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Abstract 

The purpose of this paper is to construct Boolean rings from multirings. In this 

regards, a method to construct a multigroup(multiring) on a given non-empty set, are 

introduced and its properties has been investigated. Also, an equivalence relation on a 

multiring are introduced and it is extended to an smallest strongly regular  equivalence 

relation, such that its quotient  space be a commutative Boolean ring with identity. 

Finally, the transitivity of this relation based on complete parts are   proved. 
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Introduction 

The theory of   hyperstructures has been introduced 

by Marty in 1934 during the 8thCongress of the 

Scandinavian Mathematicians [1]. 

Hyperstructures have many applications to several 

sectors of  both pure and applied sciences, especially in 

atomic physics and in harmonic analysis and complex 

hypernetworks [2,3]. The notation of hyperring is one of 

important hyperstructures and  was introduced by 

Krasner [4], who used it as a technical tool in his study 

on the approximation of valued fields. Hyperring is a 

structure generalizing that of a ring, but where the 

addition is an  composition, however a  

hypercompositions, that is, in hyperrings the sum and 

the product of two elements is not an element but a 

subset. 

Fundamental relations are one of the main tools in 

algebraic hyperstructures theory by which 

hyperstructures are converted to structures as it is a 

bridge between of algebraic structures and algebraic 

hyperstructures. It is the smallest equivalence relation 

on a hyperstructure such that the quotient of 

hyperstructure via this relation is a corresponding 

(fundamental) structure. The fundamental relations on 

(semi) hypergroups have been studied by many authors, 

for example see Corsini [5], Hamidi [6,7], Freni [8], 

Leoreanu-Fotea et al. [9]. The fundamental relation on a 

hyperring was introduced by Vougiouklis [10]. Davvaz 

et al.[11- 13] defned a new strongly regular equivalence 

relation on a hyperring, and they proved that the 

quotient of hyperring on this relation is a commutative 

ring. In [14], R. Ameri, et al. generalized the work of 

Freni to hyperrings and introduce a new relation θ on a 

given (semi) hyperring  𝑅 and showed 𝜃∗ is strongly 

regular relation and a quotient 
𝑅

𝜃∗
 is a commutative 

(semi) ring which 𝜃∗ is the transitive closure of the 

relation 𝜃. 

The notions of multigroups, multirings and their 

corresponding reduced versions introduced by Marshall 

in [15,16] and provide a convenient framework to study 

the reduced theory of quadratic forms and spaces of 
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orderings. A multiring is just a ring with a multivalued 

addition and spaces of signs which are also known as 

abstract real spectra, objects which arise naturally in the 

study of constructible sets in real geometry [17,18], are 

shown to be multirings of a particular sort. All of these 

objects are very natural and very useful, although they 

are not at all widely known. For more study see [19,20]. 

In this paper, we try to generalize the concept of 

rings to multirings and to describe some of their 

properties. We further, investigated the results of 

multirings and tried to compare them with some types 

of hyperrings. Indeed, we worked on the construction of 

multigroups and multirings based on main properties of 

groups and commutative rings. The main purpose of this 

study was to make a connection between multirings and 

commutative rings. So we introduce a novel strongly 

regular relation on multirings such that the quotient of 

multirings on this relation would be a commutative ring. 

Moreover, we sought  and compared the differences and 

similarities between of famous fundamental relations on 

multirings and our novel rings were obtained from the 

quotient of multirings on this strongly regular relation 

while, on others, a strongly regular relation was not a 

Boolean ring. 

 

Preliminaries 

In this section, we are going to review some 

definitions and results [1,3,10,15,16], which are 

required in the following. 

