تعداد نشریات | 161 |
تعداد شمارهها | 6,496 |
تعداد مقالات | 70,217 |
تعداد مشاهده مقاله | 123,396,962 |
تعداد دریافت فایل اصل مقاله | 96,620,786 |
مدلسازی بارش- رواناب در زیرحوضۀ هلیل رود به منظو ر پیشبینی جریان های آتی تحت شرایط اقلیمی آینده | ||
اکوهیدرولوژی | ||
مقاله 11، دوره 8، شماره 1، فروردین 1400، صفحه 143-160 اصل مقاله (1.25 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2021.310614.1388 | ||
نویسندگان | ||
آسیه زارعی1؛ نسرین سیاری* 2؛ بهرام بختیاری3؛ محمدمهدی احمدی3 | ||
1دانش آموختۀ کارشناسی ارشد رشتۀ مدیریت منابع آب، گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه شهید باهنر کرمان | ||
2استادیار گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه شهید باهنر کرمان | ||
3دانشیار گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه شهید باهنر کرمان | ||
چکیده | ||
تغییر اقلیم با ایجاد تغییر در میزان دما و بارش موجب تغییر در دبی رودخانهها میشود. محدودیت منابع آبی و توزیع نامتجانس آن در مناطق مختلف کشور سبب شده است که در مقایسه با بسیاری از نقاط جهان، نسبت به پدیدۀ تغییر اقلیم آسیبپذیرتر باشد. شبیهسازی جریان رودخانه به عنوان پیشنیاز برخی از مسائل زیستمحیطی و مهندسی اهمیت دارد. در تحقیق حاضر تأثیر تغییر اقلیم بر میزان رواناب سطحی حوضۀ آبخیز هلیلرود استان کرمان با استفاده از مدل IHACRES در دورههای زمانی آیندۀ نزدیک (2020-2050) و آیندۀ دور (2070-2100) پیشبینی شد. به این منظور، ابتدا دادههای روزانۀ بارش و دما ایستگاههای تعیینشده طی دورۀ آماری 1995ـ 2017 از ایستگاههای هواشناسی منطقۀ مطالعهشده اخذ شدند. سپس، خروجیهای مدل گردش عمومی جو CanESM2 تحت دو سناریوی انتشار میانه (RCP4.5) و بدبینانه (RCP8.5) با استفاده از مدل SDSM ریزمقیاس شدند. میانگین دمای ایستگاهها در دو دورۀ آیندۀ نزدیک و دور بهترتیب 5- و 6/4- درصد کاهش و میزان بارش نزدیک 5/42 و 40 درصد افزایش نسبت به دورۀ مشاهداتی (1989-2017) نشان دادند. در گام بعدی، مقادیر پیشبینیشدۀ دما و بارش توسط مدل ریزمقیاسنمایی آماری SDSM به مدل بارش- رواناب IHACRES وارد شده و تغییرات دبی در دو دورۀ زمانی آینده پیشبینی شد. بر اساس مقادیر پیشبینیشده، متوسط دبی ماهانه در هر دو ایستگاه (کناروئیه، چشمه عروس) در ماههای گرم سال بیشترین افزایش را بر اساس پیشبینیها نشان داد. براساس یافتههای پژوهش حاضر، کاهش دما و افزایش میزان بارش طی دورههای آینده منجر به افزایش رواناب و شدت وقایع سیل در حوضۀ آبخیز هلیلرود در ماههای گرم سال خواهد شد. | ||
کلیدواژهها | ||
تغییر اقلیم؛ سناریوهای انتشار RCP؛ SDSM؛ IHACRES؛ CanESM2 | ||
عنوان مقاله [English] | ||
Modeling of Precipitation – runoff for Predicting Upcoming Flow Streams in Halilroud Basin | ||
نویسندگان [English] | ||
Asiyeh Zarei1؛ Nasrin Sayari2؛ Bahram Bakhtiari3؛ Mohammad Mehdi Ahmadi3 | ||
1M.S graduate, Department of Water Engineering, Shahid Bahonar University of Kerman, Iran | ||
2Assisstant Professor of Water Engineering, Shahid Bahonar University of Kerman | ||
3Associate Professor of Water Engineering, Shahid Bahonar University of Kerman | ||
چکیده [English] | ||
Climate change has an impact on discharge in rivers by changing the temperature and precipitation. Iran is much more vulnerable to climate change compared to other countries because of its limited water sources and heterogeneous distribution. The simulation of run-off plays a significant role in some environmental and engineering issues. The purpose of this study was to evaluate the impacts of climate change on run-off in the Halilroud basin in Kerman province using the IHACRES model in two time periods (2020-2050, 2070-2100). In this respect, daily data such as rainfall, temperature from 1995 to 2017 were collected. Then, the outputs of the CanESM2 