
Pollution 2021, 7(2): 481-494 
DOI: 10.22059/poll.2021.316327.977 

 
RESEARCH PAPER   
 

Environmental Pollution Prediction of NOx by Predictive Modelling 

and Process Analysis in Natural Gas Turbine Power Plants 
 

Alan Rezazadeh
 

 
Applied Research and Innovation Services, Southern Alberta Institute of Technology, 1301 – 16 

Avenue NW, Calgary, AB, Canada T2M 0L4 

 
Received: 31 December 2020, Revised: 27 March 2021, Accepted: 30 March 2021 

© University of Tehran 

 
ABSTRACT 

The main objective of this paper is to propose K-Nearest-Neighbor (KNN) algorithm for predicting 

NOx emissions from natural gas electrical generation turbines. The process of producing electricity is 

dynamic and rapidly changing due to many factors such as weather and electrical grid requirements. 

Gas turbine equipment are also a dynamic part of the electricity generation since the equipment 

characteristics and thermodynamics behavior change as turbines age and equipment degrade gradually. 

Regular maintenance of turbines are also another dynamic part of the electrical generation process, 

affecting performance of equipment as parts and components may be upgraded over time. This 

analysis discovered using KNN, trained on a relatively small dataset produces the most accurate 

prediction rates in comparison with larger historical datasets. This observation can be explained as 

KNN finds the historical K nearest neighbor to the current input parameters and approximates a rated 

average of similar observations as prediction. This paper incorporates ambient weather conditions, 

electrical output as well as turbine performance factors to build a machine learning model predicting 

NOx emissions. The model can be used to optimize the operational processes for harmful emissions 

reduction and increasing overall operational efficiency. Latent algorithms such as Principle 

Component Algorithms (PCA) have been used for monitoring the equipment performance behavior 

change which deeply influences process paraments and consequently determines NOx emissions. 

Typical statistical methods of performance evaluations such as multivariate analysis, clustering and 

residual analysis have been used throughout the paper.  
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INTRODUCTION 

 

The main objective of this paper is introducing K-Nearest-Neighbor algorithm as a candidate 

to be used in Predictive Emission Monitoring Systems (PEMS), predicting Nitrogen Oxides 

(NOx) emissions produced in the process of electricity production of gas turbines 

(Environment and Climate Change Canada, 2017). This paper uses the gas turbine process 

dataset from University of California at Irvine (UCI) open data repository (Kaya et al., 2019), 

which was collected over five year period in north western Turkey. The power generation 

utility donated the dataset would like to remain anonymous and author would like to extend 

gratitude for allowing this valuable dataset to be used in industrial analytics research. The 

power plant location is close to sea level, prone to humidity fluctuations, comprised of mild 

temperatures occasionally dropping below freezing point (Kaya et al., 2012).  

                                                 
* 
Corresponding Author, Email: Alan.Rezazadeh@sait.ca 



482   Rezazadeh  

The power generation system is a Combined Cycle Power Plant (CCPP), comprised of gas 

and steam turbines. Figure 1, depicts schematics of the power plant, comprised of two gas 

turbines of 160MWh each with a Heat Recovery Steam Generator (HRSG) powering a 

160MW steam turbine (Kaya et al., 2012). The exhaust from gas turbines, usually maintain 

high temperatures are used for driving a steam turbine, which result in a highly efficient 

power generation system (Tüfekci, 2014), approximately about 60% efficiency in comparison 

to a simple cycle gas turbine of approximately 35% to 40% efficiency (Poullikkas, 2005).  
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Figure 1. Combined cycle power plant schematic diagram 

 

PEMS have been discussed widely within literature for the last 25 years as a backup to 

Continuous Emission Monitoring Systems (CEMS) using allocated sensors, directly 

measuring emissions and pollutants produced by the combustion process (Chien et al., 2010). 

