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Abstract  

This paper aims to propose a mathematical model to minimize the total waiting time 

of passengers in metro systems. The main contribution of this paper is considering 

the capacity of trains and stations, as well as the assumption of a constant interval 

for travelling between two successive stations. To reach this aim, the sum of dwell 

time and travel time is assumed constant. The dwell time is considered a function 

of the number of passengers who can board the train. To show the effectiveness of 

the proposed model, a numerical example is studied. The parameters of the metro 

system are considered according to Tehran Urban and Suburban Railway Operation 

Co. The results show the effect of an increase in the capacity of trains and the 

number of trains in reduction of the total waiting time. Furthermore, in this study, 

the best amount of Headway in order to minimize the waiting time is six minutes. 
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Introduction 
 

Global warming is an increasingly important topic these days because of the pressure from 

governmental and non-governmental organizations (NGOs) [1]. One of the causes of this 

phenomenon is the increasing amount of carbon dioxide (CO2) emissions, which comes from a 

large part of transportation. One of the most effective ways to reduce the amount of CO2 

emissions is Implementation systems that use energy sources without CO2 emissions such as 

electricity.  

In the economy of each country, an important role is assigned to rail transportation which 

moves a significant amount of passengers and freight [2]. In particular, the metro system is a 

safe, fast, and convenient electric railway that has a significant role in reducing air pollution in 

urban areas. The major fields studied on metro systems are staffing, rolling stock, timetabling, 

line design, and network design. A metro system can be evaluated by metrics like energy 

consumption and travel time. Subway system operating companies are satisfied with 

minimizing the energy consumption, and the passengers enjoy minimizing the travel time [3].  

The train timetabling problem (TTP) tries to obtain an optimal schedule for a set of trains 

that satisfies the constraints of the train capacities and their maximum velocity and does not 

violate the operational constraints such as dwell time, headway, speed profile and uncertainties 

emerged in peak-hours passenger demand. 

In this paper, a mixed-integer linear programming (MILP) model for timetable optimization 

is presented to minimize total passenger waiting times. The challenging point that distinguishes 
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between this study and the previous works is considering the limitation in the train capacity as 

well as the constraint of the capacity of the stations. In practice, the timetable of metros is 

predetermined and fixed, and it is declared to the public, therefore, the sum of traveling time in 

each section between stations and dwell time at each station is supposed to be a fixed value. In 

other words, an optimal train timetabling is designed that in peak or non-peak hours of a day, 

if the trains arrive station 𝑛 at time 𝑇, they arrive station 𝑛 + 1 at time 𝑇 + 𝑘, where 𝑘 is a 

constant. In practice, the issue is handled by the train driver by controlling the dwell time and 

by adjusting the speed of the train. 

The rest of the paper is organized as follows. In Section 2, the related works in the literature 

are reviewed. In Section 3, the mathematical model is proposed. The experimental results are 

shown in Section 4 and finally, the conclusions are presented in the last section. 

 

Literature Review 
 

Train timetabling models generate a timetable based on infrastructure constraints. The main 

objectives of the train timetabling problems are minimizing total travel time, unnecessary 

delays, and passenger waiting time.  

Timetable design and its dependence on passenger demands are studied by several authors. 

Higgins et al. presented an approach for solving the train timetabling problem over a single-

track line [4]. The objective function aims to minimize the total train delay time and also 

minimize the operating costs. Brännlund et al. presented a mathematical optimization model 

for the train timetabling problem [5]. Minimizing unnecessary delays along the track was 

considered as the objective function. Caprara et al. [6] and Caprara et al. [7] developed MILP 

models for the train timetabling problem. The objective is to achieve an optimal schedule that 

does not violate infrastructure capacities and some operating constraints. Kroon et al. [8] 

assumed that the demand is regular and tried to improve periodic timetables and minimize 

random disturbances. A single-track train timetabling model with a single objective is presented 

by Zhou and Zhong [9]. They considered a set of operational and safety requirement constraints 

and minimized the total travel time.  

A more general problem is obtained when demand is considered to be dynamic. Mu and 

Dessouky [10] proposed two single-objective models for scheduling freight trains. Barrena et 

al. [11] take the dynamic passenger demand for rapid transit lines into consideration. The main 

objective of the presented model is to provide a timetable focusing on passenger convenience. 

