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ABSTRACT 

In this article, a reliable model for the vibration of cross-ply and angle-ply laminated plates that own 

inhomogeneous elastic properties is considered. The methodology includes a theoretical study of free vibration 

behavior of composite plates with the inhomogeneous fibrous distribution of the volume fraction using a 

sinusoidal model by the use of the advanced refined theory of shear deformation of nth-higher-order. The 
micromechanical typical is proposed to represent the elastic and physical properties of the inhomogeneous 

laminated composite plate. The effects of inhomogeneity, lamination schemes, aspect ratio, and the number 

and order of layers on dimensionless vibration frequencies are investigated. 

Keywords: Vibrations; advanced refined nth-order shear deformation theory; inhomogeneous fibrous; 

Hamilton's principle. 

1. Introduction 

The news advanced in the composite material used for the aerospace, motorized industry, marine, 

civil engineering applications, and other high-performance engineering applications to high 

performance motivated researchers in structure to develop a precise arithmetic model. Because of 

their mechanical advantages of specific resistance and specific module compared to traditional 

materials, these materials improved the resistance to shocks and fatigue, and the flexibility of design 

to assure the response realistic of the structure. However, the present development permits us to soften 

the hypothesis that fibers are right for every layer in a composite of fibers laminated. New industrial 

technology, as the direction of fibers, makes it possible to direct fibers along a wished path. The 

laminates with variable fiber paths produce unique boundary conditions that produce the transverse 

stresses and compression local that develop simultaneously. Many studies have been shown to predict 

the laminates with variable fiber spacing, see, for example, Martin and Leissa [1] who discussed the 

problem of plane stress of a composite plate with variable content of fibers. Leissa and Martin [2] 

initially a concept of rigidity variable by varying the spacing of fibers to make progress the 

presentation of the vibrations and the buckling of the plates anticipated by using the Ritz method. 

Pandey and Sherbourne [3, 4] studied the stability and pre-buckling stress-field analysis of 

inhomogeneous, fibrous composite plates. Shiau and Lee [5] presented the concentration of stress 

around the cavities in the laminated plates at a variable spacing of fibers. Benatta et al. [6] presented 

the volume fraction of fibers (FVF) across the direction of the thickness of an FG beam and 

established the influences of various graduations of FVF on the bending of the beam. Bedjilili et al. 

[7] investigated the vibration of composite beams with variable FVF through the thickness. The 
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vibration of a fiber-reinforced composite cylinder with variable FVF has been discussed by 

Kargarnovin and Hashemi [8]. Kuo [9, 10] used the method of the finite element to study the aero-

thermoelastic and stability of laminates to the variable spacing of fibers. Ganesan et al. [11] studied 

the hybrid fiber effect on the characteristics of cracking and stiffening in traction of the concrete 

geopolymer. However; few of the studies in the literature [12-15] have considered the composites 

with variable fiber spacing. 

On the other hand, recently to surmount the limits of the traditional approach, these last years, of 

the new and modified approaches, were proposed to study the behavior in bending, buckling, and 

vibration of the laminated plate. Draiche et al. [16] proposed a trigonometric four-variable plate 

theory for analyzing the vibration of rectangular composite plates with patch mass. Thai [17] 

presented a nonlocal refined beam theory to treat the bending, buckling, and vibration of such beams. 

Zenkour [18, 19] proposed a theory of quasi-3D for functionally graded (FG) single-layered and 

sandwich plates with porosities. Fahsi et al. [20] studied the buckling, bending, and vibration 

behaviors of FG beams under elastic foundation by the new quasi-3D theory, including the effect of 

Porosity. Derbale et al. [21] developed a new refined theory of shear deformation nth higher-order to 

obtain the critical mechanical load and critical buckling temperature of simply supported laminated 

composite beams. Bouazza and Zenkour [22] presented the higher-order approach solution for 

vibration analysis of FG-CNT rectangular plates. The multi-quadric multiple radial functions (RBF) 

method was applied to analyze composite plates laminated by Ferreira et al. [23]. Inverse multi-

quadric RBFs were used to analyze composite plates by Xiang and Wang [24]. Additional 

investigations are presented to be concerned with modeling for the thermoelastic buckling, bending, 

and vibration of different structures [25-37]. Some researchers used the refined four-variable theories 

for the analysis of the thick FG plate behavior [38-45]. A review of FG thick cylindrical and conical 

shells presented by Nejad et al. [46]. Mahboobeh et al. [47] studied the FG rotating thick cylindrical 

pressure vessels with exponentially-varying properties using the power series method of Frobenius. 