Let 𝑅 be a non-empty set and 𝑃∗(𝑅) = {𝑆 | ∅ ≠ 𝑆 ⊆
𝑅}. Every map +∶ 𝑅 ×  𝑅 →  𝑃∗(𝑅) is called a 

hyperoperation and for all 𝑥 and 𝑦 of 𝑅, +(𝑥, 𝑦) is 

called the hyperproduct of 𝑥 and 𝑦. A binary 

hyperstructure (𝑅, +) is called a hypergroupoid and 

𝐴 +  𝐵 = ∪
𝑎∈𝐴,𝑏∈𝐵

𝑎 + 𝑏 , where ∅ ≠  𝐴, 𝐵 ⊆  𝑅. Recall 

that a hypergroupoid (𝑅, +) is called a semihypergroup 

if ∀ 𝑥, 𝑦, 𝑧 ∈  𝑅, (𝑥 +  𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)  and a 

semihypergroup (𝑅,+) is called a hypergroup if satisfes 

in the reproduction axiom, i.e. ∀ 𝑥 ∈  𝑅, 𝑥 + 𝑅 =  𝑅 +
𝑥 =  𝑅. A commutative hypergroup (𝑅, +) (∀ 𝑥, 𝑦 ∈
 𝑅, 𝑥 + 𝑦 =  𝑦 + 𝑥) is called a canonical hypergroup, 

provided that (i) it has a scalar identity 0 (∀ 𝑥 ∈  𝑅,
0 + 𝑥 =  𝑥 + 0 =  {𝑥}), (ii) every element has a unique 

inverse, (∀ 𝑥 ∈  𝑅, there exists a unique – 𝑥 ∈  𝐺, such 

that 0 ∈  𝑥 + (−𝑥) ∩ (−𝑥) + 𝑥), (iii) 𝑥 ∈  𝑦 +  𝑧 

implies 𝑦 ∈  𝑥 + (−𝑧) and 𝑧 ∈  −𝑦 +  𝑥 and we will 

denote it by (𝑅, +,−, 0). A system (𝑅, +,·, −, 0, 1) is 

called a multiring if (i) (𝑅, +,−, 0) is a canonical 

hypergroup (commutative multigroup), (ii) (𝑅,· ,1) is a 

commutative monoid (" · " is a binary operation on 𝑅 

which is commutative and associative and 𝑥 ∙ 1 =  𝑥,
∀ 𝑥 ∈  𝑅), (iii) 𝑥 ·  0 =  0, ∀ 𝑥 ∈  𝑅, (iv) 𝑥 ·  (𝑦 +

 𝑧)  ⊆  𝑥 ·  𝑦 +  𝑥 ·  𝑧. A system (𝑅, +,·, −, 0, 1) is 

called a general hyperring if (i) (𝑅, +,−, 0) is a 

hypergroup, (ii) (𝑅,·, 1) is a semihypergroup (iii) 

∀ 𝑥, 𝑦, 𝑧 ∈  𝑅 𝑥 ·  (𝑦 +  𝑧)  =  𝑥 ·  𝑦 +  𝑥 ·  𝑧 and 

(𝑥 +  𝑦)  ·  𝑧 =  𝑥 ·  𝑧 +  𝑦 ·  𝑧. A map 𝑓 ∶  𝑅 →  𝑅′ is 

said to be a multiring 

homomorphism if, for all 𝑥, 𝑦 ∈  𝑅, we have (i) 

𝑓(𝑥 +  𝑦)  ⊆  𝑓(𝑥)  +  𝑓(𝑦), (ii) 𝑓(𝑥 ·  𝑦)  = 
𝑓(𝑥)  ·  𝑓(𝑦), (iii) 𝑓(−𝑥)  =  −𝑓(𝑥), (iv) 𝑓(0)  =  0 

and 𝑓(1)  =  1. 

