تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,655 |
تعداد دریافت فایل اصل مقاله | 97,221,373 |
مکان یابی ایستگاه های هواشناسی جاده ای با استفاده از روش تحلیل سلسله مراتبی (محور مورد مطالعه: محورهای کوهستانی البرز) | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 7، دوره 52، شماره 4، دی 1399، صفحه 621-639 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2021.300727.1007503 | ||
نویسندگان | ||
عباس رنجبر سعادت آبادی1؛ ابراهیم فتاحی1؛ پروانه عسگرزاده2؛ مهناز کریم خانی* 3 | ||
1دانشیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران | ||
2دانش آموختة کارشناسی ارشد سنجش از دور و GIS، دانشگاه تهران، تهران، ایران | ||
3دانشجوی دکتری هواشناسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران | ||
چکیده | ||
مشکلات ناشی از شرایط جوی در محورهای کوهستانی البرز، بهویژه در فصل زمستان، از موارد قابل مطالعه در زمینة علوم هواشناسی است. بنابراین، قرارگیری موقعیت مناسب ایستگاههای هواشناسی جادهای از اهمیت بسزایی برخوردار است. بدین منظور، برای تعیین مکان مناسب ایستگاههای هواشناسی جادهای، معیار مخاطرات اقلیمی شامل بارش، یخبندان برای شاخصهای زمان شروع و خاتمه و تعداد روزهای یخبندان، دما جهت بررسی دمای کمینه و بیشینه با مقدار کمتر از 10- و بیشتر از 35 درجة سلسیوس، دادههای ماهوارهای سطح پوشش برف، معیار ژئومورفولوژیکی شامل ریزش سنگ، نقاط زمینلغزش و گسلهای فعال، معیار ترافیکی شامل نقاط پُرتصادف و شرایط محیطی معیار اقتصادی-امنیتی قرار میگیرد. سپس، با استفاده از روش فرایند تحلیل سلسلهمراتبی و وزندهی به هر یک از معیارها، نقشة نهایی الویتبندی محور چالوس و هراز تهیه و ایستگاههای هواشناسی جادهای پیشنهاد داده میشود. نتایج نشان داد که پس از الویتبندی محورها از نظر نیاز به ایستگاههای جدید، با تحلیل Location-Allocation و بررسی فواصل بهینة محورها از راهداری، جایگاههای سوخت، دوربینهای نظارتی، و روستاهای اطراف محور، ایستگاههای نهایی در قطعات الویتدار محور چالوس در محدودة کیاسر، مرزنآباد، خرگوشدره، و ولیآباد و در محور هراز در محدودة پلور، مبارکآباد- آبعلی، راهداری حدفاصل رودهن- بومهن، و رینه هستند. با توجه به شرایط منطقة معرفیشده، قابلیت تغییر ایستگاهها در محدودة 1 تا 5 کیلومتری نقطة معرفیشده وجود دارد و هر ایستگاه هواشناسی منطقهای درحدود 30 کیلومتر را پوشش میدهد. | ||
کلیدواژهها | ||
فرایند تحلیل سلسلهمراتبی؛ محورهای کوهستانی البرز؛ مخاطرات اقلیمی؛ معیار ترافیکی؛ معیار ژئومورفولوژیکی | ||
عنوان مقاله [English] | ||
Locating Road Meteorological Stations Using Analytical Hierarchy Process Method (Case Study: Alborz Mountain Roads) | ||
نویسندگان [English] | ||
Abbas Ranjbar Saadatabadi1؛ Ebrahim Fattahi1؛ Parvaneh Asgarzade2؛ Mahnaz Karimkhani3 | ||
1Associate Professor, Institute of Meteorology and Atmospheric Sciences, Tehran, Iran | ||
2Graduate of Remote Sensing and GIS, University of Tehran, Tehran, Iran | ||
3PhD Student in Meteorology, Islamic Azad University, Science and Research Branch, Tehran, Iran | ||
چکیده [English] | ||
Introduction Roads are part of civilizations’ development. Not only do they support economic activities, but they are the foundation of new life. However, it is quite unfortunate to note that in the last decade due to low driving culture, non-standard vehicles and roads, environmental factors, and increasing traffic volume, number of road accidents have increased dramatically. Four factors of human, vehicle, road, and environment are always responsible for occurrence of accidents. Among these environmental and climatic factors that happen due to particular geographical conditions of Iran and its mountainous nature, along with other factors play a significant role in accidents. Major road meteorological tasks for both land and rail transportation are one of the most important issues at a national level. These involve continuously