تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,522,715 |
تعداد دریافت فایل اصل مقاله | 98,782,428 |
راهکارهای ژنتیکی جهت کاهش گازهای گلخانهای به ویژه متان در صنعت گاوهای شیری | ||
علمی- ترویجی (حرفهای) دامِستیک | ||
دوره 21، شماره 1 - شماره پیاپی 19، خرداد 1400، صفحه 14-22 اصل مقاله (1.08 M) | ||
نوع مقاله: مقاله علمی- ترویجی | ||
شناسه دیجیتال (DOI): 10.22059/domesticsj.2021.320185.1059 | ||
نویسندگان | ||
وحید دهقانیان ریحان1؛ مصطفی صادقی* 2؛ فرزاد غفوری3 | ||
1دانشجوی کارشناسی ارشد ژنتیک و اصلاح نژاد دام و طیور، گروه مهندسی علوم دامی پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران | ||
2دانشیار ژنتیک و اصلاح نژاد دام و طیور، گروه مهندسی علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران | ||
3دانشجوی دکتری تخصصی ژنتیک و اصلاح نژاد دام و طیور، گروه مهندسی علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران | ||
چکیده | ||
افزایش دمای کره زمین به دلیل انتشار گازهای گلخانهای نقش بسیار مهمی در تغییرات آب و هوایی دارد. حدود ۱۸ درصد از گازهای گلخانهای جهان مربوط به بخش دامپروری، از جمله گاوهای شیری است که ۳۵ درصد از این مقدار به دلیل تولید متان نشخوارکنندگان است. مطالعات اخیر در مورد گاوهای شیری وجود تنوع ژنتیکی در تولید متان را نشان میدهند که طراحی استراتژیهای کاهش تولید متان مبتنی بر اصلاحنژاد را امکانپذیر میکنند. راهکارهای اصلاحنژادی برای کاهش انتشار متان شامل انتخاب مستقیم برای کاهش متان دفعی از راه آروغ و روده و همچنین انتخاب غیرمستقیم از طریق صفات شاخصی مانند میزان خوراک مصرفی و دادههای حاصل از طیف سنجی مادون قرمز شیر است. ثبت و اندازهگیری بسیاری از این صفات هزینهبر و یا دشوار است؛ امّا با ورود ژنتیک مولکولی و مطرح شدن انتخاب ژنومیک، تعریف کاهش انتشار متان به عنوان صفت هدف در استراتژیهای اصلاحنژادی، حتی با تعداد محدود افراد کاندید، عملی است. براساس مطالعات کل ژنوم (GWAS) مبتنی بر اندازهگیری مستقیم روزانه متان پنج ژن CYP51A1، PPP1R16B، NTHL1، TSC2 و PKD1 در گاوهای شیری شناسایی شدهاند که به عنوان ژنهای کاندیدا و مؤثر برای تولید متان معرفی شدهاند. در واقع هدف از این مطالعه، مروری بر مطالعات و گزارشات صورت گرفته در زمینه ژنتیک و اصلاح نژاد دام در رابطه با کاهش تولید متان و همچنین معرفی صفاتی برای اندازهگیری فنوتیپی متان است. در نتیجه، امید است که با توسعه فناوریهای ژنتیک مولکولی و ادغام دادههای ژنومی با دادههای فنوتیپی دامها، استراتژیهای اصلاحنژادی را برای شناسایی بیشتر جایگاههای ژنومی کنترلکننده و همچنین مسیرهای بیولوژیکی مؤثر بر تولید متان طراحی کرد؛ تا شاهد اصلاحنژاد و بهبود ژنتیکی دامها در رابطه با کاهش تولید متان باشیم. | ||
کلیدواژهها | ||
انتخاب ژنومیک؛ انتشار متان؛ راهکارهای ژنتیکی؛ گازهای گلخانهای؛ گاو شیری | ||
عنوان مقاله [English] | ||
Genetic solutions to reduce greenhouse gases, especially methane in the dairy cattle industry | ||
نویسندگان [English] | ||
Vahid Dehghanian Reyhan1؛ Mostafa Sadeghi2؛ Farzad Ghafouri3 | ||
1M.Sc. Student of Animal and Poultry Breeding & Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
2Associate Professor of Animal and Poultry Breeding & Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
3Ph.D. Student of Animal and Poultry Breeding & Genetics, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
An increase in global temperatures due to greenhouse gas emissions plays a very important role in climate change. About 18 percent of the world's greenhouse gases come from livestock, including dairy cows, 35 percent of which are due to ruminant methane production. Recent studies in dairy cows have shown that there is a genetic variation in methane production that makes it possible to design reduce methane strategies based on breeding. Breeding strategies to reduce methane emissions include direct selection to reduce methane released through the burping and intestines and also indirect selection through indicator traits such as feed intake and milk infrared spectroscopy data. Many of these traits are costly or difficult to record and measure; however, with the advent of molecular genetics and the introduction of genomic selection, it is practical to defining methane emission reduction as a target trait in breeding strategies, even with a limited number of candidates. Five genes of CYP51A1, PPP1R16B, NTHL1, TSC2, and PKD1 have been identified in dairy cows based on genome-wide association studies (GWAS) based on direct daily methane measurements, which have been identified as candidate and effective genes for methane production. In fact, the purpose of this study is to review the studies and reports in the field of genetics and breeding of livestock in relation to the reduction of methane production and also to introduce traits for methane phenotypic measurement. As a result, it is hoped that with the development of molecular genetic technologies and the integration of genomic data with animal phenotypic data, breeding strategies were developed to further identify controlling genomic loci as well as biological pathways affecting methane production; to witness breeding and genetic improvement of livestock in relation to reduced methane production. | ||