CEMS based on dedicated hardware and necessary software have been a part of gas turbine 

design with well-defined legal operational requirements. Many researchers consider PEMS as 

a backup, or alternate monitoring system to CEMS (Chien et al., 2005). This paper presents 

another application of PEMS, which is monitoring the electrical generation process efficiency, 

in addition to predicting emissions such as NOx under fast changing process conditions.  

As the field of industrial data science is evolving, more applications to PEMS are being 

identified (Si et al., 2019). A new application to use PEMS can be identified as monitoring 

degradation and process efficiency of gas turbines (Ge et al., 2017). PEMS, naturally using 

many process parameters such as turbine pressures and temperatures for predicting emissions, 

which offer great opportunity to monitor the process performance and degradation (Yan et al., 

2017). 

PEMS as a method of predicting emissions uses operational data for training and building 

machine learning models (Chien et al., 2010). As the training data becomes longer in time, the 

electrical generation process may change due to new grid requirements, extreme weather 

conditions or equipment degradation, hence decreasing the prediction success (Miletic et al., 

2004). As a result, contrary to popular believe, shorter training time may actually offer better 

prediction rates, utilizing more of the recent data points, rather than including all historical 

data (Qin et al., 2019). 

Benchmarking process behavior based on physics of gas turbines and laws of 

thermodynamics also present another method of monitoring process drift or degradation (Ge 
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et al., 2017). However, due to lack of sufficient internal turbine data this paper refrains from 

exploring the degradation in more depth and invites the power generation industry to share 

more detailed internal process datasets for further analysis and research. 

The paper discusses application of factor clustering, latent variables such as principle 

components for monitoring and early detection of process change (Kourti, 2005), and KNN 

predictive modelling for electrical production of gas turbines. The main objective is to better 

understand and predict NOx resulted from combustion process in gas turbines. 

 

MATERIAL AND METHODS 

 

NOx is a generic term for emission family of Nitrogen Oxide (NO2) and Nitric Oxide (NO), 

which are usually created as a result of combustion process (Smrekar et al., 2013). Although, 

both transportation and power generation sectors use combustion process, the main objective 

of this paper is analysis of NOx resulted from gas power plants, which contribute to smog, 

acid rain and tropospheric ozone (European Environment Agency, 2019) pollutions. 

Even though, natural gas is relatively a cleaner burning fossil fuel, combustion process 

produces small amount of sulfur, mercury and particulates depending on the quality of fuel 

(Environment and Climate Change Canada, 2017). These pollutants are considered fuel 

dependent and can be eliminated by using higher quality and cleaner natural gas (European 

Environment Agency, 2013). In contrary NOx considered pollutant which is resulted from 

higher temperature combustion such as gas turbines and diesel engines (European 

Environment Agency, 2019). NOx are considered process dependent, meaning by optimizing 

combustion process the pollutant can be minimized (Liukkonen & Hiltunen, 2016). Table 1 

illustrates typical pollutant emissions from gas turbines. 

  
Table 1. Typical pollution emissions from gas turbines and their source 

Gas Turbine Pollution 

Pollutant Fuel Dependent Process Dependent 

NOx  ✓ 

CO  ✓ 

SOx ✓  

 

PEMS are software solutions for predicting emissions based on operating process 

parameters such as internal turbine pressures and temperatures (Lee et al., 2005). Emissions 

resulted from combustion process are usually monitored and measured using CEMS; 

hardware sensors in two different methods of periodical or continuous intervals. In either 

case, specialized hardware is used, and usually maintenance of the sensors are within the 

operational budgets and schedules (Fichet et al., 2010).  