preparing statistical data and information; changing and evolving meteorological elements in the area of roads covered by the relevant station; issuing specific meteorological forecasts along the route in relation to wind intensity and speed, thunderstorms, and occurrence of destructive phenomena; and publication of notices and warnings in the event of dangerous weather phenomena on the way, intense winds on various stairs, and phenomena that are effective in reducing the vision. The aim of this study is to locate the meteorological stations of the Alborz Mountains axes (Chalus and Haraz) using the Location-Allocation method. Materials and Methods The study was conducted in the mountainous roads of Alborz (Chalus Axis and Haraz axis). The criteria used to locate road meteorological stations pertained to the climate (rainfall above 30 mm, avalanche, snow cover, fog, and minimum and maximum temperature of -10 and 30 degrees Celsius), geomorphological aspects (rock fall, landslides, and active faults), traffic (accidental points and environmental criteria), and economic security (traffic). Then, using the Analytical Hierarchy Process (AHP) method, based on the determination of variable comparison matrix and weighting each criterion, the final prioritization map got prepared in accordance with the final weight. Afterwards, based on the Location-Allocation Analysis, the proposed meteorological stations on the mountainous axes of Alborz were determined. Results and Discussion Three meteorological stations of Karaj (from Karaj to km 43), Siah Bisheh (km 43 to 110), and Nowshahr (110 km onwards) reflect the climatic conditions of each section. The number of days recorded for fog occurrence at Siah Bisheh Station was approximately 844 days in a decade-long duration, while Nowshahr and Karaj Stations had 70 and 50 foggy days, respectively. Therefore, about 43 to 110 km of the road had the highest probability of foggy days, according to the statistics of Siah Bisheh Station. As for the case of frost, 60 to 100 km of the road, from the city of Karaj (middle part of the axis) was riskier than the rest. From the beginning of the axis to 60 km, approximately the area between Vali-Abad and Marzanabad, the risk of frost was moderate. In other parts of the axis, the intensity of frost was either low or very low. Chalus Axis in Mazandaran Province, from approximately the area of Vali-Abad village to Chalus City itself, included high and very high risks of rainfall above 30 mm, whereas in Alborz Province it experienced low rainfall risk conditions. Due to the minimum temperature threshold of the middle part of Chalus Axis, involving two provinces of Alborz and Mazandaran, it was in moderate danger. This part of the axis included Nesa, Gachsar, Siah Bisheh, and Harijan. Other parts of the axis belonged to the low risk class. Yet, due to the maximum temperature threshold in Chalus Axis, the hazardous conditions of the axis were low in Alborz Province and very low in Mazandaran Province. Examining the average snow cover by the desired months in this study, it can be seen that the middle parts of the Chalus Axis experienced the highest frequency of snowfall. Come the warmer months of the year and a gradual trend of snowmelt could be observed. In terms of avalanche risk, the area of Asara village had a moderate risk, while the central sections, from Garmab village to Zangoleh Bridge, fell under high and very high classes. From the Siah Bisheh Area until the end of Chalus Axis, the avalanche fell to the low-lying class. The 74 km, 78 km, 82 km, 84-85 km, and 88-89 km points