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Abstract  

Increased pressure on natural resources, rising production costs, and multiple 

disposal challenges resulted in a growing global demand for integrated closed 

sustainable supply chain networks. In this paper, a bi-objective mixed-integer linear 

programming model is developed to minimize the overall cost and maximize the 

use of eco-friendly materials and clean technology. The paper evaluates the exact, 

heuristic, and metaheuristic methods in solving the proposed model in both small 

and large sizes. The sensitivity analysis was conducted on the LP-metric method as 

it outperformed the other two exact methods in solving the small size problems. 

The evaluation of LP-metric, modified ε-constraint, and TH as the exact methods 

and Lagrange relaxation algorithm as the heuristic method in terms of solution 

value and CPU time revealed the inability of exact methods in solving the large size 

problems. The best combination of effective parameters for meta-heuristic 

algorithms was determined using the Taguchi method. The evaluation of MOPSO, 

NSGA-II, SPEA-II, and MOEA/D as the metaheuristic methods by means of 

Number of Pareto Solutions (NPS), Mean Ideal Distance (MID), The Spread of 

Non-dominance Solutions (SNS), and CPU Time revealed the performance of these 

methods in solving the proposed model in a large size. The implementation of the 

VIKOR technique identified the SPEA-II as the best method among the meta-

heuristic methods. This study provides a holistic view regarding the importance of 

selecting an appropriate solution methodology based on the problem dimension to 

ensure obtaining the optimum and accurate solution within the reasonable 

processing time.   
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Introduction 
 

During the recent decades, economic merits associated with improving the product quality 

along with environmental and regulatory considerations have prompted the industrial sectors 

focusing more on sustainable practices like collecting, recovering, and recycling the products 

at the end of their useful life [1,2]. Effective consumption of resources and minimizing the 

environmental impacts have been pursued by the development of closed-loop supply chain 

(CLSC) networks [3], which made a significant contribution to the industry’s enhanced 

profitability [4]. The CLSC networks have received much attention from research scholars and 

industries to implement the economic and/or environmental considerations [5,6,7,8]. For 
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instance, the total profit in terms of construction and operational process costs were maximized 

in the CLSC networks [9,10,11,12,13]. The environmental considerations were applied mostly 

by minimizing the CO2 emission during production and transportation processes [14,15,16]. 

Based on the best of our knowledge, most of the recent studies have been focused solely on 

mathematical model development and not on optimizing the solving methods despite, its critical 

importance. Thus, this study conducted a comprehensive analysis comparing three exact, one 

heuristic, and four meta-heuristic methods in solving a bi-objective mathematical model which 

minimizes the cost and environmental issues in both small and large sizes.  

The main contribution of this study is conducting a comprehensive comparison between 

exact, heuristic, and meta-heuristic methods in solving a bi-objective problem in both small and 

large sizes. This paper presents an analysis comparing four meta-heuristic methods (MOPSO, 

NSGA-II, SPEA-II, MOEA/D), and three exact methods (LP-Metric, 𝜀-Constraint, TH). 

Furthermore, a heuristic model is implemented to demonstrate the inability of exact methods in 

solving a large size problem. The algorithms and solutions are compared based on several 

criteria including NPS, MID, SNS, and CPU time for both small and large dimensions 

problems. 

The rest of this paper is presented as follows. The literature review is presented in Section 2 

and the model description is presented in Section 3. The mathematical model is described in 

Section 4 and the solving methods are introduced in Section 5. The model performance is 

evaluated using various numerical examples which are presented in Section 6. Finally, the 

results are summarized, and future works are presented in Section 7. 

 

Literature Review 
 

Accounting for economic considerations is essential in designing the CLSC networks, but it’s 

not sufficient to fulfill the sustainability requirements. The economic considerations in 

designing the CLSC problems mainly involve minimizing the total cost or maximizing the total 

profits [11]. The study conducted by Wang and Hsu [10] presented a CLSC design problem 

that minimized the production, transportation, and fixed costs. The model developed by Devika 

et al. [17] minimized the production, transportation, handling, total opening, and purchasing 

costs. Paksoy et al. [15] minimized the CO2 cost for a multi-product CLSC network. Talaei et 

al. [18] also minimized the total CO2 emission in a CLSC design problem during the facility’s 

construction, production, transportation, and product disposal. Özceylan et al. [14] developed 

a mathematical model to minimize the total CO2 emission for the automotive industry during 

transporting the finished and returned products. Fahminia et al. [19] and Kannan et al. [20] 

minimized the total cost associated with CO2 emission during production and transportation 

processes. A large number of studies addressed both environmental and economic factors while 

optimizing the CLSC network [21,22,23,24,]. Papen and Amin [26] developed a closed-loop 

supply chain model to minimize the environmental impacts and maximize the total profits in a 

bottled water production process. They implemented a weighted sum method (WSM), distance, 

and 𝜀-constraint to solve the problem and selected the best supplier in terms of carbon footprint, 

cost, and on time delivery.  

Developing the multi-objective models for designing and optimizing the CLSC network is a 

powerful tool to address both economic and sustainability concerns. A variety of exact, 

heuristic, and meta-heuristic methods has been applied to solve the multi-objective models. A 

two-layer supply chain distribution model was presented by Validi et al. [27] to minimize the 

total CO2 emission and total costs. The MOGA-II was applied to solve this model by providing 

a set of non-dominated solutions along the Pareto frontier. Furthermore, a TOPSIS method was 

used to rank the set of solutions. The obtained results outperform the previous results from the 

existing solution methods. Niu et al. [28] developed a multi-period, multi-product, and multi-
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objective mathematical model to maximize customer satisfaction and minimize the total costs. 

To solve the model, a cooperative evolutionary method was implemented. The results 

demonstrated the great performance of the model in terms of generating a non-dominated 

solution. Khalifezade et al. [29] designed a four-echelon supply chain model with multiple 

suppliers, producers, distributors, and customers to minimize the total operating costs and 

maximize the reliability for all supply chain elements. Then they applied a novel heuristic 

approach called, comparative particle swarm optimization to solve the model in large size 

instances. The results demonstrated the efficiency of the applied heuristic solving method. 