Figure 2 illustrates the schematics of an open cycle gas turbine model (Potter & Somerton, 

2019) and the data elements available for this study (Kaya et al., 2019). The utilized dataset 

for this research misses a few critical elements for a more thorough analysis such as 

consumed fuel amount, compressor discharge temperature and released Carbon Dioxide 

amount. Nevertheless, existing dataset offers valuables insights into operations of gas turbines 

and NOx predictions. The available data elements can be found in Figure 2 as well as Table 2.  
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Figure 2.  Schematic diagram of a simple cycle gas turbine, and the available parameters 

 

Industrial data analytics begins with understanding the operational dataset including their 

internal relationships, trends and statistical distributions. Most industrial application datasets 

may contain tens of thousands of data points (i.e. records, rows) with tens of variables (i.e. 

predictors, columns) or more. The variables are typically sensor readings within a process and 

may contain strong collinearly, meaning groups of predictors may move together under 

specific conditions (Cuccu et al., 2017,).   

Table 2, illustrates the histogram of power generation process parameters for the period of 

five years, 2011 to 2015, beginning from January 1
st
 of each year. As can be seen there are 

overall 12 variables, including six internal variables to the gas turbine, which are used to 

describe the status of power generation process. 

 
Table 2. Gas turbine power generator variables 

Gas Turbine Power Generator Parameters 

NOx: Nitrogen Oxides (Mg/m3) 

 

CO: Carbon Monoxide (Mg/m3) 

 

Year 

 

AT: Ambient Temp. (℃) 

 

AP: Ambient Pressure (mbar) 

 

AH: Ambient Humidity (%) 

 

TEY: Turbine Energy Yield (MWh) 

 

TET: Turbine Exhaust Temp. (℃) 

 

AFDP: Air Filter Difference Pressure 

(mbar) 

 

TEP: Turbine Exhaust Pressure 

(mbar) 

 

TIT: Turbine Inlet Temp. 

(℃) 

 

CDP: Compressor Discharge Pressure 

(bar) 
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RESULTS AND DISCUSSION 

Multivariate analysis is a set of techniques to analyze the multidimensional data, seeking 

patterns within data elements (Kano et al., 2004).  Table 3 illustrates the multivariable 

correlation between the variables in two formats of numerical correlation and visual scatter 

plot. The red data points in the scatter plots indicate data readings with higher NOx values.  

As can be seen in Table 3, the higher values of NOx are usually clustered closer to lower 

temperatures and lower power production yields, which result lower turbine temperatures and 

pressures. Visual inspection of scatter plots in Table 3, and correlation values indicate the 

process variables are more correlated with each other and less with the weather condition 

parameters. Therefore, clustering parameters in a scientific and quantitative method can 

clarify the relationships in more details. 

 
Table 3. Multivariate correlations of available predictors. Red data points indicate higher NOx values. 

 
AT 

(C) 

AH 

(%) 

AP 

(mbar) 

TIT 

(C) 

TET 

(C) 

TEP 

(mbar) 

AFDP 

(mbar) 

CDP 

(bar) 

TEY 

(MWh) 

AT (C) 1.0000 -0.4763 -0.4067 0.1840 0.2821 0.0458 0.2519 0.0152 -0.0914 

AH (%) 

 

1.0000 -0.0153 -0.2218 0.0235 -0.2350 -0.1478 -0.1961 -0.1371 

AP 

(mbar) 
  

1.0000 -0.0043 -0.2252 0.0580 -0.0403 0.1031 0.1190 

TIT (C) 

   

1.0000 -0.3867 0.8750 0.6928 0.9093 0.9106 

TET (C) 

    

1.0000 -0.7026 -0.4680 -0.7094 -0.6861 

TEP 

(mbar) 
     

1.0000 0.6786 0.9785 0.9641 

AFDP 

(mbar) 

      

1.0000 0.7027 0.6658 

CDP (bar) 

       

1.0000 0.9888 

TEY 

(MWh) 
        

1.0000 

 

Clustering of variables (Table 4), is performed by using principle components, based on 

application of eigenvalues and eigenvectors (Miletic et al., 2004). Clustering process begins 

by assigning all variables to one cluster, if the second eigenvalue of the cluster is larger than a 

predefined threshold, the variables split into two clusters, since second large eigenvalue 

indicates existence of significant variance among the second group of variables. The process 

continues until the second eigenvalues of all clusters fall below a predefined threshold (SAS 

Institute Inc., 2014).  