from the beginning of the axis had been reported to be affected by landslide phenomenon. In terms of point density, at 78 km to Chalus in Mazandaran Province had the highest amount. The maximum number of accidents took place either at 17-20 km or 41 km from the start of the axis in sunny weather; at 62 km in cloudy weather; at 40 km or 70 km during the rainfall; at 40 km, 60 km; at 62 km in snowy weather; and at 60 km, 62 km, and 65 km during the foggy weather. The importance of each criterion and sub-criterion got determined in accordance with library studies, installation guidelines for road meteorological stations, and expert opinions. The uncertainty coefficient was also 0.6, less than the defined 0.1. Based on this result, the weighting process was approved. According to global standards as well as conducted studies, the distance between meteorological stations on the road varied between 30 and 50 square kilometers. In general, each meteorological station could cover an area of about 30 km. Then, using AHP Method, the final weight of climatic, geomorphological, traffic, and economic-security criteria and sub-criteria in Haraz and Chalus Axis were determined. After prioritizing the new stations in terms of need in the previous step, through Location-Allocation Analysis as well as examination of optimal distances of the axis from the highway, fuel stations, surveillance cameras, and villages around the axis, the final stations were introduced in a priority-oriented fashion. Results Due to the importance of optimal development of road meteorological network, which reduces road casualties, damages the surrounding environment, and brings about economic savings, the optimal location on Chalus and Haraz Axis was examined. Results showed that the required stations on Chalus Road are in the area of Kiasar, Marzan Abad, Khargoosh Darreh, and Vali Abad and inside Haraz Road in Polur, Abali, Rahdari, and Rineh. | ||
کلیدواژهها [English] | ||
Analytical Hierarchy process, Alborz mountain roads, climate risk, Traffic Criterion, geomorphological Criterion | ||
مراجع | ||
افندیزاده، ش.؛ توکلی کاشانی، ع. و تقیزاده، ی. (1396). شناسایی مکانهای پُرتصادف جادهای با استفاده از روش تلفیقی تحلیل پوششی دادهها و تحلیل سلسلهمراتبی (AHP/DEA)، فصلنامة علمی پژوهشنامة حمل و نقل، ۱۴(۴): 33-45. باقدم، ع.؛ فرجزاده، م. و شایان، س. (1384). ارزیابی ایمنی جادهای با رویکرد مخاطرات محیطی: مسیر سنندج- مریوان با استفاده از GIS، مجلة مدرس علوم انسانی، 9: 1-16. برنا، ر. و واحدپور، غ. (1390). بررسی نقش مدیریت مخاطرات طبیعی در کنترل سوانح و تصادفات جادهای مورد مطالعه: محور کرج- چالوس، فصلنامة برنامهریزی منطقهای، 3: 81-92. بهیار، م. و پیشداد، ا. (1395). تحلیل فضایی و پهنهبندی شدت درجة خطرپذیری رخداد یخبندان در شبکة جادهای کشور با استفاده از GIS، مجلة علمی و ترویجی نیوار، 92: 23-32. جعفربیگلو، م. و محمدی، حسین. (1384). شرایط آب و هوایی مؤثر بر ایمنی حمل و نقل جادهای در محور کرج- چالوس، دانشگاه تهران، دانشکدة جغرافیا، گروه جغرافیای طبیعی، رشتة جغرافیای طبیعی. ﺣﺒﻴﺒﻲ ﻧﻮﺧﻨﺪان، م. (1378). ﻣﻄﺎلعة ﭘﺪﻳﺪهﻫﺎی اﻗﻠﻴﻤﻲ ﻣؤﺛﺮ ﺑﺮ ﺗﺮدد و ﺗﺼﺎدﻓﺎت ﺟـﺎدهﻫـﺎی ﻛﻮﻫـﺴﺘﺎﻧﻲ و ارائة راﻫﻜﺎرﻫـﺎی اﺟﺮاﻳـﻲ ﻣﻨﺎﺳـﺐ، ﻣﻄﺎلعة ﻣﻮردی: ﻣﺤـﻮر ﻫـﺮاز، ﭘﺎﻳـﺎنﻧﺎمة ﻛﺎرﺷﻨﺎﺳـﻲ ارﺷـﺪ، داﻧﺸﻜﺪة ﻋﻠﻮم اﻧﺴﺎﻧﻲ، داﻧﺸﮕﺎه آزاد ﺗﻬﺮان. حیدری، ن.؛ دوستان، ر. و حبیبی نوخندان، م. (1395). مکانیابی ایستگاههای هواشناسی شهری در کلانشهر مشهد، نشریة پژوهشهای اقلیمشناسی، 27: 59-75. زبردست، الف. (1380). کاربرد فرایند تحلیل سلسلهمراتبی در برنامهریزی شهری و منطقهای، نشریة هنرهای زیبا، دانشگاه تهران، 2(10): 13-21. زیاری، ک. الف. (1388). اصول و روشهای برنامهریزی منطقهای، تهران: انتشارات دانشگاه تهران. سیاره، ج. و خسروانی، ا. (1398). شناسایی و اولویتبندی عوامل مؤثر بر جذب خطوط کشتیرانی منظم کانتینری به بنادر (موردکاوی: بندر شهید رجایی)، فصلنامة علمی پژوهشنامة حمل و نقل، ۱۶(۱): 109-124. عباسپور مرزبالی، ک.