 

Let (𝑅, +,⋅) be a hyperring and 𝜌 be an equivalence 

relation on 𝑅. Letting 
𝑅

𝜌
= {𝜌(𝑟)|𝑟 ∈ 𝑅}, be the set of all 

equivalence classes of 𝑅 with respect 𝜌. Define 

hyperoperations ⊕ and ⊗ as follows: 

𝜌(𝑎) ⊕ 𝜌(𝑏) =  
{𝜌(𝑐) | 𝑐 ∈ 𝜌(𝑎)  +  𝜌(𝑏)} and 

𝜌(𝑎) ⊗ 𝜌(𝑏) =  
{𝜌(𝑐) | 𝑐 ∈ 𝜌(𝑎). 𝜌(𝑏)} 

In [10] it was proved that ( R

,⊕,⊗) is a ring if and 

if only 𝜌 is strongly regular. The smallest equivalence 

relation, 𝛾∗on 𝑅 such that (
𝑅

𝛾∗
,⊕,⊗) is a ring is called 

fundamental relation. Let 𝑈 denote the set of all finite 

sum of  finite products of elements of 𝑅. Define relation 

𝛾 on 𝑅 by 

𝑎𝛾𝑏 ⇐⇒ ∃𝑢 ∈  𝑈 ∶  {𝑎, 𝑏}  ∈ 𝑢 
In [11] Davvaz, et.al defined a fundamental relation 

α on every hyperring as follow: 𝑥𝛼𝑦 ⇔
∃𝑛, 𝑘1, 𝑘2, . . . , 𝑘𝑛 ∈ ℕ, ∃𝜏 ∈ 𝑆𝑛 and 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘 ∈
𝑅, ∃𝜏1  ∈ 𝑆𝑘1, 𝜏2  ∈ 𝑆𝑘2, . . . , 𝜏𝑛 ∈ 𝑆𝑘𝑛 such that 𝑥 ∈

∑ ∏ 𝑥𝑖𝑗
𝑘𝑖
𝑗=1

𝑛
𝑖=1  and 𝑦 ∈ ∑ 𝐴𝜏𝑖

𝑛
𝑖=1 , where 𝐴𝑖= ∏ 𝑥𝑖𝜏𝑖(𝑗)

𝑘𝑖
𝑗=1 . 

If 𝛼∗ is the transitive closure of 𝛼, then 𝛼∗ is the 

smallest strongly regular relation on 𝑅 such that 𝑅 𝛼∗⁄  is 

a commutative ring. Fundamental relation plays an 

important role in theory of algebraic hyperstructure. (for 

more see [10,14]). 

 

Construction of multigroups and multirings 

In this section, we are to introduce the concept of 

Boolean multigroup and Boolean multiring and for the 

given arbitrary set, constructed at least a multigroup and 

a multiring. We introduce some example of multirings 

that are not hyperring. 

 

Theorem 1. Let 𝑅 be a nonempty set and |𝑅|  ≥ 4. 

Then there exists a binary hyperoperation “ + " on 𝑅, 

0 ∈ 𝑅 and a function −:𝑅 → 𝑅 such that (𝑅, +,−, 0) is 

a commutative multigroup. 

 

Proof. Let 𝑅 be an arbitrary set, fixed 𝑎0  =  0 ∈ 𝑅 
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and 𝐶3  =  {𝑎1, 𝑎2, 𝑎3}  ⊆ 𝑅. Now for all 𝑎𝑖 , 𝑎𝑗 ∈ 𝑅, we 

define a hyperoperation “ + " on 𝑅 as follows: 

 

𝑎𝑖 + 𝑎𝑗 = 

{
 

 
𝑅\𝐶3 𝑖 = 𝑗 ≠ 0,

𝑅\(𝐶3 ∪ {0}) 𝑖 ≠ 𝑗 ≥ 4,

 𝐶3\{𝑎𝑖 , 𝑎𝑗}

{𝑎𝑖}

1 ≤ 𝑖 ≠ 𝑗 ≤ 3,
1 ≤ 𝑖 ≤ 3 𝑎𝑛𝑑 𝑗 ≥ 4

 

 

 

where for all 𝑎𝑖 , 𝑎𝑗 ∈ 𝑅, 𝑎𝑖 + 𝑎𝑗 = 𝑎𝑗 + 𝑎𝑖 and 𝑎𝑖 +

0 =  {𝑎𝑖}. By a manipulation it is easy to verify that 

(𝑅, +,−, 0) is a commutative multigroup. 

