تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,103,948 |
تعداد دریافت فایل اصل مقاله | 97,210,007 |
مقایسهی عملکرد روشهای درونیابی برای ارزیابی کیفی آبزیرزمینی بر مبنای خصوصیات آبخوانهای کمعمق (مطالعه موردی: آبخوان بابل_آمل) | ||
تحقیقات آب و خاک ایران | ||
دوره 52، شماره 1، فروردین 1400، صفحه 237-249 اصل مقاله (1.78 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.312929.668786 | ||
نویسندگان | ||
سیده منا تابنده1؛ مجید خلقی* 2؛ سید عباس حسینی1 | ||
1گروه مهندسی عمران آب،دانشکده عمران، معماری و هنر، دانشگاه آزاد اسلامی واحد علوم و تحقیقات،تهران، ایران. | ||
2گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
برنامهریزی مدیریت کیفی سفرههای آبزیرزمینی براساس تغییرات مکانی پارامتر موثر در آلودگی آبهای زیرزمینی صورت میگیرد. در این مقاله روشهای مختلف درونیابی در آبخوان کمعمق بابل_آمل با توجه به خصوصیات هیدروژئولوژیکی آن مورد ارزیابی قرار می گیرند. پس از پردازش اولیه اطلاعات جهت انتخاب روش درونیابی مناسب، 21 روش درونیابی قطعی و زمینآمار با عملکرد خطی و غیرخطی اعم از روش عکس فاصله (IDW)، کریجینگ معمولی (OK)، کریجینگ معمولی لوگ نرمال (Log_OK)، کریجینگ گسسته (DK)، کریجینگ تجربی بیزی (EBK)، همسایگی طبیعی (NN)، سطح روند (TS) و اسپلاین (Spline) مورد مقایسه قرار گرفتند. پارامتر کل جامدات محلول (TDS) در آبخوان کمعمق ساحلی بابل_آمل در مجاورت دریای خزر در شمال ایران دراین تحقیق بکار گرفته شد. برای صحتسنجی نتایج از 7 معیار ارزیابی خطا در اعتباریابی حذفی تمامی چاههای مشاهداتی غلظت استفاده گردید. نتایج نشان داده است که روش غیرخطی Log_OK در آبخوان کمعمق بابل_آمل در 43/71 درصد موارد معیارهای ارزیابی خطا، نتایج بهتری ارائه داده است. بنابراین میتوان نتیجه گرفت که روش غیرخطی Log_OK کارایی مناسبی در آبخوانهای کمعمق بر مبنای خصوصیات هیدروژئولوژیکی آنها دارد. | ||
کلیدواژهها | ||
آلودگی آبزیرزمینی؛ پارامتر TDS؛ آبخوان کمعمق؛ درونیابی مکانی خطی و غیرخطی؛ خصوصیات آبخوان | ||
عنوان مقاله [English] | ||
Comparison of Interpolation Methods for Groundwater Quality Assessment Based on Hydrogeological Characteristics of Shallow Aquifers (Case Study: Babol-Amol Aquifer) | ||
نویسندگان [English] | ||
Seyedeh Mona Tabandeh1؛ Majid Kholghi2؛ Seyed abbas Hosseini1 | ||
1Department of Civil Engineering, Faculty of Civil Engineering, Architecture and Art, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
2Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran. | ||
چکیده [English] | ||
Groundwater quality management planning is based on spatial distribution of the effective parameter in aquifer pollution. In this study, different interpolation methods in Babol-Amol shallow aquifer were evaluated according to its hydrogeological characteristics. After initial data processing, 21 deterministic and geostatistical interpolation methods with linear and nonlinear relationships including inverse distance weighted (IDW), ordinary kriging (OK), lognormal ordinary kriging (Log_OK), disjunctive kriging (DK), empirical Bayesian kriging (EBK), natural neighbor (NN), trend surface (TS) and Spline were compared in order to select the most suitable interpolation method. The total dissolved solids (TDS) parameter was used in Babol-Amol coastal shallow aquifer near the Caspian Sea in north of Iran. The seven error criteria were used for verification in cross-validation of all sampling wells. The results indicated that the nonlinear Log_OK method produced better results in Babol-Amol aquifer with 71.43 percentage of error criteria. Therefore, it can be concluded that the non-linear Log_OK method had promising performance in shallow aquifers based on their hydrogeologicalcharacteristics. | ||
کلیدواژهها [English] | ||
Groundwater Contamination, TDS Parameter, Shallow Aquifer, Linear and Nonlinear Spatial Interpolation, Aquifer Characteristics | ||
مراجع | ||
Arslan, H. (2012). Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agric Water Manag 113: 57–63. Babu, B.S. (2016.) Comparative Study on the Spatial Interpolation Techniques in GIS. International Journal of Scientific & Engineering Research, Volume 7, Issue 2. ISSN 2229-5518. Bahrami Jovein, E. and Hosseini, S.M. (2015). A Systematic Comparison of Geostatistical Methods for Estimation of Groundwater Salinity in Desert Areas Case Study: Feyz Abad-Mahvelat Plain. Iran-Water Resources Research, Volu- me 11, No 2 (In Persian). Barca, E. and Passarella, G. (2007). Spatial evaluation of the risk of groundwater quality degradation. A comparison bet- ween disjunctive kriging and geostatist- ical simulation. Environ Monit Assess 137: 261–273. Chiu, C., lin, P. and Lu, K. (2009). GIS-based Tests for Qual- ity Control of Meteorological Data and Spatial Inter- polation of Climate Data. Mountain Research and Development 29(4): 339–349. Dowd, P.A. (1982). Lognormal kriging: the general case. Math. Geol 14(5): 474–500. Duffy, D.J. and Germani, A. (2013). C# for Financial Markets, Chapter 