model, which is a general circulation model (GCM) under two middle emission scenarios (RCP4.5) and pessimistic scenario (RCP8.5) using the SDSM model were downscaled. The average temperature in the stations in the present and next periods decreased by 5.6 and 4.6 percent, respectively. The stations' precipitation increased by 42.5 percent and in the next period by 40 percent compared to the observation period (1989 - 2017). The predicted values of temperature and precipitation were entered into the IHACRES model by the SDSM climate model, and then, the discharge changes were expected in two periods of time. The average monthly discharge shows an increase in the warmest months of the year in both stations (Kenaruyeh, Cheshmeh Arous). The results indicated that reducing the temperature and the rise of precipitation in warm months of the year led to increased run-off and the intensity of flood events in the studied area. | ||
کلیدواژهها [English] | ||
SDSM, IHACRES, Climate Change, CanESM2, RCP Scenarios | ||
مراجع | ||
[1]. IPCC. Saummary for policy makers. In: IPC Climate change: The Physical Science basic, Contribution of working group first to the Fourth assessment report of the intergovernmental panel on climate change, Cambridge university press, 2007;p. 450 [2]. Croke B.F.W, Jakeman A.J. Use of the IHACRES rainfall-runoff model in arid and semi arid regions. Hydrological Modelling in Arid and Semi-arid Areas. 2008;41-48 pp. [3]. Ashofteh P.S and Massah A.R. The effect of climate change on maximum discharges in the Aydoghmush basin of East Azerbaijan. Water and Soil Science(Journal of Science aure and Natural Resources). 2008; 14(53): 25-39. [4]. Zarei M, Habibnezhad Roshan M , Shahedi K, Ghanbarpour M.R. Calibration and Evaluation of IHACRES Hydrological Model for Daily Flow Simulation. Journal of Water and Soil. 2011; 25(1): 104-114. [Persian] [5]. Ashofteh P.S. The effect of climate change on runoff using HadCM3 model and under greenhouse gas emission scenarios (Case study: Gharangho Basin). Fourth Regional Conference on Climate Change, Meteorological Organization of the country. 2010. 21-22 December.[Persian] [6]. Taei Semiromi S, Moradi H.R, Khodagholi M. Evaliuation Change in Nayshabour Bar River flow Under Differents Climate Change Scenarios. Human and Environment. 2014; 12(2):1-19. [Persian] [7]. Hafezparast M, Bafkar A, Panahi E. Assessment of climate change uncertainty and its effects on the probability of the Jamishan dam inflow frequency. Journal of Water and Soil Resources Conservation. 2017; 6(3):19-42. [Persian] [8]. Niromandfard F, Zakerinia M, Yazerloo B. Investigating the Effect of Climate Change on River Flow Using IHACRES Rainfall-Runoff Model. Journal of Irrigation Sciences and Engineering. 2018; 41(3): 103-117. [9]. Shahoei S.V, Fahiminezhad E, Fatehi Z. Impact of Global Climate Change on Climate Data in Ravansar Sanjabi Basin, Kermanshah Province. Environment and water Engineering. 2020 ; 6(1): 45 – 57. [Persian] [10]. Dastranj A, Rostami mohammad. Assessment and prediction of climate change in the next decade, by downscaling General Circulation Models (GCMs).Geography and Human Relationship.2020; 3(1): 1-17. [Persian] [11]. Abdo K.S, Fiseha B.M, Rientje T.H.M, Gieske A.S.M, Haile A. T. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana Basin. Ethiopia. Hydrological Processes. 2009 ;23 (26): 3661-3669. [12]. McIntyre N, Al-Qurashi A. Performance of ten rainfall–runoff models applied to an arid catchment in Oman. Environmental Modelling and Software. 