Table 4 shows the power generation variables can be split into three clusters. Interestingly 

as illustrated all members of cluster 1, are the internal parameters of gas turbine, meaning the 

variables are highly correlated. The second cluster consists of Ambient Humidity (AH) and 
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Ambient Temperature (AT), meaning these two variables are correlated and move together. 

The third cluster consists only of one variable which is Ambient Pressure (AP), meaning this 

variable is independent of other factors.  

 
Table 4. Clustering of process parameters 

Cluster Members 
RSquared with  

Own Cluster 

RSquared with  

Next Cluster 
1 – RSquare Ratio Comments 

1 CDP (bar) 0.983 0.015 0.017 Process Dependent 

1 TEY (MWH) 0.959 0.014 0.041 Process Dependent 

1 TEP (mbar) 0.951 0.027 0.050 Process Dependent 

1 TIT (C) 0.816 0.056 0.195 Process Dependent 

1 AFDP (mbar) 0.602 0.054 0.421 Process Dependent 

1 TAT (C) 0.523 0.051 0.503 Process Dependent 

2 AH (%) 0.738 0.034 0.271 Weather Dependent 

2 AT (C) 0.738 0.165 0.314 Weather Dependent 

3 AP (mbar) 1.000 0.052 0.000 Weather Dependent 

 

For the first cluster, Compressor Discharge Pressure (CDP) contains 98.3% of the variation 

within the group. Meaning using CDP is the best variable of this cluster (gas turbine 

parameters) to explain the cluster variance. Interestingly CDP is one of the most important 

factors in predicting efficiency of gas turbine Brayton cycle thermodynamics (Potter & 

Somerton, 2019) and also electrical yield has very strong linear relationship with CDP. 

R-Square for the cluster variables are defined as the ratio of explained variance on a 

variable to its own cluster component (SAS Institute Inc., 2014). R-Square with next cluster is 

the proportion of explained variance within a variable with the next cluster. The value of 1-

RSquare ratio is defined by Equation 1 as the ratio of 1 minus its own cluster R-Square to 1 

minus next closest cluster’s R-Square. 

1
1

1


 



RSquared with own Cluster
RSquared  

RSquared with Next Closest
 (1) 

Equation 1. Definition of 1 – RSquared Ratio 

Based on Table 4, there are three clusters identified, which CDP, AH and AP are the most 

significant parameters with the most variance for each group.  

Predictor screening is used to find the contribution of each predictor to the response 

variable, NOx values. This technique is specifically advantageous for variables with 

potentially weak direct correlation with the response (NOx); however, with stronger 

interaction through other variables. Predictor screening is based on Bootstrap Forest (Proust, 

2019) (fitting a model by averaging many trees similar to Random Forest), finding 

contribution and percentage portion of contribution to NOx values (Hundi & Shahsavari, 

2020). Table 5 shows the most contribution was made by AT (Ambient Temperature) to NOx 

production, with overall 31.8% of all effects. 

Excluding the weather parameters from the predictor screening and running the analysis 

with only turbine internal process predictors, results Table 6. As can be seen the order of 

parameters are still similar to Table 5 which included weather parameters as well; however, 

only contributions to NOx production are different. 
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Table 5. Identification of most related predictor to NOx production, including weather parameters 
Predictor Screening - NOX (mg/m3) (Process and Weather Parameters) 

Predictor Contribution Portion Portion Ratio Rank 

AT (C) 631626 0.3185  1 

TIT (C) 305719 0.1541  2 

TEP (mbar) 221869 0.1119  3 

TET (C) 205984 0.1039  4 

AFDP (mbar) 181085 0.0913  5 

TEY (MWH) 173212 0.0873  6 

CDP (bar) 136176 0.0687  7 

AP (mbar) 93584 0.0472  8 

AH (%) 34009 0.0171  9 

 
Table 6. Identification of most related predictor to NOx production, without weather parameters 