13: Inte- rpolation Methods in Interest Rate App- lications. The Wiley Finance Series, 97 8-0-470-03008-0, 856p. Gol, C., Bulut, S. and Bolat, F. (2017). Co- mparison of different interpolation met- hods for spatial distribution of soil orga- nic carbon and some soil properties in the Black Sea backward region of Turk- ey. Journal of African Earth Sciences 134: 85–91. Gong, G., Mattevada, S. and O’Bryant, SE. (2014). Comparison of the accuracy of kriging and IDW interpolations in esti- mating groundwater arsenic concentrat- ions in Texas. Environ Res 130: 59–69. Hua, Z., Debai, M. and Cheng, W. (2009). Optimization of the spatial interpolation for groundwater depth in Shule River Basin. Environmental Science and Info- rmation Application Technology. Isaaks, E. H. and Serivastava, R. M. (1989) . An introduction to applied geostatistic- s. Oxford University Press, 561p. Joseph, J., Sharif, HO., Sunil, T. and Ala- mgir, H. (2013). Application of validati- on data for assessing spatial interpolati- on methods for 8-h ozone or other spar- sely monitored constituents. Environ Pollut 178 :411–418. Keblouti, M., Ouerdachi, L. and Boutagha- ne, H. (2012). Spatial interpolation of annual precipitation in Annaba-Algeria-comparison and evaluation of methods. Energy Procedia 18: 468–475. Khattak, A., Ahmed, N., Hussein, I., Qazi, A., Alikhan, S., Rehman, A. and Iqbal, N. (2014). Spatial distribution of salinit- y in shallow Groundwater used for crop irrigation. Pak. J. Bot 46(2): 531–537. Kravchenko, A.K. and Bullock, D.G. (1999). A comparative study of interpolat- ion methods for mapping soil properties. Agronomy Journal 91: 393–400. Krivoruchko, K. (2011). Spatial Statistical Data Analysis for GIS Users. Esri Press, Redlands, CA, 928p. Lee, J.J., Jang, C.S., Wang, S.W. and Liu, C.W. (2007). Evaluation of potential health risk of arsenic-affected ground- water using indicator kriging and dose response model. Sci Total Environ 384: 151–162. Liu, C.W., Jang, C.S. and Liao, C.M. (2004). Evaluation of arseic contaminat- ion potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Sci Total Environ 321: 173–188. Martinez-Cob, A. (1996). Multivariate ge- ostatistical analysis of evapotranspirati- on and precipitation in mountainous ter- rain. J Hydrol 174: 19–35. Mirzaei, R. and Sakizadeh, M. (2015). Comparison of interp- olation methods for the estimation of groundwater conta- mination in Andimeshk-Shush Plain, Southwest of Iran. Environ Sci Pollut Res 23: 2758–2769. Moyeed, R.A. and Papritz, A. (2002). An empirical comparison of kriging metho- ds for nonlinear spatial point prediction. Mathematical Geology 34(4): 365–386. Njeban, H.S. (2018). Comparison and Evaluation of GIS-Based Spatial Interp- olation Methods for Estimation Ground- water Level in AL-Salman District- Southwest Iraq. Journal of Geographic Information System 10: 362–380. Plouffe, C.C.F., Robertson, C. and Chandr- apala, L. (2015). Comparing interpolati- on techniques for monthly rainfall ma- pping using multiple evaluation criteria and auxiliary data sources: A case study of Sri Lanka. EnvironModel Softw 65: 57–71. Rhoades, J.D., Chanduvi, F. and Lesch, S. (1999). Soil salinity assessment: meth- ods and interpretations of electrical con- ductivity measurements. FAO irrigation and drainage paper No. 57, Food and Agriculutre Organization of the United Nations: Rome, Italy, 165p. Rufo, M., Antolín, A., Paniagua, J.M. and Jiménez, A. (2018). Optimization and comparison of three spatial interpolatio- n methods for electromagnetic levels in the AM band within an urban area. Env- ironmental Research 162: 219–225. Salekin, S., Burgess, J.H., Morgenroth, J., Mason, E.G. and Meason, D.F. (2018). A Comparative Study of Three Non-Geostatistical Methods for Optimising Digital Elevation Model Interpolation. International Journal of Geo-Informati- on 7(8): 300. Schloeder, C.A., Zimmerman, N.E. and Jacobs, M.J. (2001). Comparison of methods for interpolating soil propert- ies using limited data. Soil Science Soc- iety of Ameri- can Journal 65: 470–479. Szypuła, B. (2016). Geomorphometric co- mparison of DEMs built by different interpolation methods. Landform Anal- ysis, 32: 45–58. Wang, X., ang, Y., Cao, Z., Zou, W., Wang, L., Yu, G., Yu, B. and Zhang, J. (2013). Comparison Study on Linear In- terpolation and Cubic B-Spline Interpo- lation Proper Orthogonal Decompositi- on Methods. Advances in Mechanical Engineering, Article ID 561875. Yao, L., Huo, Z., Feng, S., Mao, M., Kang, S., Chen, J., Xu, J. and Steenhuis, T. S. (2014). Evaluation of spatial interpolati- ion methods for groundwater level in an arid inland oasis, northwest China. Env- ironmental Earth Sciences 71:1911–1924.
| ||
آمار تعداد مشاهده مقاله: 338 تعداد دریافت فایل اصل مقاله: 317 |