؛ باباگلی، ر.؛ مجردی، ب. و عاملی، ع. (1397). مکانیابی پارکینگهای شهری با استفاده از سیستم اطلاعات مکانی و تحلیل سلسلهمراتبی (منطقة مورد مطالعه: بابلسر)، فصلنامة علمی پژوهشنامة حمل و نقل، ۱۵(۱): 87-104. علیجانی، ب. و حبیبی نوخندان، م. (1378). مطالعة اثر نوسانات اقلیمی بر تردد و تصادفات جادة هراز، دومین کنفرانس منطقهای تغییر اقلیم، تهران: 27 آبان. عزیزی، ق. و حبیبی نوخندان، م. (1384). مطالعة توزیع زمانی و مکانی یخبندان و لغزندگی در جادههای هراز و فیروزکوه با استفاده از تکنین GIS، پژوهشهای جغرافیایی، ش 51. فرجزاده اصل، م.؛ قلیزاده، م. و ادبی فیروزجایی، ع. (1389). تحلیل فضایی تصادفات جادهای با رویکرد مخاطرات اقلیمی، مطالعة موردی: محور کرج- چالوس، پژوهشهای جغرافیای طبیعی، 73: ۳۷-52. کدخدایی، م. و شاد، ر. (1398). اولویتبندی سیاستهای صرفهجویی در مصرف سوخت در کلانشهرهای توریستی و مذهبی (مطالعة موردی: شهر مشهد)، فصلنامة علمی پژوهشنامة حمل و نقل، انتشار آنلاین از تاریخ 9 شهریور 1398. کمالی، غ. و حبیبی نوخندان، م. (1384). بررسی توزیع مکانی و زمانی یخبندان در ایران و نقش آن در حمل و نقل جادهای، مجلة علمی پژوهشنامة حمل و نقل، ۲(۲): ۱۲۷-138. معینیالدینی، ت.؛ عبدی، ع. و سرکار، ع. (1399). اولویتبندی المانهای فرودگاه امام خمینی (ره) جهت ارتقا به فرودگاه کلاس- جهانی، فصلنامة علمی پژوهشنامة حمل و نقل، انتشار آنلاین از تاریخ 22 اردیبهشت 1398. Alijani, B. and Nokhandan, M. (1999). Study of the effect of climate fluctuations on traffic and accidents on Haraz road, Second Regional Conference on Climate Change, Tehran: 27 Aban. Axelson, L. (2004). Development and Use of the Swedish Road Weather Information System. Report on Swedish National Road Administration SE-781 87 Borlänge, SWEDEN. Azizi, Gh. and Habibi Nokhandan, M. (2005). Study of temporal and spatial distribution of glaciation and slippery roads in Haraz and Firoozkooh roads using GIS technique, Physical Geography Research, 51. Afandizadeh, Sh.; Tavakoli Kashani, A. and Taghizadeh, Y. (2018). An AHP/DEA Methodology for Black Spot Identification, Journal of Transportation Research, 4:33-45. Abbaspour Marzbali, K.; Babagoli, R.; Mojaradi, B. and Ameli, A. (2018). Location of urban parking lots using spatial information system and hierarchical analysis (Study area: Babolsar), Journal of transportation research, 15(1): 87-104. Baghdam, A.; Farajzade, M. and Shayan, S. (2005). Road Safety Assessment With Environmental Hazard Approach Using GIS, Case Study: Sanandaj – Marivan. The Journal of Spatial Planning, 9: 1-16. Borna, R. and Vagedpour, Gh. (2011). Investigating the role of natural hazard management in the control of road accidents studied: Karaj-Chalous axis, Quarterly scientific, 3: 81-92. Behyar, M. and Pishdad, A. (2016). Spatial analysis and zoning of the degree of risk of glacial events in the country's road network using GIS, Nivar, 92: 23-32. Dadashi Khaneghah, Sepide (2008). Appointment of Snow Cover Using Image Processing Techniques, A Thesis for the Degree of Master of Science, Faculty of Earth Science, University of Shahid Beheshti. Daskin, M. (2008). What you should know about location modeling, Naval Research Logistics, 55: 283-294. Eriksson, M. and Lindqvist, S. (2002). Regional influence on road slipperiness during winter precipitation event, second international Road weather conference, Sapporo, Japan. Farajzade Asl, M.; Gholizade, M. and Adabi Firoozjayi, A. (2010). Spatial analysis of road accidents with a climate hazard approach, Case study: Karaj-Chalous axis, Physical Geography Research, 73: 37-52. Gustavsson, T. and Bogren, J. (1990). Road