Predictor Screening - NOX (mg/m3) (Only Process Parameters) 

Predictor Contribution Portion Portion Ratio Rank 

TIT (C) 234449 0.2205  1 

TEP (mbar) 202488 0.1904  2 

AFDP (mbar) 174308 0.1639  3 

TET (C) 172821 0.1625  4 

TEY (MWh) 156293 0.1470  5 

CDP (bar) 122904 0.1156  6 

 

The predictor screening, Table 5 indicates the strongest factor including the weather data is 

ambient temperature, which may influence consumer demand for using more power during 

colder hours. Increased power demand, may force power generation to operate on higher yield 

modes, increasing TIT and CDP which result in reduction of NOx, and increased NOx 

production during lower demand hours in combination to colder air intake (Lee et al., 2005).  

The dataset used in this study contains five years of hourly process parameters as described 

in Table 2. The multivariate analysis of predictors (Table 3) illustrates the aggregated 

correlation between predictors over five years of study, without including the effects of time. 

During five years of operations many correlations may change due to variety of factors such 

as weather (i.e. abnormally low or high temperatures), consumer demand change, grid 

requirements or equipment degradation, which would require operators to readjust process 

parameters for most efficient operations. For a complete analysis the effects of time and 

process change, detailed operational datasets are required (Kuhn & Johnson, 2013). The exact 

prognosis of process change will be considered out of scope for this paper, which requires 

more detailed turbine parameter data and power grid requirements.  

As illustrated in Table 5, the most contributing factor to NOx production is ambient 

temperature. The ambient temperature also affects the consumer demand on power which 

ultimately defines other process parameters such as turbine energy yield, operational pressure 

and temperature parameters (Biagioli & Güthe, 2007).  

Illustrates the total energy yield versus ambient temperature. As can be seen the red data 

point indicating higher levels of NOx, are consistently at lower temperatures and lower power 

production range. Reviewing Table 3, TEY versus TIT chart indicates NOx are mostly 

produced at lower temperatures and lower electric power yields that can be due to lower 

consumer demand (off peak hours) or operational start-up and shut-down periods (Biagioli & 

Güthe, 2007).  
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Figure 3. Bivariate analysis of turbine power output versus ambient temperature by year. Red data 

points indicate higher values of NOx 

 

Analysis of equipment parameters such as CDP versus TEP (Turbine Exhaust Pressure) by 

year depicts the physical turbine operations characteristics change over time. As can be seen 

in Table 7, the relationship of CDP versus TEP, which is a hardware parameter and defined 

by laws of thermodynamics have changed over the life of dataset. This change highlights the 

reason static prediction models may lose accuracy over time since the process is changing; 

instead adaptive models will be required to be trained only on smaller, more recent data points 

predicting smaller range into future (Kourti, 2005). 

As the power generation process is changing over time (Table 7), a quantitative benchmark 

should be used for accurate and unbiased process monitoring (Tüfekci, 2014). The existing 

dataset was originally intended for predictive modeling of NOx production, which lacks 

required data elements for efficiency analysis of the gas turbine. Identifying the exact reasons 

and root cause analysis of process drift requires more detailed data points, for instance more 

turbine pressure and temperature readings to cross reference with thermodynamics and gas 

laws of turbines (Potter & Somerton, 2019). 

 
Table 7. Process change and degradation over time 

2011 2012 2013 2014 2015 

     
CDP = 5.44 + 263.60 

* TEP 

CDP = 5.44 + 260.40 

* TEP 

CDP = 5.46 + 259.22 

* TEP 

CDP = 5.46 + 254.93 

* TEP 

CDP = 5.86 + 238.34 

* TEP 

R-Square: 0.9891 R-Square: 0.9885 R-Square: 0.9923 R-Square: 0.9808 R-Square: 0.8801 

 

Principle Components Analysis (PCA) is a dimension reduction method to reduce 

redundancy in a larger set of variables, generating smaller number of orthogonal vectors, 

preserving the information as much as possible (Kourti, 2005), while decreasing the number 

of variables. The analysis of CDP versus TEP; although, very valuable to show the process 

drift over time, only illustrates the change among two variables. PCA in contrary compresses 

the information into smaller number of variables, which can be used for early change 

detections among all variables (Kano et al., 2004).  