2009; 24(6):726-738. [13]. Vaze J, Post D.A, Chiew F.H.S, Perraud J.M, Viney N.R, Teng J. Climate non-stationarityvalidity of calibrated rainfall–runoff models for use in climate change studies. Hydrology. 2010 ; 394: 447-457. [14]. Teng J, Vaze J, Chiew F, Wangand H.S, Perraud J.M. Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling Climate Change impact on runoff. Journal of Hydrometeorology. 2012 ;13(1): 122-139. [15]. Su F, Zhang L, Ou T, Chen D, Yao T, Tong K, Qi Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planetary Change. 2016 ; 136: 82-95. [16]. Iolanda B, Brunella B, Aldo F. A Modified IHACRES Rainfall-Runoff Model for Predicting the Hydrologic Response of a River Basin Connected with a Deep Groundwater Aquifer. Journal Water. 2019; 11(10):1-15. [17]. Hamouda D, Denis R, Yves T, Zoubeida B. Robustness of conceptual rainfall-runoff models to high-resolution climate projections in northern Tunisia. MISTRALS Impacts des changements climatiques en Méditerranée, (1), Montpellier. 2017. France. [18]. Rezaei M, Nohtani M, Abkar A, Rezaei M, Mirkazehi Rigi M. Performance Evaluation of Statistical Downscaling Model (SDSM) in Forecasting Temperature Indexes in Two Arid and Hyper Arid Regions (Case Study: Kerman and Bam). Journal of Watershed Management Research. 2014;5(10): 117-131. [Persian] [19]. Xu C.y. From GCMs to river flow: A review of downscaling methods and hydrologic modeling approaches. Progress in Physical Geography. 1999; 23(2), 229-249. [20]. IPCC: Climate Change The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J. T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A. (eds.)], Cambridge University Press, Cambridge and New York, 2001;p. 881. [21]. Salehnia N, Farid A, Hosseini F, Kolsoumi S, Zarrin A, Hasheminia M. Comparing the performance of dynamical and statistical downscaling on historical run precipitation data over the semi-arid region. Asia-Pacific Journal of Atmospheric Sciences. 2019; 55(4): 737–749, DOI: 10.1007/s13143-019-00112-1 [22]. Dehghan S, Salehnia N, Sayari N, Bakhtiari B. Prediction of meteorological drought in semi-arid and arid lands using PDSI and SDSM [23]. Wilby R.L, Dawson C.W. SDSM version 4.2-A decision support tool for the assessment of regional climate change impacts. User Manual. London, UK. 2007;17(2), 147-159. [24]. Roohi Panah F, Mir Rokni M, Massah Bavani A, Nasr Esfahani M. Investigation of SDSM exponential microscale model in selecting the best predictor variables. Fifteenth Conference on Fluid Dynamics. 2013; 18-20 December. Hormozgan University. [Persian] [25]. Erasmo C, Wilfrido R. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using Artificial Neural Networks. Renewable Energy. 2009; 34(12), 274–278. [26]. Jakeman A.J, Hornberger G.M. How much complexity is warranted in a rainfall runoff model?. Water Resources Research. 1993; (29): 2637-2649. [27]. Box G.E.P, Jenkins G.M. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. 1970. 230p. [28]. Littlewood L.G, Clarke R.T.B, Collischonn W, Croke B. Predicting daily Streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modelling and Software. 2007 ;22(9):1229-1239. [29]. Rahimifar H, Hesadi H, Omidi N, Asadi A. Simulation of runoff runoff in Ravansar basin using IHACRES model. National Conference on Water, Man and Earth. 2014. Esfahan, pages: 1-12. [Persian] | ||
آمار تعداد مشاهده مقاله: 492 تعداد دریافت فایل اصل مقاله: 368 |