The fundamental objective of this work is the analysis of free vibration of the laminated plates of 

inhomogeneous fibrous, using the new refined simplified theory of shear deformation of nth order to 

two variables. In this approach, we combine the idea of the theory of refined plates established by 

[16-20] that the author includes 𝑤𝑏  and 𝑤𝑠 to model the transverse displacement (transverse 

displacement of bending and shearing) instead of the hypothesis of constant displacement 𝑤0 with 

the idea of the theory of the shear deformation of order 𝑛 established by [48-50], the natural 

frequencies are determined by using the Navier method. 

2. Theoretical formulation 

2.1 Distribution of fiber 

Strategies of Inhomogeneous composite plates are constructed via the function of fiber distribution 

sinusoidal. A similar function was employed by Pandey and Sherbourne [3] for describing various 

thickness distributions. Presently, the plates are in the composite of fibers with a variable fiber volume 

fraction in thickness 

 𝑉𝑓(𝑧) = (𝑉𝑓)avg
[
1+(𝑁v−1) sin(𝜋𝑧)

1+
2

𝜋
(𝑁v−1)

]. (1) 

The plate was analyzed as an inhomogeneous orthotropic material over the entire thickness. 𝑁v is 

the ratio of the volume fraction of fiber in the center of the laminate (𝑧 = 0) to the side (𝑧 = ±ℎ/2) 
corresponds to the degree of non-uniformity and, also, the concave nature of convex of the variation 

of fiber according to 𝑁v > 1 or 𝑁𝑉 < 1, respectively. The case of 𝑁v < 1 indicates a concentration 

of fibers more elevated on sides than on the center and vice versa when 𝑁v > 1. The case of 𝑁v = 1 

which represents uniform variation with a volume fraction of fiber (𝑉𝑓)avg. 
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Besides, to determine the characteristics of the properties of materials, using Eq. (2) which found 

in the literature (Jones [51]), it is possible to determine the values equivalent to the properties of the 

material based on the mixture laws, as follows: 

 

𝐸1 = 𝐸𝑓[𝑉𝑓 + 𝑅1(1 − 𝑉𝑓)],     𝐸2 = 𝐸𝑓 (𝑉𝑓 +
1−𝑉𝑓

𝑅1
)
−1

,

𝜈12 = 𝜈𝑓[𝑉𝑓 + 𝑅2(1 − 𝑉𝑓)],     𝜈21 =
𝐸1

𝐸2
𝜈12 ,

𝐺12(𝑧) = 𝐺𝑓 (𝑉𝑓 +
1−𝑉𝑓

𝑅3
)
−1

,

 (2) 

in which 

 𝑅1 =
𝐸𝑚

𝐸𝑓
,     𝑅2 =

𝜈𝑚

𝜈𝑓
,     𝑅3 =

𝐺𝑚

𝐺𝑓
. (3) 

2.2 Present new refined simple nth-higher-order shear deformation theory 

In this survey, simplification hypotheses supplementary are brought to the theory of the shearing 

strain of the 𝑛 order with a reduced number of unknowns. The field of displacement of the traditional 

theory of shear deformation of 𝑛 order is given by [48-50] 

 

𝑢1(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑥(𝑥, 𝑦) − 𝑓(𝑧) (𝜙𝑥(𝑥, 𝑦) +
𝜕𝑤0(𝑥,𝑦)

𝜕𝑥
) ,

𝑢2(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑦(𝑥, 𝑦) − 𝑓(𝑧) (𝜙𝑦(𝑥, 𝑦) +
𝜕𝑤0(𝑥,𝑦)

𝜕𝑦
) ,

𝑢3(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦),     𝑓(𝑧) =
1

𝑛
(
2

ℎ
)
𝑛−1

𝑧𝑛 ,     𝑛 = 3, 5, 7,… ,

 (4) 

where 𝑢0, 𝑣0, 𝑤0, 𝜙𝑥 and 𝜙𝑦  are five unknown functions of displacements and rotations of the mid-

plane of the plate (𝑧 = 0) and ℎ its thickness. By dividing the displacement 𝑤0 into two parts; of 

bending 𝑤𝑏  and shearing 𝑤𝑠 and one put other hypotheses 𝜙𝑥 = −
𝜕𝑤𝑏

𝜕𝑥
 and 𝜙𝑦 = −

𝜕𝑤𝑏

𝜕𝑦
, the field of 

displacement of the current approach can be considered as follows: 

 

𝑢1(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤b

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤s

𝜕𝑥
,

𝑢2(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤b

𝜕𝑦
− 𝑓(𝑧)

𝜕𝑤s

𝜕𝑦
,

𝑢3(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦),    𝑛 = 3, 5, 7, … .