They presented a mathematical model for the problem by introducing the flow variables. The 

Madrid subway system is taken into account as a case study. Extensive computational 

experiments show the effectiveness of their proposed algorithm. 

Xu et al. [12] minimized the delay-ratio considering the train velocity and obtained an 

optimally balanced train schedule. An exact optimization model is used to provide the schedule 

and a hybrid algorithm is developed. Sun et al. [13] considered the problem of designing a 

demand-driven timetable and presented three mathematical model formulations. Yin et al. [14] 

studied a subway system with an online adjusting timetable to improve the efficiency in an 

environment that in each station the passenger demand is not certainly known. Jamili and 

Aghaee [15] proposed a stop-skipping method to obtain a solution that is robust against the 

uncertainties including variable passengers number boarded and alighted and special conditions 

in an urban railway line.  

Yaghini et al. [16] investigated the locomotive assignment and train scheduling problems, 

simultaneously. Hassannayebi et al. [17] tried to obtain an optimal schedule for public transit 

terminals that minimizes passenger waiting times. To find an upper bound, heuristic rules were 

developed and inserted in the enhanced non-linear formulation to mitigate the required 

computational effort. Qi et al. [18] took women-only passenger cars into account. They 
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proposed a heuristic algorithm as well as a simulation-based model and applied their approach 

to the case of the Beijing metro Yizhuang line. Kamandanipour et al. [19] addressed multi-class 

capacity allocation and dynamic pricing problems in passenger railroad transportation using a 

stochastic data-driven optimization method. Yang et al. [20] made an effort to enhance the 

efficacy of an urban rail line considering the passenger demand to be unbalanced. Gong et al. 

[21] studies a stochastic train timetabling problem and assumed the passenger demand to be 

random and dynamic. 

Reviewing the literature we came to the conclusion that there are few works investigating 

the problem of train timetabling in a dynamic environment. However, none of these researches 

considered the limitations on the train and the station capacities, which is practically a 

challenging point. Based on this research gap, in this paper, an MILP model is presented for 

train timetabling problems considering capacity constraints and satisfy optimal driving policy 

with a constant running time between neighbor stations. 

 

Problem Description 
 

In this section, an optimal timetabling approach is described which aims to minimize the sum 

of the passenger waiting times. Also, we develop peak/off-peak timetable which leads to 

uncertainty on dwell time and considers structural restriction.  

 

Notations 

 
Indices 

𝑆 = {1,2, … , 𝑛} Set of station 

𝑇 = {0,1, … , 𝑝} 

Set of time instants defining the planning horizon. The time horizon is discretized 

into time intervals with the length of δ. It means that 𝑡 ∈ 𝑇 corresponds to a time 

instance that δt time units has passed since the beginning of the time horizon. 
𝑀 = {1, … 𝑚} Set of train services which can be considered either finite or infinite. 

 

Parameters  

δ 
Discretization constant by witch the planning horizon is divided into time intervals. Is the 

shortest valid time in the model and time intervals smaller than δ are not taken into account. 

𝑑𝑖𝑗
𝑡  Passenger demand between stations 𝑖 and 𝑗 at the end of time interval [𝑡 − 1, 𝑡] 

𝑇𝐷 Total passenger demand which is equal to ∑ ∑ ∑ 𝑑𝑖𝑗
𝑡

𝑗∈𝑠:𝑗>𝑖𝑖∈𝑠𝑡∈𝑇  (TD is used as a big number 

to formulate some constraints) 

𝐶𝑘 The capacity of train 𝑘 

𝐶𝑖 The capacity of station 𝑖 
ℎ𝑚𝑖𝑛 Minimum value of headway 

𝜏𝑖,𝑖+1 Time constant between station 𝑖 and 𝑖 + 1 

𝑇𝑇𝑖,𝑖+1 Total travel time between station 𝑖 and 𝑖 + 1 

𝑤𝑖 Dwell time on station 𝑖 
 

Decision variable 

𝑥𝑘𝑖𝑗
𝑡  Binary decision variable whose value is equal to one if and only if train k leaves station i to 

station j at time t. 

𝑦𝑘𝑖𝑗
𝑡  Binary decision variable whose value is equal to one if and only if at least one passenger board 

train k to leave station i to station j at time t. 
𝑢𝑘𝑖𝑗

𝑡  Integer decision variable indicating the number of passengers boarded train k from station i to 

station j. 
𝑞𝑘

𝑡  Integer decision variable indicating the number of passengers in train k at time t. 