Bottani et al. [30] developed a bi-objective mathematical model to maximize the total profit 

and minimize the lead time along the supply chain. Solving this model using the Ant Colony 

Optimization (ACO) technique revealed its performance in designing a resilient supply chain. 

Amin and Zhang [31] developed a three-objective model for a CLSC network. They maximized 

the profit and weight of suppliers and minimized the defect rates, although the environmental 

factors were not accounted. 

Few CLSC studies have considered the cost and environmental factors simultaneously while 

applying a variety of solving methods. Amin and Zhang [32] developed a mixed-integer linear 

programming model to minimize the total cost and consider the environmental factors in a 

CLSC. They applied the weighted sum method (WSM) and ε-constraint methods to solve the 

model. Alshamsi and Diabat [33] formulated a mixed-integer linear programming model to 

identify the optimal capacities of remanufacturing facilities and inspection centers, optimal 

locations for inspection and remanufacturing centers, and transportation decisions in a reverse 

supply chain. An exact method was applied to solve the problem on a large scale. Due to an 

unreasonable computation time of the conventional Benders Decomposition (BD) method, 

several accelerating methods such as logistics constraints, trust-region, restructuring of the 

problem, and Pareto-optimal cuts were added. Santibanez-Gonzalez and Diabat [34] proposed 

an upgraded Benders Decomposition Scheme to solve the remanufacturing supply chain design 

problem.  A set of authentic inequalities were introduced to accelerate the conventional Benders 

algorithm convergence and improve the lower bound quality. Quasi Pareto-optimal cuts were 

implemented to improve the convergence. Based on computational results, the improved 

Benders decomposition scheme showed a better performance than the conventional algorithm. 

Alshamsi and Diabat [35] solved the problem with a heuristic method (Genetic Algorithm) in 

a large dimension. Also, Min and Ko (2006) proposed a mixed-integer nonlinear programming 

model for a reverse supply chain network. Then they applied a genetic algorithm for a multi-

level reverse supply chain network problem. They considered the temporal and spatial 

combination of return products. The study conducted by Diabat et al. [36] considered a closed-

loop inventory-location problem. The problem was formulated to select the best distribution 

and remanufacturing centers in a form of mixed-integer nonlinear location allocation model and 

then solved by a two-phase Lagrange relaxation algorithm.  

Model Description 
 

The logistic network provided in this paper is a multi-level, multi-period, and multi-objective 

closed-loop supply chain. This network supports a wide variety of industries that are looking 

for efficient recycling plants. This logistic network involves multiple decisions regarding the 

location of production, distribution, inspection, collection, and recycling centers. Furthermore, 

it considers the inventory control policies like supply shortages at the end of each period. As 

demonstrated in Fig. 1, in the forward network, suppliers provide the raw materials; the 

products are manufactured at the production centers, distributed through distribution centers, 

and delivered to the demand markets. Similar to Papen’s study [26], we considered the 

combined production and distribution centers. In the reverse network, the returned products are 
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transported to the inspection centers, where they get divided into three groups of non-

recyclables, recyclable, and those which need to be repaired. The non-recyclable items are 

transported to the disposal centers and the recyclable items are transported to the recycling 

centers. After recycling, the recovered materials are transported to plant and distribution 

centers, and finally, get delivered to the demand market.  

 

 
Fig. 1. The proposed CLSC supply chain network 

 

In this paper, a multi-objective closed-loop logistics model for the returned products is 

presented to minimize the total cost and maximize the use of eco-friendly raw material and 

clean technology. This model identifies the potential locations for production/distribution, 

inspection, collection, and recycling centers with considering the following assumptions: 

 The model is multi-level, multi-period, and multi-product; 

 The locations of the demand markets, suppliers, and disposal centers are fixed; 

 All returned products are collected from the demand market at the collection centers; 

 The places of the potential production/distribution, inspection, and recycling centers are 

identified;  

 The numbers of facilities to be built and their capacity are determined. 

 

Mathematical Model 
 

The proposed model is formulated as a mixed-integer linear programming (MILP). The sets 

and parameters are shown below: 

 

Sets 
Supplier’s number,  S 

Locations of potential manufacturing plants and distribution center, I 
Product’s number, J 
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 Locations of demand markets,   K 
Locations of collection centers, L 
Locations of inspection centers,  A 
locations of recovery centers,   R 

Raw material’s number,  E 

Period’s number.  T 

 

Parameters 

 

Production cost of product j in period t, itA
 

The cost of transporting raw material e per km between plants and suppliers, eCS
 

The cost of transporting product j per km between markets and distribution centers, jB
 

The cost of transporting product j per km between collection centers and demand markets, jC
 

The cost of transporting product j per km between inspection centers and collection centers, jD
 

The cost of transporting product j per km between disposal centers and inspection centers, jO
 

The cost of transporting product j per km between plants and distribution centers and inspection 

centers, jCIP
 

The cost of transporting product j per km between recovery centers and inspection centers, jCIR
 

The cost of transporting recovered raw material e per km between plants and distribution centers and 

recovery centers, eCPR
 

Fixed opening cost for plant and distribution center i, iE
 

Fixed opening cost for collection center l, lF
 

Fixed opening cost for inspection center a, aI
 

Fixed opening cost for recovery center r, rL
 

Saved cost of product j in period t, jtG
 

Preparation cost of raw material e from supplier s in period t, estSC
 

Cost of inspection for product j in period t, jtCI
 

Cost of disposal for product j in period t, jtH
 

Cost of recovery for raw material e in period t, etRC
 

Cost of shortage for product j at demand market k in period t, kjtCb
 

Capacity of supplier s for product j in period t, sjtCAS
 

Capacity of plant and distribution center i for product j in period t, ijtCAP
 

Capacity of collection center l for product j in period t, ljtQ
 

Capacity of demand market k for product j in period t, kjtCAD
 

Capacity of inspection center a for product j in period t, ajtCAI
 

Capacity of recovery center r for product j in period t, rjtCAR
 

The distance between plant i and supplier s based on the Euclidean method, sit
 

The distance between plant and distribution center i and demand market k based on the Euclidean 

method, ikt
 

The distance between demand market k and collection center l based on the Euclidean method, klt
 

The distance between collection center l and inspection center a based on the Euclidean method, lat
 