 

Example 2. Let 𝑅 =  {0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}. Then 

(𝑅, +,−, 0) is a commutative multigroup as in Theorem 

1, as follows: 

 

1 2 3 4 5

1 2 3 4 5

1 1 3 2 1 1

2 2 3 1 2 2

3 3 2 1 3 3

4 4 1 2 3

5 5 1 2 3

0 a a a a a

0 0 a a a a a

a a T a a a a

a a a T a a a

a a a a T a a

a a a a a T T'

a a a a a T' T



 

 

where, T =  {0, 𝑎4, 𝑎5} and T′ =  {𝑎4, 𝑎5}. 
 

Defnition 3.  

Let (𝑅, +,⋅, −, 0, 1) be a multiring. Then 

 

(i) multigroup (𝑅, +,−, 0) is called a 

Boolean multigroup, if for all 𝑥 ∈ 𝑅, we have 

0 ∈ 𝑥 +  𝑥, 

(ii) multiring 𝑅 is said to be a Boolean 

multiring, if for all 𝑥 ∈ 𝑅, we have 𝑥 ⋅ 𝑥 =  𝑥.  

 

In the following, we present some examples of  

Boolean multigroups and Boolean multirings. 

 

Example 4. 

(i) Let 𝑅 =  {0, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑘}. Consider 

the hyperoperation + on 𝑅 as follows: 

0 b c d e f g h k

0 0 b c d e f g h k

b b {0,k} h g f e d c b

c c h {0,k} f g d e b c

d d g f {0,k} h c b e d

e e f g h {0,k} b c d e

f f e d c b {0,k} h g f

g g d e b c h {0,k} f g

h h c b e d g f {0,k} h

k k b c d e f g h 0



 

It is easy to see that check that (𝑅, +,−, 0) is a 

commutative Boolean multigroup. 

(ii)  Let 𝑅 =  {0, 1, 𝑏, 𝑐, 𝑑}. Then                

(𝑅, +,⋅, −, 0, 1) is a Boolean multiring as follows: 

(iii)  

 

0 1 b c d

0 0 1 b c d

1 1 {0,d} c b 1
,

b b c {0,d} 1 b

c c b 1 {0,d} c

d d 1 b c {0,d}



 

 

0 1 b c d

0 0 0 0 0 0

1 0 1 b c d

b 0 b b d d

c 0 c d c d

d 0 d d d d



 

 

 

Since 𝑏 ∙ (𝑐 +  𝑑) = {𝑑} ⊂ {0, 𝑑} =  𝑏 ∙ 𝑐 +  𝑏 ∙ 𝑑, 

we get that 𝑅 is not a hyperring. 

(iv) Let 𝑅 =  {0, 𝑎, 1}. Then (𝑅, +,⋅, −, 0, 1) is 

a Boolean multiring as follows: 

 

0 1 a 0 1 a

0 0 1 a 0 0 0 0
,

1 1 R {1,a} 1 0 1 a

a a {1,a} R a 0 a a

 

 
 

Since 𝑎 ∙ (𝑎 + 1) = {𝑎} ⊂ 𝑎 ∙ 𝑎 +  𝑎 ∙ 1 =  𝑅, we 

get that it is not a hyperring. 

(v) Let 𝑅 =  {0, 𝑎, 1}. Then (𝑅, +,⋅, −, 0, 1) is 

a Boolean multiring as follows: 
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0 1 a 0 1 a

0 0 1 a 0 0 0 0
,

1 1 {0,a} 1 1 0 1 a

a a 1 {0,a} a 0 a a

 

 

 

Since 𝑎 ∙ (𝑎 +  1)  =  {𝑎}  ⊂ 𝑎 ∙ 𝑎 +  𝑎 ∙ 1 =
 {0, 𝑎}, we get that it is not a hyperring. 