𝑓𝑖𝑗
𝑡  Number of passengers waiting in station 𝑖 to go station 𝑗 at the end of time interval [𝑡 − 1, 𝑡] 
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Mathematical model 

 

In this section, the following mixed integer programming model can be constructed. 

 

Minimize Z =  δ ∑ ∑ ∑ 𝑓𝑖𝑗
𝑡

𝑗∈𝑆𝑖∈𝑆𝑡∈𝑇

   

𝑓𝑖𝑗
𝑡 =  𝑓𝑖𝑗

𝑡−1 + 𝑑𝑖𝑗
𝑡 +  ∑ 𝑢𝑘𝑖𝑗

𝑡             

𝑘∈𝑀

 ∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝑆: 𝑗 > 𝑖   ∀𝑡 ∈ 𝑇\{0} (1) 

𝑞𝑘
𝑡 ≤ 𝑞𝑘

𝑡−1 +  ∑ 𝑢𝑘𝑗𝑗ˊ
𝑡 − ∑ ∑ 𝑢𝑘𝑖𝑗

𝑡ˊ + 𝑇𝐷(1 − 𝑥𝑘𝑗
𝑡 )

𝑖∈𝑆:𝑗>𝑖𝑡ˊ<𝑡𝑗ˊ∈𝑆:𝑗ˊ>𝑗

 

                                     

∀𝑘 ∈ 𝑀,   ∀𝑡 ∈ 𝑇\{0}  , ∀𝑗 ∈ 𝑆 (2) 

𝑞𝑘
𝑡 ≥ 𝑞𝑘

𝑡−1 +  ∑ 𝑢𝑘𝑗𝑗ˊ
𝑡 − ∑ ∑ 𝑢𝑘𝑖𝑗

𝑡ˊ − 𝑇𝐷(1 − 𝑥𝑘𝑗
𝑡 )

𝑖∈𝑆:𝑗>𝑖𝑡ˊ<𝑡𝑗ˊ∈𝑆:𝑗ˊ>𝑗

 ∀𝑘 ∈ 𝑀,   ∀𝑡 ∈ 𝑇\{0}  , ∀𝑗 ∈ 𝑆 (3) 

𝑞𝑘
𝑡 ≤ 𝑞𝑘

𝑡−1 + 𝑇𝐷 ×  ∑ 𝑥𝑘𝑗
𝑡

𝑗∈𝑆    ∀𝑘 ∈ 𝑀 , ∀𝑡 ∈ 𝑇\{0} (4) 

𝑞𝑘
𝑡 ≥ 𝑞𝑘

𝑡−1 − 𝑇𝐷 ×  ∑ 𝑥𝑘𝑗                   
𝑡  

𝑗∈𝑆

 ∀𝑘 ∈ 𝑀 , ∀𝑡 ∈ 𝑇\{0} (5) 

𝑞𝑘
𝑡 ≤ 𝐶𝑘                                                           ∀𝑘 ∈ 𝑀 , ∀𝑡 ∈ 𝑇 (6) 

∑ 𝑓𝑖𝑗
𝑡 ≤ 𝐶𝑖                                           

𝑗∈𝑆

        ∀𝑖 ∈ 𝑆, ∀𝑡 ∈ 𝑇 (7) 

𝑢𝑘𝑖𝑗
𝑡 ≤ (∑ ∑ 𝑑𝑖𝑗ˊ

𝑡ˊ

𝑗ˊ∈𝑆;𝑗ˊ>𝑖

𝑡

𝑡ˊ=0

) 𝑥𝑘𝑖
𝑡                    ∀𝑖 ∈ 𝑆\{𝑛},   𝑗 ∈ 𝑆 ∶ 𝑗 > 𝑖 (8) 

𝑥𝑘𝑖
𝑡 ≤  ∑ 𝑥𝑘−1,𝑖   

𝑡ˊ                                         

𝑡

𝑡ˊ=0

 ∀𝑡 ∈ 𝑇 (9) 

∑ ∑ 𝑥𝑘1
𝑡

𝑘∈𝑀𝑡∈𝑇

≤ 𝑚  (10) 