 (5) 

There are thus more sophisticated analyzes while minimizing the number of unknown variables 

with only four unknown functions. However, the conventional 𝑛-order theory of shear deformation 

using five unknown functions. The displacement field of this new approach becomes as follows: 

 {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝜅𝑥
b

𝜅𝑦
b

𝜅𝑥𝑦
b

} + 𝑓(𝑧) {

𝜅𝑥
s

𝜅𝑦
s

𝜅𝑥𝑦
s

},    {𝛾𝑥𝑧 , 𝛾𝑦𝑧} = 𝑔(𝑧){𝛾𝑥𝑧
0 , 𝛾𝑦𝑧

0 },     𝜀𝑧 = 0, (6) 

where 

 
𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
,     𝜀𝑦

0 =
𝜕𝑣0

𝜕𝑦
,     𝛾𝑥𝑦

0 =
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
,     𝜅𝜂

𝜁
= −

𝜕2𝑤𝜁

𝜕𝜂2
,     𝜅𝑥𝑦

𝜁
= −2

𝜕2𝑤𝜁

𝜕𝑥𝜕𝑦
,

𝛾𝜂𝑧
0 =

𝜕𝑤𝑠

𝜕𝜂
,     𝑔(𝑧) = 1 − 𝑓′(𝑧),     𝜂 = 𝑥, 𝑦,     𝜁 = b, s.

 (7) 

The behavior of laminated plates, therefore, obeys the constitutive law as follows: 
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{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}
 
 

 
 

=

[
 
 
 
 
𝑄11
𝑄12
0
0
0

𝑄12
𝑄22
0
0
0

0
0
𝑄66
0
0

0
0
0
𝑄55
0

0
0
0
0
𝑄44]

 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

, (8) 

where 

 𝑄11 =
𝐸1

1−𝜈12𝜈21
,     𝑄12 =

𝜈12𝐸2

1−𝜈12𝜈21
,     𝑄22 =

𝐸2

1−𝜈12𝜈21
,     𝑄66 = 𝐺12,     𝑄55 = 𝐺13,     𝑄44 = 𝐺23. (9) 

We deduce from it the constitutive relations of the global coordinate system, by transforming the 

constitutive relations of an arbitrary layer 𝑘 in the base of orthotropic in the global coordinate system, 

the behavior equations of laminated is written as follows: 

 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}
 
 

 
 
(𝑘)

=

[
 
 
 
 
𝑄̅11
𝑄̅12
𝑄̅16
0
0

𝑄̅12
𝑄̅22
𝑄̅26
0
0

𝑄̅16
𝑄̅26
𝑄̅66
0
0

0
0
0
𝑄̅55
𝑄̅45

0
0
0
𝑄̅45
𝑄̅44]

 
 
 
 
(𝑘)

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 
(𝑘)

. (10) 

In the previous equation, we introduced the standard notations used for the components of shear and 

normal stress. 𝑄̅𝑖𝑗 are the transformed material constants given as [51, 52]. The moments and shear 

forces are defined as 

 

{𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦} = ∫ {𝜎𝑥 , 𝜎𝑥 , 𝜏𝑥𝑦}d𝑧
ℎ/2

−ℎ/2
= ∑ ∫ {𝜎𝑥 , 𝜎𝑥 , 𝜏𝑥𝑦}d𝑧

𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1 ,

{𝑀𝑥
𝑏,𝑀𝑦

𝑏 , 𝑀𝑥𝑦
𝑏 } = ∫ {𝜎𝑥 , 𝜎𝑥 , 𝜏𝑥𝑦}𝑧d𝑧

ℎ/2

−ℎ/2
= ∑ ∫ {𝜎𝑥 , 𝜎𝑥 , 𝜏𝑥𝑦}𝑧d𝑧

𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1 ,

{𝑀𝑥
𝑠, 𝑀𝑦

𝑠,𝑀𝑥𝑦
𝑠 } = ∫ {𝜎𝑥 , 𝜎𝑥 , 𝜏𝑥𝑦}𝑓(𝑧)d𝑧

ℎ/2

−ℎ/2
= ∑ ∫ {𝜎𝑥 , 𝜎𝑥 , 𝜏𝑥𝑦}𝑓(𝑧)d𝑧

𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1 ,

{𝑄𝑥
𝑠, 𝑄𝑦

𝑠} = ∫ {𝜏𝑥𝑧 , 𝜏𝑦𝑧}𝑔(𝑧)d𝑧
ℎ/2

−ℎ/2
= ∑ ∫ {𝜏𝑥𝑧 , 𝜏𝑦𝑧}𝑔(𝑧)d𝑧

𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1 .