(vi) Let 𝑅 =  {0, 1, 𝑎, 𝑏}. Then (𝑅, +,⋅, −, 0, 1) 
is a Boolean multiring as follows: 

 

0 1 a b

0 0 1 a b

,1 1 R {1,a} {1,b}

a a {1,a} R {a ,b}

b b {1,b} {a ,b} R



 

 

0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a a a

b 0 b a b



 

𝑏 ∙ (𝑏 +  1)  =  {𝑏}  ⊂ 𝑏 ∙ 𝑏 +  𝑏 ∙ 1 =  𝑅, implies 

that 𝑅 is not a hyperring. 

 

Example 5. (i) Let 𝑅 =  {0, 1, 𝑎, 𝑏}. Then (𝑅, +,⋅
, −, 0, 1) is a multiring as follows: 

0 1 a b 0 1 a b

0 0 1 a b 0 0 0 0 0

,1 1 R S S 1 0 1 a b

a a S R S a 0 a b b

b b S S R b 0 b b b

 

 

 

where 𝑆 =  𝑅 \ {0}. Since 𝑎 ∙ (𝑎 +  𝑏)  =  {𝑎, 𝑏}  ⊂
𝑅 =  𝑎 ∙ 𝑎 +  𝑎 ∙ 𝑏, we get that (𝑅, +,⋅, −, 0, 1) is not a 

hyperring.  

(ii) Let 𝑅 =  {0, 1, 𝑎, 𝑏}. Then (𝑅, +,⋅, −, 0, 1) is a 

multiring as follows: 

 

0 1 a b 0 1 a b

0 0 1 a b 0 0 0 0 0

,1 1 R S S 1 0 1 a b

a a S R S a 0 a a a

b b S S R b 0 b a a

 

 

 

where 𝑆 =  𝑅\{0}. Since 𝑎 ∙ (𝑎 + 𝑏)  =  {𝑎}  ⊂
𝑅 =  𝑎 ∙ 𝑎 + 𝑎 ∙ 𝑏, we get that (𝑅, +,⋅, −, 0, 1) is not a 

hyperring. 

 

In the following, a method is presented to construct 

a multiring on an arbitrary set. 

 

Theorem  6. Let 𝑅 be a nonempty set and |𝑅|  ≥ 4. 

Then there exist a binary hyperoperation “ + ", a binary 

operation “ ∙ ", on 𝑅, 0, 1 ∈ 𝑅 and a function −:𝑅 𝑅 

such that (𝑅,+,⋅, −, 0, 1) is a Boolean multiring. 

Proof. Let 𝑎0  =  0 and 𝑎1  =  1 be fixed in 𝑅. By 

Theorem 1, there exists a binary hyperoperation “ + " on 

𝑅, 0 ∈ 𝑅 and a function −:𝑅  𝑅 such that 

(𝑅, +,−, 0) is a multigroup. Now for all 𝑎𝑖 , 𝑎𝑗 ∈ 𝑅, we 

define a hyperoperation “ ∙ " on R as follows: 

 

𝑎𝑖 ∙ 𝑎𝑗 = {

0 𝑖 = 0,
𝑎𝑗 𝑖 = 1,

𝑎𝑖
𝑎4

𝑖 = 𝑗,
𝑖 = 𝑘, 𝑗 ≥ 𝑘 + 1, 2 ≤ 𝑘,

  

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝑖 ≠ 𝑗, 𝑎𝑖 ∙  𝑎𝑗 = 𝑎𝑗 ∙  𝑎𝑖 . 

 

Some modifications and computations show that 

(𝑅, +,⋅, −, 0, 1) is a multiring. Since 𝑎2 ∙ (𝑎1 + 𝑎1) =
 𝑎2 ∙ (𝑅 \𝐶3)  =  {0, 𝑎4} and 𝑎2 ∙ 𝑎1 + 𝑎2 ∙ 𝑎1 =  𝑅 \ 𝐶3, 

we get that 𝑎2 ∙ (𝑎1 + 𝑎1)  ⊂ 𝑎2 ∙ 𝑎1 + 𝑎2 ∙ 𝑎1 and 

conclude that (𝑅, +,⋅, −, 0, 1) is a Boolean multiring 

while is not a hyperring. 