Plotting principle component 1 versus principle component 2 by years, visualizes the 
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maximum information among the variables over the age of dataset (Figure 4) in a two 

dimensional chart.  As can be seen, the principle component plots indicate change in the 

process over years. Application of latent variables (e.g. PCA) over time is a method for 

discovering process change over time which can be used for early detection of degradation for 

preventative maintenance (Kourti, 2005).  

 
Figure 4.  Principle component 1 versus 2 by year. Red data points indicate higher values for NOx. 

 

The topic of PEMS predictive modelling have been discussed in literature by many authors 

for the last 25 years (Shakil et al., 2009). Most successful algorithms have been non-

parametric, which do not model the process based on statistical distributions or mathematical 

models, simulating behavior of process under study. Instead relying on application of 

previous history for finding an approximation to current parameters (Ge et al., 2017). 

K-Nearest-Neighbor (KNN) is a machine learning algorithm, which could be used for both 

classification and regression, approximating a value based on K closest training data points. 

KNN is considered a non-parametric algorithm, meaning the approximation is not based on 

any specific distribution (e.g. Poisson, Gamma or Normal), instead utilizing training dataset 

and finding weighted average value of K nearest neighbors based on distance to the closest 

neighbors, identified in training dataset (Li et al., 2020).  

As discussed earlier, gas turbine electrical generation process goes through subtle changes 

among relationship between process parameters. As a result success rate of models predicting 

NOx production over time decreases, due to effects of process change, also known as process 

drift. This research compares two different modeling approach based on KNN, first approach 

for all years together and then for each year analyzed separately.  

Creating KNN predictive model for all years together produced the best accuracy using 

three neighbors, which gives the lowest root average squared error (RASE). Figure 5, 

illustrates relationship between RASE and number of K for predicting NOx using KNN 

algorithm. This chart indicates by using only 3 neighbors for calculating distance averaging 

NOx, the lowest error is achieved.  

 
Figure 5. Root average square error versus K 
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KNN is a powerful algorithm for datasets with localized data point concentrations, due to 

reduction of average distance to each neighbor (Li et al., 2020). As observed in Figure 3 and 

Table 7, gas turbine operations are mostly performed within a small number of operational 

modes which causes data points to be relatively concentrated and forming high density 

locales. This characteristic, increases performance of KNN for predicting process outcomes; 

i.e. NOx production (Chen et al., 2018). Meanwhile, increasing number of variables (i.e. 

dimensions), decreases KNN performance known as “Curse of Dimensionality”, which has 

been discussed among academia in depth (Pestov, 2013). In case of high number of variables 

(dimensionality), KNN prediction performance usually drops (Bagheri et al., 2010); therefore, 

dimension reduction techniques such as principle components or similar methods are highly 

recommended for large number of data variables (Skiena, 2017).  

Table 8, illustrates performance comparison of KNN for all years together versus yearly 

generated models. As Table 8 indicates KNN performance is slightly higher using yearly 

models and indicators such as R-Square, RASE and AAE (Average Absolute Error) exhibit 

better performance when the prediction models are based on annual parameters. This is an 

important observation by this paper indicating the process is changing over time and although 

annual models have less training data; however, produce better results. 

Table 9 illustrates NOx prediction performance of KNN for each given year, indicating 

total annual R-Square were above 90 percent, with the lowest for 2013 (90%) and highest for 

2015 (94%). This observation is an indication of process characteristics change over time 

which using smaller more localized datasets produce higher prediction rates than using larger 

datasets. 