The distance between inspection center a and disposal center based on the Euclidean method, at
 

The distance between inspection center a and recovery center r based on the Euclidean method, art
 

The distance between inspection center a and plant and distribution center i based on the Euclidean 

method, ait
 

The distance between recovery center r and supplier s based on the Euclidean method, rst
 

Demand of customer (demand market) k for product j in period t, kjtD
 

Disposal rate of product j, j
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Recovery rate of product j, j
 

Return rate of product j from demand market to collection center, 1R
 

Return rate of product j from inspection center to plant, 2R
 

Environmentally friendly raw material e by plant and distribution center i to produce product j in 

period t, ijetM
 

Clean technology by inspection center a to process product j in period t. ajtN
 

 

Decision Variables 
 

 Quantity of raw material e transported by supplier s for plant and distribution center i in period t, esitV
 

 Quantity of product j produced by plant and distribution center i for demand market k in period t, ijktX
 

 Quantity of returned product j from demand market k to collection center l in period t, kljtY
 

 Quantity of collected product j from collection center l to inspection center a in period t, jlatE
 

 Quantity of returned product j from inspection center a to disposal center in period t, jatT
 

 Quantity of returned product j from inspection center a to recovery center r in period t, jartU
 

 Quantity of returned product j from inspection center a to plant and distribution center i in period t, jaitS
 

 Quantity of returned raw material e from recovery center r to supplier s in period t, erstP
 

 The lack of product j at demand market k in period t, kjtLack
 

 If a plant and distribution center are located and set up at potential site i, 1, otherwise, 0, iZ
 

 If a collection center is located and set up at potential site l, 1, otherwise, 0, lW
 

 If an inspection center is located and set up at potential site a, 1, otherwise, 0, aK
 

 If a recovery center is located and set up at potential site r, 1, otherwise, 0. rR
 

 

1Min 

( ) ( ) 

( ) ( ) 

( ) 

i i l l a a r r

i l a r

est e si esit jt j ik ijkt j kl kljt

e s i t i k j t k l j t

j la jlat jt j a ajt jt j ar jart

j l a t j a t j a r t

jt jt j ai

Z E Z FW I K L R

SC CS t V A B t X C t Y

D t E H O t T CI CIR t U

G CI CIP t S

   

     

    

  

   

  

  

( ) jait et e rs erst

j a i t e r s t

kjt kjt

k j t

RC CPR t P

Cb Lack

 



 


 

 (1) 

2Max ijet esit ijkt erst ajt jlat jait jart

e i j t s k r s a j t l i r

Z M V X P N E S U
   

        
  
  

       
 

(2) 

 

The mathematical model including the two objectives of cost and eco-friendly use of raw 

material and clean technology are described as Eqs. 1 and 2, respectively. The first objective 

function minimizes the total cost. This cost includes fixed costs, operational costs, 

transportation costs, and shortage costs. The first part of Eq. 1 accounts for the 1 cost of 

constructing the production/distribution, collection, inspection, and recycling facilities. The 

second part of Eq. 1 demonstrates the transportation and operational costs for each facility [32]. 

The third part of Eq. 1 accounts for the shortage costs when the customer demand is not met. 

The second objective function accounts for using eco-friendly material and clean technology in 

production, transportation, and disposal phases. The first part of Eq. 2 considers the use of eco-

friendly materials such as recyclable materials and the second part accounts for the use of 

recyclable and renewable energy such as solar power for transportation and disposal [32,37,38]. 
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Model Constraints 

 

The constraints placed on the input and output flows to the facility are described by Eqs. 3 to 

11. Constraint (3) guarantees the total product inflow to the production/distribution center by 

all suppliers and inspection centers is equal to the total outflow from that center. Constraint (4) 

guarantees the demand of all customers in-demand markets is met. Constraint (5) guarantees 

the total inflow to all collection centers is equal to all returned products from the demand 

market.  Constraint (6) guarantees that the total inflow of each product to the inspection center 

is equal to its total outflows. Constraint (7) guarantees the outflow from inspection centers to 

the disposal centers is equal to inflows from inspection centers multiplied by the rate of 

disposal. Constraint (8) ensures that product outflows from inspection centers to all recycling 

centers are equal to the inflows from all collection centers multiplied by the recycling rate. 

Constraint (9) guarantees the outflow from inspection centers to all production/distribution 

centers is equal to the inflow multiplied by the return rate from the inspection center to the 

production/distribution center. Constraint (10) guarantees the inspection center’s inflow is 

equal to the total outflow to the recycling centers, production/distribution, and disposal centers. 

Constraint (11) guarantees the total inflow to each recycling center is equal to the total outflow 

from these recycling centers. 

 

,esit jait ijkt

e s j a j k

V S X   
 

, ,i t
 

(3) 

1+ ,ijkt kjt kjt kjt

i

X Lack D Lack  
 

, , ,k j t
 

(4) 

1R ,kljt kjt

l

Y D
 

, , ,k j t
 

(5) 

,jlat kljt

a k

E Y 
 

, , ,l j t
 

(6) 

,jat j jlat

l

T E 
 

, , ,a j t
 

(7) 

,jart j jlat

r l

U E 
 

, , ,a j t
 

(8) 

2R ,jait jlat

i l

S E 
 

, , ,a j t
 

(9) 

,jlat jait jart jat

l i r

E S U T    
 

, , ,a j t
 

(10) 

,jart erst

j a e s

U P 
 

, ,r t
 

(11) 

      

The capacity constraints are described by Eqs. 12 to 17. Constraint (12) ensures the total 

outflow from each supplier to all distribution/production centers does not surpass the supplier's 

capacity. Constraint (13) guarantees that total inflow from inspection centers and suppliers does 

not surpass the production and distribution centers’ capacities. Constraint (14) guarantees the 

total inflow of each demand market does not surpass demand capacity. Constraint (15) 

guarantees the total inflow of collection centers from all demand markets does not surpass the 

collection centers’ capacity. Constraint (16) guarantees the total inflow of each inspection 

center from all collection centers does not surpass the inspection centers capacity, and 

ultimately the constraint (17) ensures the total inflow to recycling centers by all inspection 

centers does not surpass the recycling centers capacity. Constraints (18) to (21) ensure that 
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distribution/production, collection, inspection, and recycling centers are built up with the 

specific capacity level, respectively. Constraint (22) shows that the decision variable is binary, 

and constraint (23) indicates the decision variables of the mathematical model are positive.  