∑ 𝑥𝑘𝑗
𝑡

𝑡∈𝑇

 ≤ 1                                              ∀𝑗 ∈ 𝑆 ,   ∀𝑘 ∈ 𝑀 (11) 

∑ 𝑡𝑥𝑘(𝑖+1)
𝑡  ≥  ∑ 𝑡𝑥𝑘𝑖

𝑡 + ℎ𝑚𝑖𝑛  ∑ 𝑥𝑘𝑖
𝑡

𝑡∈𝑇

        

𝑡∈𝑇

 

𝑡∈𝑇

 ∀𝑖 ∈ 𝑆 , 𝑘 ∈ 𝑀\{𝑚} (12) 

𝑇𝑇𝑖,𝑖+1 +  𝑤𝑖 =  𝜏𝑖 ∀𝑖 ∈ 𝑆\{𝑛} , 𝑘 ∈ 𝑀 (13) 

∑ 𝑡𝑦𝑖𝑗
𝑡

𝑡∈𝑇

=  𝑤𝑖 ∀𝑖, 𝑗 ∈ 𝑆  , ∀𝑡 ∈ 𝑇 (14) 

𝑤𝑖 = {
𝑤𝑖

𝑚𝑖𝑛                                  ;  𝑓𝑖𝑗
𝑡 ≤ 𝐶𝑘 − 𝑞𝑘

𝑡

𝑤𝑖
𝑚𝑖𝑛 + 0.05(𝐶𝑘 − 𝑞𝑘

𝑡 )  ;  𝑓𝑖𝑗
𝑡 > 𝐶𝑘 − 𝑞𝑘

𝑡
  (15) 

 

In this mathematical model, the objective function tries to minimize the total waiting time 

of all passengers. Constraint (1) calculates the value of 𝑓𝑖𝑗
𝑡 . This constraint implies that the 

number of passengers waiting at station i going to station j at the end of time interval [𝑡 − 1, 𝑡] 

is equal to the number of passengers waiting at the end of time interval [𝑡 − 2, 𝑡 − 1] plus the 

number of passengers entering station i at time instant t to go station j minus the number of 
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passengers who board the train at station i to go station j at time instant t. Constraints (2) and 

(3) imply that if train k is sent out at time t then the number of passengers boarded in train k at 

time t, 𝑞𝑘
𝑡 , is equal to the number of passengers boarded in train k at time t-1, 𝑞𝑘

𝑡−1, plus the 

number of passengers who alight from the train at time t. Constraints (4) and (5) state that if 

train k is not sent out at time t then 𝑞𝑘
𝑡  is equal to 𝑞𝑘

𝑡−1 because no change has been made to the 

number of passengers of the train k at time t. Constraints (6) and (7) ensure that the capacity 

constraint of trains and stations is not exceeded at any time. Constraint (8) is aimed to forces 

an upper bound on the variable 𝑢𝑘𝑖𝑗
𝑡 . None of the trains is allowed to be departed from a station 

before the departure time of its previous train that station. This fact is guaranteed using 

constraint (9). Constraint (10) is used to limit the number of trains used in the timetable. To 

ensure that each train is sent out once from the first station constraint (11) is added to the model. 

Minimum headway time constraint is demonstrated via constraint (12). Constraint (13) ensures 

that the sum of travel time and dwell time between two successive stations is fixed for each 

train. Allowable time to boarding and alighting for passengers is showed in constraint (14). The 

permissible amount of dwell time is shown in constraint (15).  

 

Numerical Example 
 

Line 4 of Tehran metro is investigated in a normal day and the mathematical model is optimized 

based on data from Tehran urban and suburban railway company. The structural and operational 

properties of this line are shown in Tables 1 and 2, respectively. 

 
Table 1. Structural properties of line 4 of Tehran metro 

Property Value 

Total path length 21 km 

Number of stations 18 

Number of active trains 13 

Number of active cars 91 

Capacity of each train 1290 people 

Interval between two successive trains 7 min 

Utilization time 5:30 – 22:30 

 

Table 2. Current timetable of line 4 of Tehran metro 

Station 
Ereme 

Sabz 
Ekbatan Azadi 

Ostad 

Moein 

Doctor 

Habibollah 
Shademan 

Depart Time 

(min) 
0 2 6 9 11 13 

Station Towhid Enghelab 
Te’atre 

Shahr 
Ferdowsi 

Darvaze 

Dowlat 

Darvaze 

Shemiran 

Depart Time 

(min) 
15 18 20 23 25 27 

Station Shohada Sheikholreeis Piroozi Nabard Niroo Havaei Kolahdooz 

Depart Time 

(min) 
30 32 34 36 38 40 

 

Numbers which is assigned to depart times start in time 0 at the first station (Erame Sabz) 

and end in time 40 at the last station (Kolahdooz). According to the objective function, the total 

waiting times of passengers are to be minimized. As shown in constraint 13, we implemented 

this model using the current timetable without change it. 