 (11) 

Using expressions (6)-(10) in Eq. (11), expressions for stress resultants (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) moments 

(𝑀𝑥
𝜁
,𝑀𝑦

𝜁
,𝑀𝑥𝑦

𝜁
), (𝜁 = 𝑏, 𝑠) and shear forces (𝑄𝑥

𝑠 , 𝑄𝑦
𝑠) can be obtained. These expressions are: 

 

{
 
 
 
 
 

 
 
 
 
 
{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}

{

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

}

{

𝑀𝑥
𝑠

𝑀𝑦
𝑠

𝑀𝑥𝑦
𝑠

}

}
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
[
𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] [
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] [

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠
]

[
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] [
𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] [

𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠
]

[

𝐵11
𝑠 𝐵12

𝑠 𝐵16
𝑠

𝐵12
𝑠 𝐵22

𝑠 𝐵26
𝑠

𝐵16
𝑠 𝐵26

𝑠 𝐵66
𝑠

] [

𝐷11
𝑠 𝐷12

𝑠 𝐷16
𝑠

𝐷12
𝑠 𝐷22

𝑠 𝐷26
𝑠

𝐷16
𝑠 𝐷26

𝑠 𝐷66
𝑠

] [

𝐻11
𝑠 𝐻12

𝑠 𝐻16
𝑠

𝐻12
𝑠 𝐻22

𝑠 𝐻26
𝑠

𝐻16
𝑠 𝐻26

𝑠 𝐻66
𝑠

]

]
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

}

{

𝜅𝑥
𝑏

𝜅𝑦
𝑏

𝜅𝑥𝑦
𝑏

}

{

𝜅𝑥
𝑠

𝜅𝑦
𝑠

𝜅𝑥𝑦
𝑠

}

}
 
 
 
 
 

 
 
 
 
 

, (12a) 

 {
𝑄𝑦
𝑠

𝑄𝑥
𝑠} = [

𝐴44
s 𝐴45

s

𝐴45
s 𝐴55

s ] {
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
}, (12b) 

where 𝐴𝑖𝑗, 𝐵𝑖𝑗, … etc. are the plate stiffness, defined by 

 
{𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐵𝑖𝑗

𝑠 , 𝐷𝑖𝑗
𝑠 , 𝐻𝑖𝑗

𝑠 } = ∑ ∫ 𝑄̅𝑖𝑗
(𝑘){1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), [𝑓(𝑧)]2}d𝑧

𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1 ,

𝐴𝑝𝑞
𝑠 = ∑ ∫ 𝑄̅𝑝𝑞

(𝑘)[𝑔(𝑧)]2d𝑧
𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1 ,     𝑖, 𝑗 = 1,2,6,     𝑝, 𝑞 = 4,5.

 (13) 
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We retain here Hamilton's principle. This principle considers that the sum of the variation of 

kinetic and potential energies and the work of non-conservative forces between two times 𝑡1 and 𝑡2 

is zero, that is: 

 𝛿(1) ∫ (𝑇 − 𝑈)d𝑡
𝑡2

𝑡1
= 0, (14) 

where 𝑇 is the kinetic energy given by 

 𝑇 =
1

2
∬ ∫ 𝜌𝑢̇𝑖𝑢̇𝑖d𝑧

ℎ/2

−ℎ/2
d𝛺

𝛺
, (15) 

and 𝑈 is the total potential energy represented as 

 𝑈 =
1

2
∬ [∫ (𝜎𝑥𝜀𝑥 + 𝜎𝑥𝜀𝑥 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛾𝑥𝑧 + 𝜏𝑥𝑦𝛾𝑥𝑦)d𝑧

ℎ/2

−ℎ/2
− 𝑞(𝑤b +𝑤s)] d𝛺𝛺

= 0. (16) 

Using Eqs. (5), (6), (12), (15) and (16), in Eq. (14), we then obtain the following equations of 

movement: The work of the external forces is given by the following formula (𝑞 = 0): 

 𝛿𝑢0 :   
𝜕𝑁𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼1𝑢̈0 − 𝐼2

𝜕𝑤̈𝑏

𝜕𝑥
− 𝐼4

𝜕𝑤̈𝑠

𝜕𝑥
, (17a) 