کلیدواژهها [English] | ||
Genomic selection, Methane emissions, Genetic solutions, Greenhouse gases, Dairy cows | ||
مراجع | ||
ایزدنیا، ح.ر.، طهمورثپور، م.، بختیاریزاده، م.ر.، نصیری، م.ر. و اسماعیلخانیان، س. (1397). "تجزیه و تحلیل پروفایل بیان ایزوفرمهای ژنهای مرتبط با باقیمانده خوراک مصرف شده در کبد مرغ بومی اصفهان و مرغ سویه راس با استفاده از دادههای RNA-Seq." نشریه پژوهشهای علوم دامی ایران، 10(4)، 541-552. Aguirre-Villegas, H. (2017). Mitigation of Enteric Methane Emissions from Dairy Cows. University of Wisconsin--Extension, Cooperative Extension. 1-5. Benson, A.K., Kelly, S.A., Legge, R., Ma, F.R., Low, S. J. and et al. (2010). “Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors.” Proceedings of National Academy of Sciences, USA, 107:18933–18938. Buch, L.H., Sorensen, M.K., Berg, P., Pedersen, L.D. and Sorensen. A.C. (2012). “Genomic selection strategies in dairy cattle: Strong positive interaction between use of genotypic information and intensive use of young bulls on genetic gain.” Journal of Animal Breeding and Genetics, 129:138–151. Cottle, D.J., Nolan, J.V. and Wiedemann. S.G. (2011). “Ruminant enteric methane mitigation: A review.” Animal Production Science, 51:491–514. Daetwyler, H.D., Villanueva, B. and Woolliams. J.A. (2008). “Accuracy of predicting the genetic risk of disease using a genome-wide approach.” PLoS One, 3:e3395. de Haas, Y., Pszczola, M., Soyeurt, H., Wall, E. and Lassen J. (2016). “Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying” Journal of Dairy Science, 100:855–870. Ellis, J.L., Dijkstra, J., Kebreab, E., Bannink, A., Odongo, N.E. and et al. (2008). “Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle.” Journal of Agricaltur Science, 146:213–233. Gene Ontology Consortium - Amigo (2017). Gene Ontology Consortium – Term Genie (2017). Available Online at: http://geneontology.org/page/termgenie Gerber, P., Key, N., Portet, F. and Steinfeld. H. (2010). “Policy options in addressing livestock’s contribution to climate change.” Animal, 4:393–406. Goddard, M. (2009). “Genomic selection: Prediction of accuracy and maximisation of long term response.” Genetica, 136:245–257. Guan, L.L., Nkrumah, J.D., Basarab, J.A. and Moore. S.S. (2008). “Linkage of microbial ecology to phenotype: Correlation of rumen microbial ecology to cattle’s feed efficiency.” FEMS Microbiology Letters, 288:85–91. Hansen Axelsson, H., Thomasen, J.R., Sørensen, A.C., Rydhmer, L., Kargo, M. and et al. (2015). “Breakeven prices for recording of indicator traits to reduce the environmental impact of milk production.” Journal of Animal Breeding and Genetics, 132:30–41. Hayes, B., and Goddard. M. (2010). “Genome-wide association and genomic selection in animal breeding.” Genome, 53:876–883. Hegarty, R.S. (2009). “Current and emerging technologies for decreasing enteric methane emission from individual ruminants.” Recent Advances in Animal Nutrition, 17:81–88. Hegarty, R.S., Goopy, J.P., Herd, R.M. and McCorkell. B. (2007). “Cattle selected for lower residual feed intake have reduced daily methane production.” Journal of Animal Science, 85:1479–1486. Hungate, R.E. (1984). “Symposium on ‘Nutritional implications of microbial action in the nonruminal alimentary tract’. Microbes of nutritional importance in the alimentary tract.” Proceedings of the Nutrition Society, 43:1–11. Jentsch, W., Schweigel, M., Weissbach, F., Scholze, H., Pitroff, W. and et al. (2007). “Methane production in cattle calculated by the nutrient composition of the diet.” Archives of Animal Nutrition, 61:10–19. Kandel, P.B., Vanderick, S., Vanrobays, M.L., Vanlierde, A., Dehareng, F. and et al.. (2014). “Consequences of selection for environmental impact traits in dairy cows.” Proceeding of 10th World Conference on Genetic Applied to Livestock Production, Vancouver, Canada, August, 17–22. Kandel, P.B., Vanrobays, M.L., Vanlierde, A., Dehareng, F., Froidmont, E. and et al. (2013). “Genetic parameters for methane emissions predicted from milk mid-infrared spectra in dairy cows.” Proceedings of the 5th Greenhouse Gases and Animal Agriculture Conference, 4:279. Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P. and Tricarico, J.M., (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), pp.3231-3261. Lassen, J. and Lovendahl, P. (2016). “Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods.” Journal of Dairy Science, 99:1959–1967. Lassen, J., Lovendahl, P. and Madsen, J. (2012). “Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows.” Journal of Dairy Science, 95:890–898. Mamuad, L.L., Kim, S.H., Biswas, A.A., Yu, Z., Cho, K.K., Kim, S.B., Lee, K. and Lee, S.S., (2019). Rumen fermentation and microbial community composition influenced by live Enterococcus faecium supplementation. Amb Express, 9(1), pp.1-12. Manzanilla Pech, C.I.V., De Haas, Y., Hayes, B.J., Veerkamp, R.F., Khansefid, M. and et al. (2016). “Genome-wide association study of methane emissions in Angus beef cattle with validation in dairy cattle.” Journal of Animal Science, 94, 4151–4166. Martin, C., Morgavi, D.P. and Doreau, M., (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4(3), pp.351-365. Mizrahi, I. and Jami, E., (2018). The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal, 12(s2), pp.s220-s232. Nielsen, H. M., and Amer. P. R. (2007). “An approach to derive economic weights in breeding objectives using partial profile choice experiments.” Animal, 1:1254–1262. Nkrumah, J.D., Okine, E.K., Mathison, G.W., Schmid, K., Li, C. and et al. (2006). “Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle.” Journal of Animal Science, 84:145–153. Pickering, N.K., Oddy, V.H., Basarab, J.A., Cammack, K., Hayes, B.J. and et al. (2015). “Invited review: Genetic possibilities to reduce enteric methane emissions from ruminants.” Animal, 9:1431–1440. Pszczola, M., Strabel, T., Mucha, s. and Sell-Kubiak, E. (2018). “Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows” Nature, 8(15164): 1-11. Qin, J., Li, R. Raes, J., Arumugam, M., Burgdorf, K.S. and et al. (2010). “A human gut microbial gene catalogue established by metagenomic sequencing.” Nature, 464: 59–65. Ross, E.M., Moate, P. J. Bath, C. R. Davidson, S. E. Sawbridge, T. I. and et al. (20120. “High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing.” BMC Genetics, 13:53. Rutten, M.J.M., Bovenhuis, H., Hettinga, K.A., van Valenberg, H.J.F. and van Arendonk. J.A.M. (2009). “Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer.” Journal of Dairy Science, 92:6202–6209. Sarghale, A.J., Shahrebabak, M.M., Shahrebabak, H.M., Javaremi, A.N., Saatchi, M., Khansefid, M. and Miar, Y., (2020). Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data. BMC Genetics, 21(1), pp.1-14. Smith, A.D., Datta, S.P. and Smith, G.H. (1997). “Oxford Dictionary of Biochemistry and Molecular Biology”. Smith, A.D., Datta, S.P. and Smith, G.H. (2000). “Oxford Dictionary of Biochemistry and Molecular Biology”. Soyeurt, H., Dehareng, F., Gengler, N., McParland, S., Wall, E. and et al. (2011). “Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries.” Journal of Dairy Science, 94:1657–1667. Van Engelen, S., Bovenhuis, H., Dijkstra, J., van Arendonk, J.A.M. and Visker, M. (2015). “Short communication: Genetic study of methane production predicted from milk fat composition in dairy cows.” Journal of Dairy Science, 98:8223–8226. Von Rohr, P., Hofer, A. and Kunzi, N. (1999). “Economic values for meat quality traits in pigs.” Journal of Animal Science, 77:2633–2640. Weimer, P.J., Stevenson, D.M., Mantovani, H.C., and Man, S.L.C. (2010). “Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents.” Journal of Dairy Science, 93:5902–5912. You, C. and et al. (2013). “Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations.” Journal of Cellular and Molecular Medicine, 17, 407–418. Yu, J., Cai, L., Zhang, J., Yang, A., Wang, Y., Zhang, L., Guan, L.L. and Qi, D., (2020). Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro. Microorganisms, 8(8), p.1160. Yu, J., Pressoir, G. Briggs, W. H. Bi, I. V. Yamasaki, M. and et al. (2006). “A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.” Nature Genetics, 38:203–208. | ||
آمار تعداد مشاهده مقاله: 679 تعداد دریافت فایل اصل مقاله: 363 |