 

,esit sjt

e i j

V CAS 
 

, ,s t
 

(12) 

,esit jait i ijt

e s j a j

V S Z CAP   
 

, ,i t
 

(13) 

,
kjtijkt

i j j
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, ,k t
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ljtkljt l
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, ,l t
 

(15) 

,
ajtjlat a

j l j

E K CAI 
 

, ,a t
 

(16) 

,
rjtjart r

j a j

U R CAR 
 

, ,r t
 

(17) 

1,iZ 
 

,i
 

(18) 

1,lW 
 

,l
 

(19) 

1,aK 
 

,a
 

(20) 

1,rR 
 

,r
 

(21) 

 , , , 0,1i l a rZ W K R 
, 

 (22) 

, , , , , , , , 0esit ijkt kljt jlat jat jart jait esrt kjtV X Y E T U S P Lack 
. 

 (23) 

 

Solution Methods 
 

The proposed mathematical model is solved by exact, heuristic, and meta-heuristic methods. 

Exact methods guarantee to obtain an optimal solution while other methods just guarantee to 

obtain a solution in a reasonable time. The three types of solving methods implemented in this 

study are described in detail in the following sub-sections.  

 

Exact Methods 

 

To solve the model in small size and ensure the optimum solution, three different exact methods 

including LP-Metric, modified ε-constraint, and TH are implemented. The LP-metric method 

is minimizing the relative distance between the preferred solution and the ideal solution 
*f . 

The distance between an arbitrary vector and an ideal vector is expressed as LP-norm. So, the 

optimization problem will turn to Eq. 24. Where p is a numerical value and is usually 1, 2, or 

ꝏ. To simplify the formulation, p is considered as 2 for Euclidean norm and considered ꝏ for 

Tchebycheff norm [39]. In this solving method, by changing the power in distance formulation 

and assigning various weights to the objective functions, different points on the Pareto frontier 

could be found. 

In the common ε-constraint method, all objective functions, except one, are converted to a 

constraint and an upper bound is assigned to the other objective functions. This method 

produces inappropriate Pareto solutions occasionally; therefore, this issue was addressed by 

introducing the modified version [40]. The mathematical form of the modified ε-constraint 
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method is shown in Eq. 25. Where S is the feasible region, 
( )gf x

 is the objective function 

value, gS
is the slack variable of the objective function which is converted to the constraint. 

The gr
is the objective function range which can be determined by 

max min

g g gr f f 
. The gW

is the 

weighted factor of objective functions, in a way that 1
1

p

gg
W




 and ge
is an upper bound for the 

objective function and can be calculated by optimizing the objective functions individually. 

 
1

*

*
1

( )
( )

Pk
j j P

j j

f x f
Min

f

 
 
  


 
(24) Subject to: 

 

x S

l P



    
 

1

( ) ( )
p

g g

i i

g i g
g i

w S
Max f x r

w r


 
 

   
 
 



 
(25) Subject to: 

 

( )           1,2,..., ,

,

g g g

g

f x e S g p g i

x S S R 
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 
 

 

The TH method enables the decision-maker to select a suitable solution based on objective 

function priority and the satisfaction degree. This method generates unbalanced and balanced 

solutions based on the decision-maker’s preference. The steps of this approach are as follows 

[41]: 

 

Step 1. Determine the positive ideal solution (PIS) and the negative ideal solution (NIS) for the 

objective functions. For this purpose, each objective function is solved separately as Eqs. 26 

and 27: 

 

min           1,2,....PIS

n nZ Z n 
 

(26) 

max         1,2,....NIS

n nZ Z n 
 

(27) 

 

Step 2. Calculate the membership function for the objective functions based on Eq. 28: 

 

1                               

( )                     1, 2,.....

0                              

PIS

n n

NIS
PIS NISn n

n n n nNIS PIS

n n

NIS

n n

if Z Z

Z Z
if Z Z Z n

Z Z

if Z Z

 





   



  

(28) 

 

Step 3. Change the multi-objective model to the TH model by using the TH integration function 

(Eq. 29): 

 

0max ( ) (1 ) ( )h h

h

         
 

(29) 
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Subject to: 

 

 
0

0

( )            1,2,....,

( )                and 0,1

h h n

F

  

   

 

 
 

 

Where ( )h v  indicates the satisfaction level of objective function h and  0 min ( )h h v 
 shows 

the minimum satisfaction of the objectives. 

Step 4. The single-objective models should be solved based on h and  values. The algorithm 

is completed when the decision-maker is satisfied with the solution. Otherwise, the values of 
 will change and return to step 3. 

 

Heuristic Method 

 

Heuristic methods are practical approaches that guarantee short-term and immediate solutions 

but not optimum values. These methods are generally applied when finding the optimal solution 

is impractical or infeasible. The Lagrange Relaxation Algorithm as one of the heuristic methods 

utilizes Lagrange's theorem to simplify the complex mathematical models to achieve an 

approximate solution at a logical time as demonstrated in Eq. 30. The Lagrange relaxation 

algorithm is based on relaxing the complicated constraints and adding them to the objective 

function by using the Lagrangian multiplier. Initially, the complex constraints of the problem 

are selected and relaxed and then if the relaxed constraint is violated, a penalty will be added 

to the objective function. The relaxed form of the model is shown as Eq. 31, where 
T is the 

Lagrange coefficient. Finally, the Lagrange function is considered as ( ) ( )t tL c x Ax b    . In 

most cases, the obtained solution of the relaxed mathematical model is infeasible for the original 

mathematical model. Its infeasible solution is considered for the original mathematical model 

as a lower or an upper bound. Since the optimal solution is between these bounds, the algorithm 

seeks to reduce these bounds and ultimately achieve a solution that is close to the optimal. 

Selecting the correct constraint for relaxation is critical as it has a direct impact on its 

performance. In this paper, constraint (4) of the mathematical model is selected for relaxing. 