 𝛿𝑣0 :   
𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦

𝜕𝑦
= 𝐼1𝑣̈0 − 𝐼2

𝜕𝑤̈𝑏

𝜕𝑦
− 𝐼4

𝜕𝑤̈𝑠

𝜕𝑦
, (17b) 

 𝛿𝑤b :   
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦
𝑏

𝜕𝑦2
= 𝐼1(𝑤̈b + 𝑤̈s) + 𝐼2 (

𝜕𝑢̈0

𝜕𝑥
+

𝜕𝑣̈0

𝜕𝑦
) − 𝐼3𝛻

2𝑤̈b − 𝐼5𝛻
2𝑤̈s, (17c) 

 𝛿𝑤𝑏 :   
𝜕2𝑀𝑥

𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦
𝑠

𝜕𝑦2
+

𝜕𝑄𝑥

𝜕𝑥
+

𝜕𝑄𝑦

𝜕𝑦
= 𝐼1(𝑤̈b + 𝑤̈s) + 𝐼4 (

𝜕𝑢̈0

𝜕𝑥
+

𝜕𝑣̈0

𝜕𝑦
) 

 −𝐼5𝛻
2𝑤̈b − 𝐼6𝛻

2𝑤̈s, (17d) 

where 

 {𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6} = ∫ 𝜌{1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), [𝑓(𝑧)]2}d𝑧
ℎ/2

−ℎ/2
. (18) 

The following approximate solution is seen to satisfy both the differential equation and the 

boundary conditions. 

2.2.1 Cross-ply laminates 

 {
(𝑤b, 𝑤s)
𝑢0
𝑣0

} = ∑ ∑ {

(𝑊b𝑚𝑙 ,𝑊s𝑚𝑙) sin(𝛼𝑥) sin(𝛽𝑦)

𝑈𝑚𝑙 cos(𝛼𝑥) sin(𝛽𝑦)

𝑉𝑚𝑙 sin(𝛼𝑥) cos(𝛽𝑦)
}∞

𝑙=1
∞
𝑚=1 e−𝑖𝜔𝑡 . (19) 

2.2.2 Antisymmetric angle-ply laminates 

 {
(𝑤b, 𝑤s)
𝑢0
𝑣0

} = ∑ ∑ {

(𝑊b𝑚𝑙 ,𝑊s𝑚𝑙) sin(𝛼𝑥) sin(𝛽𝑦)

𝑈𝑚𝑙 sin(𝛼𝑥) sin(𝛽𝑦)

𝑉𝑚𝑙 cos(𝛼𝑥) sin(𝛽𝑦)
}∞

𝑙=1
∞
𝑚=1 e−i𝜔𝑡 . (20) 

3. Results and discussion 

In this part, diverse examples are illustrated and analyzed to check the precision and the efficiency of 

this approach in the computation of the behavior of isotropic, orthotropic, and laminates in free 

vibration. For purposes of checking, the numerical outcomes obtained by the current model are 

compared with available results in the published references. 

3.1 Comparison studies 
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We will first study the case of an isotropic square plate, a comparative study is carried out between 

the present theory and the various theories of plates, the exact three-dimensional elasticity solutions 

of Srinivas and Rao [25], higher-order shear deformation theory by Reddy and Phan [26] and 

analytical approach by Hosseini Hashemi et al. [27] in Table 1 where. The following plate parameters 

are adapted to the comparison: 𝐸1/𝐸2 = 1 and ν = 0.3. The natural frequencies factors 𝜔̅ =

𝜔(𝑏2/𝜋2)√𝜌ℎ/𝐷 are presented for isotropic plates for various modes. Shapes of vibration of modes 

are defined per 𝑚 and 𝑛, where these whole numbers respectively indicate the number of half-waves 

the 𝑥- and 𝑦-directions. 

 

 

Table1. Comparison of non-dimensional out-of-plane natural frequencies 𝜔̅ for simply-supported 

isotropic square plate (𝜈 = 0.3, ℎ/𝑎 = 0.1) 

𝑎/𝑏 Mode 3D [25] TSDT [26] TSDT [27] Present 

𝑛 = 3 𝑛 = 5 𝑛 = 7 𝑛 = 9 

1 

 

(1,1) 

(1,2) 

(2,2) 

(1,3) 

(2,3) 

(1,4) 

(3,3) 

(2,4) 

(3,4) 

(1,5) 