 

Corollary 7. (i) For any cardinal number 𝜁, there 

exists a Boolean multigroup of order 𝜁. 

(ii) For any cardinal number 𝜁, there exists a 

Boolean multiring (𝑅, +,⋅, −, 0, 1) of order 𝜁. 

 

Example 8.  

Let 𝑅 =  {0, 1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}. Then (𝑅, +,⋅
, −, 0, 1) is a Boolean multiring as follows: 

 

2 3 4 5 6

2 3 4 5 6

3 2

2 2 3 2 2 2

3 3 2 3 3 3

4 4 2 3

5 5 2 3

6 6 2 3

0 1 a a a a a

0 0 1 a a a a a

1 1 T a a 1 1 1

a a a T 1 a a a
,

a a a 1 T a a a

a a 1 a a T T ' T '

a a 1 a a T ' T T '

a a 1 a a T ' T ' T


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2 3 4 5 6

2 3 4 5 6

2 2 2 4 4 4 4

3 3 4 3 4 4 4

4 4 4 4 4 4 4

5 5 4 4 4 5 4

6 6 4 4 4 4 6

0 1 a a a a a

0 0 0 0 0 0 0 0

1 0 1 a a a a a

a 0 a a a a a a

a 0 a a a a a a

a 0 a a a a a a

a 0 a a a a a a

a 0 a a a a a a



 

 

 

where 𝐓 =  {𝟎, 𝐚𝟒, 𝒂𝟓, 𝒂𝟔} and 𝐓′ =  𝐓 \ {𝟎}. 

 

Fundamental relation on multirings 

In this section, we introduced a new relation 𝜅∗ on 

multirings which is an equivalence relation on 

multirings. We proved that 𝜅∗ is the smallest strongly 

regular on multirings such that the quotient of any 

multirings on 𝜅∗ is a Boolean ring. Moreover, it was 

shown that 𝜅∗ is a fundamental relation on multirings. 

In this section there exists some example such that 

shows 𝜅∗  𝛽∗, 𝜅∗  𝛾∗ and 𝜅∗  𝛼∗. 
 

Defnition 9. Let (𝑅, +,⋅, −, 0, 1) be a multiring, 

𝑥, 𝑦 ∈ 𝑅 and 𝑛 ∈ ℕ. Define 𝑥𝜅𝑛,𝑚𝑦  if and only if 

there exist 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑅 and 𝑚 ∈ ℕ  such that 𝑥 ∈
∑ 𝑧𝑖
𝑛
𝑖=1  , 𝑦 ∈ ∑ 𝑧𝑖

𝑘𝑖𝑛
𝑖=1  where 𝑘𝑖 ∈  {1,𝑚} and for all 

𝑢 ∈ 𝑅, 𝑢𝑚 = 𝑢 ∙ 𝑢 ∙  … ∙ 𝑢⏟      
(𝑚−𝑡𝑖𝑚𝑒𝑠)

 Clearly, 𝜅1,1 = Δ =

{(𝑥, 𝑥)|𝑥 ∈ 𝑅} and so 𝜅 = ⋃ ⋃ (𝜅𝑛,𝑚⋃𝑛≥1 𝜅𝑛,𝑚
−1 )𝜅∈{1,𝑚}  

is a reflexive and symmetric relation. 

     Let 𝜅∗ be the transitive closure of 𝜅 (the smallest 

transitive relation that contains κ and will show by 

𝜅∗ = 𝜅̅). Then in the following theorem we show that 

𝜅∗ is a strongly regular relation. 

 

Theorem 10. Let 𝑅 be a multiring. Then 𝜅∗ is a 

strongly regular relation on 𝑅. 