 
Table 8. Model performance comparisons of overall data together versus year by year 

 
Predicted KNN NOX (mg/m3) All Years 

Predicted KNN NOX (mg/m3) By 

Year Freq 

R
2
 RASE AAE R

2
 RASE AAE 

Training 0.9349 2.9770 1.7471 0.9469 2.6874 1.5945 28554 

Validation 0.8693 4.1359 2.5693 0.8919 3.7603 2.3441 4078 

Test 0.8634 4.4142 2.6098 0.8934 3.8999 2.3345 4079 

Total 0.9196 3.3104 1.9343 0.9348 2.9796 1.7600 36711 

 
Table 9. Comparison of predictive model performance by year 

KNN By Year Details 

 Training Validation Test Total 

Year R
2
 RASE AAE R

2
 RASE AAE R

2
 RASE AAE R

2
 RASE AAE Freq 

2011 0.9516 2.3292 1.4023 0.8960 3.3790 2.1079 0.8940 3.7366 2.1268 0.9383 2.6531 1.5611 7411 

2012 0.9392 2.5264 1.5945 0.8756 3.6526 2.4075 0.8881 3.3106 2.1944 0.9267 2.7686 1.7516 7628 

2013 0.9215 3.3745 2.0861 0.8574 4.5536 2.9462 0.8373 4.8497 3.0821 0.9051 3.7115 2.2924 7152 

2014 0.9254 2.6972 1.4452 0.8321 3.6502 2.1397 0.8393 4.3880 2.2232 0.9054 3.0456 1.6086 7136 

2015 0.9539 2.4099 1.4557 0.8955 3.4772 2.1291 0.9244 2.9827 2.0707 0.9447 2.6170 1.5988 7384 

 

Analysis of residuals, Figure 6 illustrate consistently scattered residuals across the plot 

without any specific pattern, which is a positive sign of strong KNN prediction model, 

independent of any significant bias. The data points were broken down for each year to 

Training (70%), Validation (15%) and Test (15%). The exact number of the break downs can 

be seen under column Frequency in Table 8 and Table 9. 
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Figure 6. Analysis of residuals 

 

Figure 7 displays the plot of actual NOx emissions versus predicted over time. As can be 

seen the predictions are very close to actual, which is also supported by high R-Square values 

of above 90%. KNN, a non-parametric algorithm provides high success rates for NOx 

prediction, by finding the previous K similar observations at the training data and then 

approximating the new value based on the distance from each observation.  

 
Figure 7. NOx K-Nearest-Neighbor prediction vs. actual 

 

CONCLUSION 

 

The process of power generation is dependent on many dynamic factors including power 

demand, weather, equipment efficiencies and operational conditions. Therefore, predicting 

NOx which is a process dependent pollutant can be more effectively accomplished using 

shorter training datasets which are more similar to current operating parameters. Hence, 

adaptive algorithms may offer more advantage since they assign heavier weight to more 

recent training data. 

Industrial data analytics can only be accomplished upon availability of accurate datasets 

describing a dynamic process. Applications of machine learning and predictive modelling will 

further advance by availability of data for finding the most effective methodologies, openly 

discussing the results in dissertations, conferences and scientific publications. Sharing non-

confidential industrial data creates the opportunity for a larger community of research and 

training enthusiasts, creating next generation of digital savvy workers, benefitting the very 

same industries by accelerating adoption of new technologies.  
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Throughout the paper there were discussions of process degradation. However, degradation 

analysis needs to be quantitatively defined, monitored and if possible minimized. Formulation 

of degrading process requires more detailed parameters than were available in this dataset. 

For instance Brayton cycle thermodynamics of gas turbine parameters could be used for 

monitoring the gas turbine performance, predicting degradations and efficiencies. 

Adaptive KNN algorithm in pollutant release prediction as well as other applications that 

have a changing behavior can be explored. Modelling a dynamic process requires a resilient 

adaptive algorithm to incorporate gradual change as it might be due to social and economics 

evolution or an industrial equipment degradation.  
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