0.0932 

 0.226  

0.3421 

0.4171 

0.5239 

--- 

0.6889 

0.7511 

--- 

0.9268  

0.0931  

0.2222  

0.3411  

0.4158 

0.5221 

0.6545 

0.6862 

0.7481 

0.8949 

0.9230  

0.0930 

0.2220 

0.3406 

0.4151 

0.5208 

0.6525 

0.6840  

0.7454  

0.8908  

0.9187 

0.0917 

0.2151 

0.3256 

0.3937 

0.4890 

0.6059 

0.6335 

0.6872 

0.8132 

0.8371 

0.0926 

0.2198 

0.3358 

0.4082 

0.5105 

0.6372 

0.6674 

0.7262 

0.8649 

0.8914 

0.0929 

0.2213 

0.3256 

0.4129 

0.4890 

0.6476 

0.6787 

0.6872 

0.8826 

0.9100 

0.0930 

0.2220 

0.3358 

0.4152 

0.5105 

0.6528 

0.6843 

0.7262 

0.8914 

0.9193 

1/√2 (1,1) 

(1,2) 

(2,1) 

(1,3) 

(2,2) 

(2,3) 

(1,4) 

(3,1) 

(3,2) 

(2,4) 

0.0704 

0.1376 

0.2018 

0.2431 

0.2634 

0.3612 

0.3800 

0.3987 

0.4535 

0.4890 

0.0703  

0.1373  

0.2014  

0.2426  

0.2628  

0.3601  

0.3789  

0.3974 

0.4519  

0.4873 

0.0704 

0.1373 

0.2012 

0.2424 

0.2625 

0.3600 

0.3783 

0.3968 

0.4511 

0.4863 

0.0696 

0.1345 

0.1955 

0.2343 

0.2531 

0.3430 

0.3601 

0.3770 

0.4263 

0.4581 

0.0701 

0.1364 

0.1994 

0.2398 

0.2596 

0.3543 

0.3725 

0.3904 

0.4431 

0.4771 

0.0703 

0.1370 

0.2007 

0.2416 

0.2616 

0.3579 

0.3764 

0.3948 

0.4485 

0.4834 

0.0704 

0.1373 

0.2013 

0.2424 

0.2626 

0.3597 

0.3784 

0.3969 

0.4512 

0.4865 

 

Table 2. Comparison non-dimensional natural frequencies 𝜔̂ of a simply-supported square 

orthotropic plate with different thickness-to-side ratios. 

ℎ/𝑎 CPT 

[28] 

FSDT 

[28] 

SHT [28] FEM [29] Present 

𝑛 = 3 𝑛 = 5 𝑛 = 7 𝑛 = 9 

0.1 

0.2 

0.3 

0.4 

0.5 

0.03800  

0.14844 

0.32181 

0.54541 

0.80626 

0.03615  

0.12597 

0.24098 

0.36561 

0.49366 

0.03617 

0.12628 

0.24226 

0.36885 

0.50021 

0.3719 

0.13045 

0.24277 

0.36712 

0.48719  

0.0355 

0.1199 

0.2233 

0.3324 

0.4434 

0.0361 

0.1256 

0.2397 

0.3631 

0.4897 

0.0363 

0.1274 

0.2454 

0.3742 

0.5070 

0.0364 

0.1283 

0.2483 

0.3799 

0.5160 

 

In the second part, we are interested in verifying the results of the present theory of an orthotropic 

plate with simple boundary conditions with results available in the references published for different 

ratios thickness/side, the numerical values are shown in Table 2. In this case, the natural frequency 

parameter is determined as 𝜔̂ = 𝜔ℎ√𝜌/𝐸1. The frequencies of Reddy [28] and Liu [29] are reported 

in Table 2. The plate parameters are: 
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𝐸1 = 4.0714𝐸2,     𝐸3 = 𝐸2 ,     𝐺12 = 𝐺13 = 0.4071 𝐸2,     𝐺23 = 0.3571 𝐸2,

𝜈12 = 0.277,     𝜈13 = 0.068,     𝜈23 = 0.4.
 (21) 

Based on the comparison of the dimensionless fundamental natural frequency for a square 

orthotropic composite plate with simple supports as a function of ℎ/𝑎. From the results indicated in 

Table 2, we can observe the non-dimensional natural frequencies moreover increase regularly when 

ratios thickness/side (ℎ/𝑎) increased from 0.1 to 0.5. As the increase of the thickness-to-side ratio, 

the difference between the values of the present theory and the classical theory of the plates increases. 

It is also noted that the transverse shear strain has a certain effect on the natural frequencies. 