Therefore, the relaxed model of the proposed supply chain is converted as Eqs. 32 and 33. The 

constraints (3) to (23), except the constraint (4) should be added to the constraint (33). Where 

1u is the Lagrange coefficient and is non-negative. The Lagrange relaxation algorithm starts with 

constant values of this Lagrange coefficient, which should be updated in each iteration of the 

algorithm. This paper applies the sub-gradient which to solve the Lagrange relaxation problems. 

Using the sub-gradient approach, the Lagrange coefficient in iteration C+1 is calculated as Eq. 

34, where 1

c  is the algorithm step size and is calculated as Eq. 35. The BUB and 
cUB are the 

best calculated lower and upper bounds in the iteration of C and 
c  is a coefficient between 0 

and 2. 

 

min  Tc x  

(30) 

Subject to: 

 

Ax b

x X



  
 

min ( )T Tc x Ax b 
 

(31) 
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Subject to: 

 

x X  
 

1 1 1 ijkt kjt kjt kjt

i j k t k j t k j t k j t

Min Z u X Lack D Lack 

 
     

 
   

 

(32) 

Subject to:  

  

2 2 2LB Z UB 
 

(33) 

 

1

1 1 1 1max 0, .( )c c c
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i j k t k j t k j t k j t
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   
   

 

(34) 
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






     
 

(35) 

 

Meta-Heuristic Methods 

 

One of the recent evolutions in approximate search methods is the meta-heuristic methods [42]. 

To evaluate the model performance for a large size problem, three meta-heuristic methods are 

used including multi-objective particle swarm optimization (MOPSO), Non-dominated sorting 

genetic algorithm (NSGA), and Strength Pareto evolutionary algorithm (SPEA-II). The 

MOPSO algorithm as an extension of the PSO method is introduced by Coello and Lechuga 

[48] for the multi-objective model. The MOPSO algorithm is described in the following steps 

(Figure SI-1): 

 

Step 1. Generate an initial population.  

Step 2. Separate non-dominated members and keep them to archive 

Step 3. Determine the feasible region 

Step 4. Choose a leader based on cell probability which is 

i

j

n

j n

j

e
prob

e







 , where in is the 

number of ith area, β is a selection pressure 

Step 5. Apply the MOPSO operators. Eq. 36 is used to determine the particle velocity. Where 

1C and 2C are constant numbers, ijpbest
is the best solutions, ijgbest

is the best leader, w is the 

inertial constant, 1r and 2r are the random numbers between 0 and 1, ijV
is particle velocity and 

ijx
is particle position. The new particle position is determined based on Eq. 37. 

Step 6. Update the best personal experience of each particle 

Step 7. Add non-dominated members of the current population to archive 

Step 8. Remove non-dominated archive members. 

Step 9. Remove members over archive capacity 

Step 10. If the stop condition is satisfied, stop, otherwise go back to step 3. 

 

1 1 2 2( 1) ( ( ) ( )) ( ( ) ( ))ij ij ij ij ij ijV t wV c r pbest t x t c r gbest t x t     
 (36) 

( 1) ( ) ( 1)ij ij ijX t X t V t   
 

 
(37) 
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The NSGA is an extension of the genetic algorithm for solving multi-objective problems 

[43]. This algorithm is useful for solving multi-objective problems, however, it has two 

drawbacks including high computational complexity and selecting the dominant particles. To 

address these drawbacks, the modified NSGA-II was formulated by Deb and Meyarivan [44]. 

The NSGA-II algorithm is described in the following steps (Figure SI-2): 

 

Step 1. Generate the initial population 0P  

Step 2. Apply the combination and mutations operators on 0P and generate a new population of 

0Q . 

Step 3. If the stop condition is met, stop. Otherwise, go to the next step.  

Step 4. Set t t tR P Q  . 

Step 5. Use the fast-non-dominated sorting algorithm to identify the dangling fronts of 1F , …, 

kF  

Step 6. Calculate the crowding distance for i=1, …, k, on the front iF and create the population 

1tP  based on following modes: 

 

Mode I. If 1t iP F N  
, set 1 1t t iP P F  

. 

Mode II. If 1t iP F N 
, add 1tN P 

 of solution with the lowest crowding distances to 1tP 

. 

 

Step 7. Select the parent from 1tP  based on crowding distance and apply combination and 

mutations operator 1tP  to generate a population of 1tQ  with size N. 

Step 8. Set 1t t   and go to step 3. 

 

The SPEA and SPEA-II algorithm both use an external archive to keep the non-dominated 

solutions during the searching process. The SPEA algorithm has some shortcomings in 

calculating the fitness and strength values which prompted the scholars to introduce a new 

version of SPEA-II [45]. Its steps are described as follows (Figure SI-3): 

 

EN : The largest archive of non-dominated solutions E. 

PN : Population size. 

K:  The parameter of computing density ( E PK N N 
).   

 

Step 1. Generate an initial population 0P and set 0E  . 

Step 2. Calculate the fitness value for each solution i in set of t tP E based on 

&
( ) ( )

ij P j i
R i s i




 

Step 2.1. Calculate the raw fitness by using &
( ) ( )

i ij P E j i
R i s i

 


, where ( )s i shows the 

strength of obtained solution from 
 ( ) &t ts i j j P E i j  

. 

Step 2.2. Calculate the solution density by using 

1
( )

2k

i

D i



  ,where 

k

i  is the distance 

between the solution i and the nearest neighbor k. 

Step 2.3. Obtain the fitness value by using ( ) ( ) ( )F i R i D i  . 
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Step 3. Copy all non-dominated solutions from set t tP E  to set 1tE  .  

Step 4. If stop condition is satisfied, stop and report the 1tE   solution, otherwise go to next step. 

Step 5. Use the dual competition methods to select the parents from 1tE  set. 

Step 6. Use the combination and mutation operators to produce PN  (Population size) and copy 

the offspring to 1tP   and go to step 2. 

The Multi-objective evolutionary algorithm by decomposition (MOEA/D) algorithm was 

developed by Zhang and Li [45].  In this algorithm, the multi-objective problem divides into 

several sub-optimization problems and optimized each of them. In this method, a weighted 

vector is defined for each sub-problem and then combined with the objective functions. 