Test problems are almost the same test problems presented by Barrena et al. (2014). The 

problem has many aspects. The examples are referred to as: 𝑇𝑇 − 𝑛 − 𝑝 − 𝛿 − 𝑚 − 𝐶𝑖 − 𝐶𝑘 

where n is the number of stations, p is the planning horizon, δ is the discretization constant, m 
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is the number of trains, and finally 𝐶𝑖 and 𝐶𝑘 represent the capacity of trains and stations, 

respectively. The parameters used in these examples are listed in Table 3.  

 
Table 3. Parameters index 

Parameter n p δ m Ci Ck hmin 

Value 18 200 1(s) (4,18) (25000,39000) (1500,3000) 420(s) 

Parameter wi min 𝑓𝑖𝑗
𝑡       

Value (30,60) (0,3000)      

  

In this section, the relation between total waiting time of passengers and capacity of trains, 

number of trains, and headway are illustrated in Figs. 1 to 3, respectively.  

 

 
Fig. 1. Effect of Trains’ Capacity on Total Waiting Time 

 

It is worth mentioning that train capacity in normal situation is 1290 and multiplication of 

this number by 18 (number of station) lead to about 23000 people. If overload capacity of trains 

is considered, the number of people in each train is equal to 1600 and naturally total capacity 

will be increased. As shown in Fig. 1, increasing the capacity of trains leads to decreasing Total 

Waiting Time. However, the slope of changes decreased in greater capacities. So extreme 

increase in capacity is not economical. Since according to Tehran metro statistics, each car of 

metros price is 1 million dollars, a trade-off should be implemented between the waiting time 

and trains’ capacity.  

The next item studied in this section is the number of trains. As illustrated in Fig. 2, total 

waiting time and the number of trains are in an inverse relationship. After 18 trains, the waiting 

time is almost constant. It is noticeable that the number of active trains depends on the number 

of stations and the path length. In this example, the number of trains is variable between 4 and 

18.   
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Fig. 2. Effect of trains’ number on Total Waiting Time 

 

The next item investigated in this research is Headway, which is defined as the gap between 

departure times of two successive trains from the first station. This amount varies between 4 

and 12 in this case. Effect of headway on Total Waiting Time is shown in Fig. 3. As shown in 

this figure, the optimal value of headway is 6 minutes. We can describe this phenomenon as 

follows. If Headway has a very high amount, the time that trains dwell in stations will increase. 

So Total Waiting Time will grow. On the other hand, if Headway is less than 4 minutes, to 

avoid occurring accidents, trains must break and stop among the path. This fact leads to 

increasing the waiting time. Also, reduction of Headway needs to more trains and more 

expensive operation. 

 

 
Fig. 3. Effect of Headway on Total Waiting Time 

 

Conclusion  
 

In this paper, an optimal timetabling approach is proposed for minimizing the total waiting time 

of passengers in metro stations. The main contribution of this model is considering structural 

constraints such as trains capacity and stations capacity. Also, dwell time of trains is considered 

as a function of the number of passengers waiting in stations. We developed this model in 2 

situations namely peak and off-peak times. In peak times, if the number of passengers exceeds 
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the empty capacity of trains, the value of dwell time increase per person. To simplifying the 

timetable optimization problem, we make some assumption which comes as follows. 

Furthermore, the capacity of all stations is assumed equal to 3000. In this case effect of some 

parameters including trains capacity, number of trains, and headway on total waiting time are 

investigated. 

We implement a proposed model on Line 4 of the Tehran Metro system, to show its 

effectiveness. Some test problems were derived from literature using real data and solved by 

the GAMS-CPLEX solver. The obtained results show that total waiting time is reduced by 

increasing the capacity of trains and the number of active trains. Also, best value for Headway 

is equal to 6 minutes.  
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