Thirdly, in Table 3 the results of non-dimensionalized fundamental frequencies 𝜔̃ =

𝜔(𝑎2/ℎ)√𝜌/𝐸2, of the composite plate with simply-supported the stacking sequence (0°/90°/90°/0°) 

are compared with the 3D elasticity solutions by Noor [30], the theory of shear deformation the 

higher-order (HSDT) by Phan and Reddy [31], and the finite element of three-dimensional (3D-FEM) 

by Rao and Sinha [32]. The material parameters are assumed to be: 𝐸1/𝐸2 = open, 𝐺12 = 𝐺13 =
0.6 𝐸2, 𝐺23 = 0.5 𝐸2, 𝜈12 = 0.25. The comparisons are well justified. 

 

 

Table 3. Comparison of non-dimensional natural frequencies 𝜔̃ of simply-supported four-layered 

square cross-ply (0°/90°/90°/0°) laminates plate, (𝑎/ℎ = 5), Material I. 

𝐸1/𝐸2 3D elasticity [30] HSDT [31]  3D-FEM [32] Present 

3 

10 

20 

30 

40 

6.6815 

8.2103 

9.5603 

10.272 

10.752 

6.5597 

8.2718 

9.5263 

10.272 

10.787 

6.5778 

8.2791 

9.5033 

10.2132 

10.6916 

6.6003 

8.5731 

10.1516 

11.1132 

11.7710 

 

Table 4. Comparison of results with the non-dimensional fundamental frequency 𝜔̌ for a simply-
supported square laminated plate. 

Stacking 

sequence 

Mode DSC [33] CLPT 

[34] 

EFG 

[35] 

Present 

𝑛 = 3 𝑛 = 5 𝑛 = 7 𝑛 = 9 

(0°/0°/0) 1 

2 

15.171  

33.248  

15.17  

33.32  

15.18 

33.34  

15.1684 

33.2390 

15.1685 

33.2392 

15.1685 

33.2393 

15.1685 

33.2395 

(15°/-

15°/15°) 

1 

2 

15.469  

34.153 

15.40  

34.12 

15.41 

34.15 

15.5282 

34.3804 

15.5282 

34.3806 

15.5282 

34.3808 

15.5283 

34.3809 

(30°/-

30°/30°) 

1 

2 

16.058  

36.060 

15.87  

35.92 

15.88 

35.95 

16.2236 

37.1311 

16.2237 

37.1313 

16.2237 

37.1316 

16.2238 

37.1318 

(45°/-

45°/45°) 

1 

2 

16.348  

37.146 

16.10  

37.00 

16.11 

37.04 

16.5604 

40.1739 

16.5605 

40.1741 

16.5605 

40.1744 

16.5606 

40.1747 

 

Finally, The non-dimensionalized frequencies, for simply supported square laminated composite 

plates of three-layer with various orientations (0°/0°/0°), (15°/-15°/15°), (30°/-30°/30°), and (45°/-

45°/45°) are presented in Table4 compared with the ones obtained from the discrete singular 

convolution (DSC) by Secgin and Sarigul [33], classical laminated plate theory (CLPT) by Dai et al. 

[34] and element free Galerkin method (EFG) by Chen et al. [35]. In this example, the non-

dimensional frequency is given as 𝜔̌ = 𝜔𝑎2√𝜌ℎ/𝐷01 employing another arbitrary rigidity expression 

(i.e., 𝐷01 = 𝐸1ℎ
3/(12(1 − 𝜈12𝜈21)). In the reason of comparison of the results, the properties of the 

materials and the geometrical parameters are identical as in Secginand Sarigul [33]: thickness ℎ =
0.06 m, length 𝑎 = 𝑏 = 10 m, elastic constants ratio 𝐸1/𝐸2 = 2.45; 𝐺12/𝐸2 = 0.48; Poisson’s ratio 

𝜈12 = 0.23 and mass density of 𝜌 = 8000 kg/m3. 
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3.2 Parametric studies 

In this part, all calculations are made for graphite-epoxy composite plates (Leissa and Martin [2], 

Pandey and Sherbourne [4]) with the constants of the materials following: 𝐸𝑓 = 275.8 GPa, 𝐸𝑚 =

3.44 GPa, 𝜈𝑓 = 0.20 and 𝜈𝑚 = 0.35. Average fiber volume fraction, (𝑉𝑓)avg
, is taken as 50%. 

The sinusoidal fiber distribution function according to the value of 𝑁𝑉 simulates a variety of 

distributions as shown in Figs. 1-3. It is right to underline that the total quantity of fibers is constant 

and equal to the one of a plate to uniform distribution and fraction by volume of fibers, (𝑉𝑓)avg. This 

function is very practical to analyze the advantages of a distribution non-uniform on a uniform for a 

given quantity of fibers. 