Theoretically, each of the sub-problems depicts a solution from the Pareto front at the end of 

the search. Its steps are described as follows (Figure SI-4): 

 

Step 1. Initialization 

Step 1.1. Set PE  ,  where PE is an archive of approximated solutions 

Step 1.2. Generate 
1,..., nw w  uniformly and calculate the Euclidian distance between them. 

Set 
 1( ) ,..., QA i i i

 for 1,...,i n  and define 
1 ,..., Qii

w w  

Step 1.3. Create an initial population of solutions 
1,..., nx x and calculate their objective 

functions. 

Step 1.4. Set ideal vector z. 

Step 2. Update (main loop): for 1,...,i n : 

Step 2.1. Create a new solution y in conjunction with neighborhood solutions in 
 1 ,..., Qii
x x

 

Step 2.1.1. Select two vectors y1 and y2 randomly from neighborhood solutions of 

 1 2, ,..., ,...,i Qx x x x
. 

Step 2.1.2. Create a new solution vector 1( ,..., )my y y  by using crossover operator  

Step 2.1.3. If random number is less than the mutation probability mP , modify the new 

solution by using mutation operator  

Step 2.2. Update the ideal vector by setting 
( ) ( )jz j f y

 when 
( ) ( )jz j f y

  

Step 2.3. Update the current solution by setting 
jx y  and ( )jF x y , when 

( , ) ( , )te j te j jg y w z g x w z
. 

Step 2.4. Update pE
set by adding y to pE

and removes the dominant vectors 

Step3. If stop condition is satisfied, stop, otherwise, go to step 2. 

 

Computational Results 
 

Fifteen different numerical examples are utilized in both small and large sizes to evaluate the 

exact and heuristic methods in terms of solution value and CPU Time. The meta-heuristic 

methods are evaluated by means of Number of Pareto Solutions (NPS), Mean Ideal Distance 

(MID), The Spread of Non-dominance Solutions (SNS), and CPU Time. Similar to the study 

conducted by Kannan et al. [20] small, medium, and large sizes are determined based on the 

model index. If the index of the problem is less than 50 or 60, the problem is considered as 

small size, for the indexes greater than 80 or 90, the problem is considered as a large size 

problem, and indexes between 60-80 demonstrated the medium size problem. 
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Evaluation of Exact Methods 

 

Initially, 15 numerical examples are presented in small size and solved by LP-metric, TH, and 

ε-constraint methods (as shown in Table SI-1). The input data for the TH method are as 
0.25 

, 1 0.55  , and 2 0.45  . To solve the mathematical model in small dimensions, the GAMS 

software version 24.1.3, CPLEX solver, and a system with specifications CPU=Cori7 6700 HQ 

and RAM=16 GIG DDR4 are utilized. Each objective function is solved individually to obtain 

an exclusive solution as shown in Fig. 2.  

 

 

 
Fig. 2. Objective function values in 15 numerical examples 

 

As demonstrated in Fig. 2 the first and second objective functions have a trivial difference 

in minimizing the total costs and maximizing the eco-friendly usage of raw material.  It is also 

clear that the LP-metric method has better performance rather than two other methods due to 

its lower values for the first objective function (minimization objective) and higher values for 

the second objective function (maximization objective). The difference between the worst and 

best values for the first and second objective functions is calculated for all exact solving 

methods using Eq. 38 (Table SI-2 to SI-3). The superiority of the LP-metric method compared 

to the other two exact methods is proved as it has resulted in the least deviation from the best 

value. The LP-Metric method has the minimum total deviation (1.9) and TH has the maximum 

total deviation (27.4) among these three methods, so the LP-metric is selected as the best 

method. 
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The sensitivity analysis is performed to investigate the impact of fluctuations of the model’s 

parameters on objective functions’ values. This analysis is conducted only on the LP-Metric 

method as it was selected as the best exact method following the least deviation evaluation. For 

this purpose, three scenarios are defined by 70%, 100%, and 130% variations of nominal 

parameters’ values [55]. As demonstrated in Fig. 3, in the scenario of 70% fluctuation, the 

production cost ( jtA
) saved cost ( jtG

), customer demand ( kjtD
), and the products return rate (

1R ) have the highest impacts on the first objective function. However, the environmentally 

friendly raw materials ( ijetM
)and the costumers’ demand ( kjtD

) have the highest impacts on the 

second objective function under the 70% fluctuation scenario. For the second scenario (130%), 

jtA
, 1R and kjtD

 have the highest impacts on the first objective function and similar to the first 

scenario (70%), ijetM
 and kjtD

 have the highest impacts on the second objective function.  
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Fig. 3. Sensitivity analysis for two objective functions at: a)70% and b)130% variations 

 

Evaluation of a Heuristic Method 

 

The heuristic algorithms are generally utilized to address the increased time consumption in 

solving large-size problems. The CPU Time could be reduced by modification of the problem 

structure using the Lagrange relaxation algorithm. To evaluate this proposed algorithm, the 

mathematical model is solved in small and large sizes and compared with a reference value 

which is the exact solution obtained by GAMS software for a small-size example. However, 

using the GAMS software is very challenging and time-consuming to solve the large-size 

examples. The input values for the numerical examples are shown in Table SI-4, all of which 

are based on uniform distribution. To determine the values for the required parameters in the 

Lagrange relaxation algorithm, the maximum iterations is considered as 20, other parameters 

are as follows 
0 1.5  ,  

0 2  ,  1 0.2u  , and  0.1  . If 
0  does not improve to the lower bound 

of the algorithm after 5 iterations, it will be reduced to half of its previous value, and this process 

will continue until the value of  reaches 0.01.  

The exact results obtained by GAMS software are compared with the Lagrange relaxation 

algorithm’s results. For this purpose, 10 different numerical examples are defined in small size 

as shown in Table SI-5. The CPU Time and difference between exact and heuristic solution are 

considered for the comparison. As shown in Table 1, the mean difference between the exact 

and heuristic method is 30.5. The largest difference between the exact and heuristic method is 

52.4, and the least difference is 24.2.  The small difference between the results obtained from 

exact and heuristic methods (first criteria) indicates the effectiveness of the Lagrange algorithm. 

