purification Capacity Using Qual2kw Mode Case Study: Divandare River. Iranian journal of Ecohydrology, 2019; 6(3): 673-684. [Persian] [18]. Hoseini Y. Study the self purification Capacity and Water quality of Qarahsoo River Using Qual2kw and NSFWQI Models. Wetland Ecobiology. 2019; 11 (3): 41-60. [Persian] [19]. Abu-Ashour J, Joy M.D, Lee H, Whiteley H.R, and Zelin S. Transport of Microorganisms through Soil. Journal of Water, Air and soil Pollution. 1994; 75:141-158. [20]. Yi Y, Tang C, Yang Z, Zhang S, Zhang C. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures.Mathematical Problems in Engineering. 2017; 1-11. [21]. Ghezelsofloo A.A, Farokhzad M. Fundamentals of river geomorphology. Islamic Azad University, Mashhad Branch. 2017. [Persian] [22]. Ghezelsofloo A.A. Numerical Modeling of shock behavior in Shallow Flows using advanced finite volume methods.P.hd Thesis. Faculty of Engineering at Ferdowsi University of Mashhad.2005. [Persian] [23]. Ghezelsofloo A.A. Study of self-purification of Kardeh River in Mashhad, Iran. Research project report. Regional Water Company of Khorasan razavi.2015. [Persian] [24]. Mahjoubi R, Hassanpour Sedghi M, Vaezi-hir A, Mazaheri, N. Concentration of Heavy and toxic metals in downstream of Sungun Mine dumping site and the role of lime bed of the river in the attenuation of the pollutants. Iranian journal of Ecohydrology. 2020; 7(3):743-756. [Persian] [25]. Sargholzaei S, Frashi A, Safari O. Evaluation of ecosystem health using bio-integration index (B-IBI) (Case study: Kardeh River). 14th National Conference on Watershed Management Science and Engineering of Iran. 2019. [Persian] [26]. Heydarizad M, Mohammadzadeh H. Investigation of Seasonal and Spatial Variation of Hydrochemical Parameters in Karde River (North of Mashhad). Journal of Water and Soil. 2012; 26(5):1161-1170. [Persian] [27]. Mahmoodi M, Sadegi H, Abassi AA. Study of manning coefficient in a range Kardeh River. National conference on watershed management, sciences and engineering of Iran (watershed manangment). Faculty of Natural Resources, University of Tehran, Karaj. 2010. [Persian] [28]. Eftekhari M, Moharamkhani P. Introduction to the hydrology of karst areas. First Edition. Tehran: Salehiyan; 2019. [Persian] | ||
آمار تعداد مشاهده مقاله: 964 تعداد دریافت فایل اصل مقاله: 434 |