Studies of parameters are led to analyze non-homogeneous effect, side-to-thickness ratios 𝑎/ℎ, 

the effect of fiber material type, and lamination angle on the nondimensional natural frequencies of 

cross-ply plates.  
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Fig. 1. Normalized longitudinal Young’s modulus for various values of 𝑁v. 
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Fig. 2. Normalized transverse Young’s modulus for various values of 𝑁v. 
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The obtained results in Figure 4 show that the non-dimensional natural frequencies 𝜛 =

𝜔(𝑎2/ℎ)√𝜌/𝐷11 because the inclusion of the non-homogeneous effect is meaningful for all ratios of 

thickness considered. The uniform distribution with a fiber corresponds to (𝑁v = 1), the higher fiber 

concentration at the edges than the center with (𝑁v = 0.5) and (𝑁v = 2,3,4,5) implies higher fiber 

concentration at the center than the edges. 

The variation of the non-dimensional natural frequencies 𝜛 for simply supported four-layered 

square (𝜃/−𝜃/−𝜃/𝜃)𝑠 laminates plate having sinusoidal fiber distributions and homogeneous plate, 

for the value of thickness ratio (𝑎/ℎ = 10), presented in Figure 5. Here, the non-dimensional natural 

frequencies decrease as 𝜃 rises from 0 to about 20 degrees and after rises as 𝜃 rises until 𝜃 = 70° 
besides, thereafter, decreases as 𝜃 increases. 
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Fig. 3. Normalized in-plane shear modulus for various values of 𝑁v. 
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Fig. 4. Effect of the aspect ratio on the non-dimensional natural frequencies 𝜛 of simply-supported 

three-layered square cross-ply (0°/90°/0°) laminates plate for various values of 𝑁v. 
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The non-dimensional natural frequencies fibrous composite plate 𝜛 for simply-supported with 

different ply orientation an angle is shown in Figure 6. Two different lamination schemes (𝜃/−𝜃)𝑠 
and (𝜃/−𝜃)2, being the ply orientation angle, are considered. For the sinusoidal fiber distributions 

corresponding to 𝑁v = 0.5, the non-dimensional natural frequencies are asymmetric for both the 

lamination schemes, and the non-dimensional natural frequencies are seen when the ply orientation 

angle is 70°. 
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Fig. 5. Effect of ply angle on non-dimensional natural frequencies 𝜛 for of simply-supported four-

layered square cross-ply (𝜃/−𝜃/−𝜃/𝜃) having sinusoidal fiber distributions. 
 

0 10 20 30 40 50 60 70 80 90

6

7

8

9

10

11

12

13

14

ah=10; n=3;N
v
=0.5

N
o
n
-d

im
e
n
s
io

n
a
l 
n
a
tu

ra
l 
fr

e
q
u
e
n
c
ie

s
 

Ply Angle, degree

 [theta/-Theta]
s

 [theta/-Theta]
2

 
Fig. 6. Effect of lamination angle on non-dimensional natural frequencies 𝜛 of the laminated 

square plate having sinusoidal fiber distributions (𝑁v = 0.5). 
 

4. Conclusions 

To analyze the problems of non-homogeneous laminated plates in free vibrations. In this study 

examples of composite plates whose Young's moduli vary continuously piecewise in the direction of 

the thickness. We will determine numerically, for the different examples, non-dimensionalized 

frequencies, from analytical expressions by Navier’s method. Finally, the effects of various 

parameters are presented. The numerical results support the following conclusions: 
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 A good agreement between the results of this theory and the values of the literature, as shown 

in the section on comparative studies. 

 Unlike other theories, transverse displacement is considered to be the combined effect of the 

bending and shear component, therefore, the effects of transverse shear deformation and/or 

normal transverse deformation are taken into account. This approach does not require 

correction factors. 

 The classical theory of the plates seems a particular case of the current theory. 

 It is found that decreasing the value of the side-to-thickness ratio leads to an increase in the 

non-dimensional frequencies. 

 It is noted that the reduction in the value of the ratio side/thickness involves a rise in the non-

dimensional frequencies. 

 The values of the non-dimensional parameter of frequency in fibrous composite plates in the 

homogeneous and inhomogeneous cases are affected by the order and the number of the plies 

appreciably. 

 The ordering and the sequence of the layers influence the non-dimensional frequency 

parameter. 
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