Furthermore, the average solving time for the exact method is 2.7 seconds; while for the 

proposed heuristic method is only 0.1 seconds. Our analysis revealed that the Lagrange 

algorithm outperforms the exact method in terms of both CPU Time and solution value.  
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Table 1. The results of Lagrange algorithm and exact methods in solving the small numerical examples 

Numerical examples 
Value of objective function (MU) CPU Time (s) 

GAMS Lagrange Percentage of difference GAMS Lagrange 

1 7254531.27 5495703.37 24.24 0.14 0.01 

2 11615230.00 8737460.21 24.77 0.43 0.03 

3 13789120.00 10213930.00 25.92 0.81 0.04 

4 11029330.00 8113580.21 26.43 1.06 0.04 

5 27072010.00 19733300.00 27.10 2.46 0.11 

6 23049280.00 16652010.00 27.75 4.90 0.17 

7 48211330.00 35208950.00 26.97 4.59 0.15 

8 12238380.00 7963636.44 34.92 3.39 0.14 

9 23902220.00 11380060.00 52.38 5.40 0.23 

10 28281110.00 18515190.00 34.53 3.78 0.12 

Average 30.50 2.70 0.10 

             

The performance of the LP-metric method is compared with the Lagrange relaxation 

algorithm in solving the large size problems. Ten numerical examples are implemented for this 

comparison as shown in Table SI-6. The difference between the lower and upper bounds of the 

algorithm is used as a criterion to evaluate the algorithm's performance. As shown in Table 2, 

the average difference between the upper and lower bounds of the Lagrange algorithm is 2.015. 

Although the exact method is not able to obtain the optimal solution during a predetermined 

time of 3000 seconds, the Lagrange relaxation algorithm obtains the optimal value in a 

reasonable time with an average of 1700.99 seconds. 

 
Table 2. Results of Lagrange algorithm and exact algorithm on large numerical examples 

Numerical examples 
Value of objective function (MU) 

CPU Time (s) 
Lower bond Upper bond Difference% 

1 84124521 87524522 3.885 1155.013 

2 78125642 78625642 0.636 1279.191 

3 95438652 95732543 0.307 1504.924 

4 101253254 103453254 2.127 1156.164 

5 132575623 136552821 2.913 2004.687 

6 105585632 106558582 0.913 1677.318 

7 112585756 114582565 1.743 649.720 

8 138556252 145622623 4.853 2102.065 

9 123055362 124478532 1.143 2545.151 

10 127104771 129214859 1.633 2935.664 

Average 2.015 1700.99 

 

Evaluation of Meta-heuristic algorithms in solving the large size problems 

 

The performance of four meta-heuristic algorithms including MOPSO, NSGA-II, SPEA-II, and 

MOEA/D in solving 15 different large-size numerical examples is evaluated. The evaluation is 

conducted through the determination of the Number of Pareto Solutions (NPS), Mean Ideal 

Distance (MID), The Spread of Non-dominance Solutions (SNS), and CPU Time.  

(A) Number of Pareto Solutions (NPS): This criterion calculates the number of non-dominated 

solutions which are obtained each time by applying the algorithm. According to this criterion, 

the greater number of non-dominated solutions shows that the algorithm works better. 

(B) Mean Ideal Distance (MID): The shows the distance between Pareto points and the ideal 

point for each algorithm. The 
max

,i totalf
 and

min

,i totalf
 are the highest and lowest values of the objective 

functions and n is the number of Pareto points. Eq. 39 shows the coordinates of the ideal point 

( 1

bestf , 2

bestf ). The lower value of this index indicates the superiority of the algorithm. 
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(C) The Spread of Non-dominance Solutions (SNS): This criterion calculates the dispersion 

between the set of non-dominated solutions which are obtained by the algorithm, and is 

calculated by Eq. 40. The dispersion of the solution is higher and more desirable for the greater 

SNS values. 
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(40) 

 

(D) CPU Time: The computational time of the algorithm is one of the most crucial indicators 

in the efficiency of each meta-heuristic algorithm. 

 

Setting the algorithm parameters using Taguchi method 

Converging to the global optima and avoid of being trapped in local optima is highly 

influenced by setting the initial model parameters and selecting the operator’ types [49]. The 

best combination of effective parameters for Meta-heuristic algorithms is determined by 

implementing the Taguchi method [50,51,52,53]. The Taguchi method is applied to identify 

and minimize the effective parameters for MOPSO, NSGA-II, SPEA-II, and MOEA/D 

algorithms. Porkar et al. [54] conducted the Taguchi method based on the S/N indicator and 

determine the parameter’s value for NSGA-II and MOPSO methods. The main advantage of 

the Taguchi method compared to the other experimental methods is the reduction of both cost 

and processing time (Tortum et al., 2007). In this method, Eq. 41 is used to reduce the 

perturbation around the especial objective and determine the effective parameters.  
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2
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S y

N S
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                              (41) 

 

In order to determine the level of input parameters (low, medium, and high) for meta-

heuristic algorithms, the Taguchi method in MINITAB 19 based on average ratio is 

implemented and results are summarized in Table 3. After comparing these values, the 

parameters' optimum values are determined (Table SI-7 and Figure SI-5), and the model is 

solved. 
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Table 3. Setting the proposed algorithm parameters based on three levels 

Algorithm Parameters Low Medium High Ideal 

MOPSO 

Max iteration 60 80 100 80 

Population Size 50 70 90 90 

Repository Size 80 90 100 100 

Inertia Weight 0.1 0.3 0.4 0.1 

Number of Grids per Dimension 3 4 5 3 

Inflation Rate 0.1 0.3 0.5 0.1 

Leader Selection Pressure 0.5 1 2 0.5 

Deletion Selection Pressure 0.5 1 2 2 

Inertia Weight Damping Rate 0.75 0.85 0.95 0.75 

Personal Learning Coefficient 0.5 1 2 2 

Global Learning Coefficient 0.5 1 2 2 

Mutation Rate 0.1 0.3 0.5 0.1 

NSGA-II 

Max iteration 60 80 100 100 

Population Size 50 70 90 90 

Crossover Percentage 0.5 0.7 0.9 0.5 

Mutation Percentage 0.2 0.4 0.6 0.2 

Mutation Rate 0.01 0.02 0.03 0.01 

SPEA-II 

Max iteration 60 80 100 100 

Population Size 50 70 90 90 

Archive Size 80 90 100 90 

Crossover Percentage 0.5 0.7 0.9 0.9 

Mutation Percentage 0.1 0.3 0.5 0.5 

MOEA/D 

Max iteration 60 80 100 80 

Population Size 50 70 90 90 

Archive Size 80 90 100 80 

Number of Neighbors 10 20 30 10 

Crossover Percentage 0.1 0.3 0.5 0.1 

 