slipperiness during warm air advection, Meteorological Magezine, 119: 267-270. Gustavsson, T. and Bogrenm, J. (2006). Development of RWIS - a new approach using accident-data. XIII International Road Weather Conference, Polytechnic of Turin, ITALY. Jafar Beiglo, M. and Mohamadi, H. (2005). Climatic conditions affecting road transport safety on Karaj-Chalous axis, Tehran university, Faculty of Geography, Department of Natural Geography, Department of Natural Geography. Hall, D.K.; Tait, A.B.; Riggs, G.A.; Salomonson, J.; Chien, Y.L. and Rew, G. K. (1998). Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow-, Lake Ice- and Sea Ice-Mapping Algorithms, MODIS Algorithm Theoretical Basis Document Number ATBD-MOD-10, NASA Goddard Space Flight Center. Habibi Nokhandan, M. (1999). Study of climatic phenomena affecting traffic and accidents on mountain roads and providing appropriate executive solutions, Case study: Haraz axis, Master Thesis, Faculty of Humanities, Azad University of Tehran. Heydari, N.; Doostan, R. and Habibi Nokhandan, M. (2016). Location of urban meteorological stations in the metropolis of Mashhad, Journal of climate research, 27: 59-75. Kamali, Gh. and Nokhandan, M. (2005). Investigation of spatial and temporal distribution of ice in Iran and its role in road transport, Journal of transportation research, 2(2): 127-138. Kadkhodayi, M. and Shad, R. (2019). Prioritization of fuel saving policies in tourist and religious metropolises (Case study: Mashhad), Journal of transportation research. Lashnizand, M.; Poortoolabi, A. and Noorollahi, D. (2013). Location of Synoptic Stations by Means of Geographical Information System (GIS) Case Study: Khorramabad Basin in South West Iran. World Appl. Sci. J., 22 (8): 1195-1199. Morjani, E.; Ebener, S.; Boos, J. and Abdel Ghaffar, E. (2007). Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int J Health Geogr. Published on line, www.ncbi.nlm.nih.gov/pubmed/17343733. Moeenodini, T.; Abdi, A. and Sarkar, A. (2020). Prioritization of elements of Imam Khomeini Airport to be upgraded to a world-class airport, Journal of transportation research. Petersen, C. and Sass, B.H. (2005). Improving of road weather forecasting by using high resolution satellite data. Extended abstracts of the World Weather Research Programme International Symposium on Nowcasting and Very Short Range Forecasting (WSN05), 5-9 September 2005, Toulouse, France, No. 6. 28, 12 p. Stethem, C.; Schaerer, P. and Jamieson, B. (1993). Five mountain parks highway avalanche study, B.C. Ministry of Transportation & Highways, Southwestern Colorado. Saarikiv, P.; Sipilä, M. and Nurmi, P. (2006). Project ColdSpots: A new way to improve winter road condition forecasts. XIII International Road Weather Conference, Polytechnic of Turin, ITALY. Stoltmann, A. (2016). Application of AHP Method for Comparing the Criteria Used in Locating Wind Farms, Acta Energetica, 3(28): 144-149. Sayareh, J. and Khosravani, A. (2019). Identifying and prioritizing the factors affecting the absorption of regular container shipping lines to ports (Case study: Shahid Rajaei Port), Journal of transportation research, 16(1): 109-124. Zebardast, A. (2001). Application of hierarchical analysis process in urban and regional planning, Honarhaye ziba, 2(10): 13-21. Zayari, K.A. (2009). Principles and methods of regional planning, Tehran: University of Tehran Press. Zhao, L.; Chien, S.I.; Liu, X. and Liu, W. (2015). Planning a road weather information system with GIS. Journal of Modern Transportation, 23(3): 176-188. | ||
آمار تعداد مشاهده مقاله: 789 تعداد دریافت فایل اصل مقاله: 501 |