The result obtained through the implication of described meta-heuristic algorithms (Table 4) 

was statistically analyzed in terms of NPS, MID, SNS, and CPU time at a 95% confidence 

interval. This statistical analysis demonstrated the MOEA/D algorithm as the best method 

among applied meta-heuristic algorithms in terms of NPS and SNS (p-value<0.05). However, 

the SPEA-II algorithm performed better in terms of MID and CPU Time (p-value<0.05). 

Furthermore, a VIKOR technique is implemented to select the best algorithm. This method was 

developed for the multi-criteria optimization of complex systems and is used in decision-

making with non-consistent criteria [46,47]. Since the results of this ranking depend highly on 

criteria weight, the VIKOR algorithm is implemented with different weights. The VIKOR 

analysis demonstrated the SPEA-II as the best algorithm for a majority of numerical examples 

(Table 5). 
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Table 4. The results of implementing the four algorithms 

Numerical 

Example 

MOPSO NSGA-II SPEA-II MOEA/D 

NPS MID SNS Time(s) NPS MID SNS 
Time 

(s) 
NPS MID SNS 

Time 

(s) 
NPS MID SNS 

Time 

(s) 

1 7 0.57 0.24 140.13 17 0.64 0.91 198.32 17 0.67 0.85 162.57 32 0.84 1.86 356.11 

2 5 0.81 0.33 191.35 14 0.57 0.93 210.87 19 0.67 1.05 163.91 32 0.92 1.90 244.52 

3 14 0.65 1.85 472.21 7 0.57 0.82 181.85 11 0.73 0.76 136.53 29 0.74 2.47 191.03 

4 9 0.79 0.66 80.64 16 0.65 1.06 115.35 18 0.54 0.90 95.62 33 0.81 1.79 142.13 

5 8 1.10 0.28 150.75 7 0.68 0.70 186.41 16 0.65 0.96 136.50 27 0.89 1.09 197.22 

6 4 0.96 0.09 856.31 11 0.67 0.67 508.04 7 0.65 0.69 411.84 27 0.80 1.71 601.90 

7 8 0.91 0.27 876.31 14 0.67 0.68 278.22 16 0.61 0.77 191.11 26 0.53 2.02 296.94 

8 7 1.00 0.01 786.31 16 0.57 0.77 99.91 16 0.64 0.85 112.07 23 1.18 0.82 112.93 

9 4 0.80 0.65 658.31 21 0.54 0.96 111.57 17 0.65 0.82 91.27 24 0.71 1.84 130.50 

10 9 0.96 0.33 440.26 14 0.70 0.69 235.91 18 0.66 0.87 151.52 28 0.68 1.78 358.37 

11 9 0.76 0.62 580.12 18 0.62 0.90 84.81 14 0.64 0.85 69.94 29 0.92 2.03 119.55 

12 10 0.74 0.77 161.91 13 0.63 0.82 122.25 15 0.68 0.76 71.81 34 0.87 2.09 99.10 

13 9 0.82 0.49 152.87 13 1.06 0.30 68.87 19 0.66 1.08 69.81 28 0.82 2.18 62.36 

14 5 0.80 0.49 147.90 16 1.08 0.30 97.68 12 0.57 0.96 66.39 27 0.75 1.10 97.26 

15 7 0.86 0.74 362.83 9 0.63 0.76 192.36 13 0.52 0.99 161.60 31 0.85 1.88 227.42 

Average 7.667 0.84 0.52 478.24 13.733 0.69 0.75 179.49 15.2 0.64 0.88 139.50 28.667 0.82 1.77 215.82 

 
Table 5. Results of VIKOR algorithm 

Numerical Examples W1 W2 W3 W4 Best algorithm 

1 0.40 0.20 0.20 0.20 SPEA-II 

2 0.30 0.20 0.20 0.30 SPEA-II 

3 0.30 0.20 0.20 0.30 SPEA-II 

4 0.25 0.25 0.25 0.25 MOEA/D 

5 0.25 0.50 0.25 0.75 MOEA/D 

6 0.20 0.40 0.10 0.30 SPEA-II 

 

Conclusion  
 

The growing industry demand for sustainable manufacturing processes while maintaining 

profitability has prompted the development of closed-loop supply chain (CLSC) networks. In 

this study, a multi-objective, multi-product, multi-level, and multi-period closed-loop supply 

chain is developed. This bi-objective model is formulated as a mixed-integer linear 

programming to minimize the costs and maximize the eco-friendly usage of raw material and 

clean technology. A comprehensive comparison between exact, heuristic and meta-heuristic 

methods in solving the small and large-size problems is conducted. The implemented exact 

methods including the LP-metric, modified ε-constraint, and TH demonstrated an inability in 
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solving the large size problems, unlike the small size problems. The Lagrange relaxation 

algorithm as the heuristic method outperformed the exact methods in terms of solution value 

and CPU time in solving the large-size problems. The meta-heuristic algorithms including 

MOPSO, NSGA-II, SPEA-II, and MOEA/D well performance in solving the model in a large 

size problem, demonstrating the best performance through the SPEA-II method. The results 

indicate the capability of meta-heuristic methods in an efficient solving of large-size CLSC 

problems. Future suggestions that will consider for this paper include I) Using fuzzy decision 

methods and robust optimization methods to deal with uncertainty; II) Implementing the 

proposed model in a real case study and examining its flexibility; III) Considering other 

environmental criteria as well as the social assessment indicators in making the objective 

functions; IV) Considering the reliability as well as the quality index of final and return items 

in the supply chain of this paper; and, V) implementing the Robust methods for overcoming the 

innate uncertainty in some parameters.  
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