 

Proof. Let 𝑥, 𝑦, 𝑧 ∈ 𝑅 and (𝑥, 𝑦)  ∈ 𝜅∗. Then there 

exist 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑅 and 𝑚 ∈ ℕ  such that 𝑥 ∈
∑ 𝑧𝑖
𝑛
𝑖=1  , 𝑦 ∈ ∑ 𝑧𝑖

𝑘𝑖𝑛
𝑖=1  where 𝑘𝑖 ∈  {1,𝑚}. Now 

consider 𝑧 = 𝑧𝑛+1 for all 𝑢 ∈ 𝑥 +  𝑧 and for all  ∈
𝑦 +  𝑧 , we have  𝑢 ∈ ∑ 𝑧𝑖

𝑛+1
𝑖=1  , 𝑣 ∈ ∑ 𝑧𝑖

𝑘𝑖𝑛+1
𝑖=1  where 

𝑘𝑖 ∈  {1,𝑚}. It follows that (𝑢, 𝑣)  ∈ 𝜅𝑛+1,𝑚 and so 

(𝑢, 𝑣)  ∈ 𝜅∗. Since (𝑅, +,−, 0) is commutative 

multigroup, we get that the relation 𝜅∗ is a strongly 

regular relation respect to hyperoperation “ + ". In 

addition, since “ ∙ " is an operation on 𝑅, we get that 

|𝑧 · 𝑥|  =  |𝑧 · 𝑦|  =  1. It follows that for all 1 ≤ 𝑖 ≤

𝑛 there exists 1 ≤ 𝑗 ≤ 𝑛 such that (𝑧 ∙  𝑧𝑖
𝑘𝑖)𝑘𝑖 = 𝑧 ∙ 𝑧𝑗 

or (𝑧 ∙ 𝑧𝑗)
𝑘𝑖 = 𝑧 ∙  𝑧𝑖

𝑘𝑖  . Hence (𝑢, 𝑣)  ∈ 𝜅∗ and the 

commutativity of operation “ ∙ " implies that 𝜅∗  is a 

strongly regular relation respect to hyperoperation “ ∙ ". 
Therefore 𝜅∗ is a strongly regular relation on 𝑅. 

 

Example 11. (i) Let 𝑅 ≅  ℤ4 ∪ {√2}. Then 

(𝑅, +√2,∙√2, − , 0̅, 1̅) is a multiring as follows: 

2
0 1 2 3 2

0 0 1 2 3 2

1 1 2 3 {0, 2} 1
,

2 2 3 {0, 2} 1 2

3 3 {0, 2} 1 2 3

2 2 1 2 3 {0, 2}



 

2
0 1 2 3 2

0 0 0 0 0 0

1 0 1 2 3 2

2 0 2 0 2 0

3 0 3 2 1 2

2 0 2 0 2 0



 

 

If 𝑚 ≥ 2, then simple computations show that 

𝜅∗(0̅) = {0̅, 2̅, √2} , 𝜅∗(1̅) = {1̅, 3̅}   and so 𝑅/𝜅∗ ≅ ℤ2  

while 𝑅/𝛾∗ ≅ 𝑅/𝜅∗ ≅ ℤ4  as follows: 

 

* (0) * (1) * (2) * (3)

* (0) * (0) * (1) * (2) * (3)

,* (1) * (1) * (2) * (3) * (0)

* (2) * (2) * (3) * (0) * (1)

* (3) * (3) * (0) * (1) * (2)

    

    

    

    

    

 

*(0) * (1) * (2) * (3)

* (0) * (0) * (0) * (0) * (0)

* (1) * (0) * (1) * (2) * (3)

* (2) * (0) * (2) * (0) * (2)

* (3) * (0) * (3) * (2) * (1)

    

    

    

    

    

 

 

* (0) * (1)

* (0) * (0) * (1) ,

* (1) * (1) * (0)

  

  

  
 

 

* (0) * (1)

* (0) * (0) * (0)

* (1) * (0) * (1)

  

  

  

 

 

Clearly 𝑅/𝜅∗ is a Boolean ring, while          𝑅/𝛾∗and 

𝑅/𝛼∗ are not Boolean ring. 

(ii) Consider the multiring 𝑅, which has been 
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defined in Example 8. Since for every 𝑚 ∈ ℕ and for 

all 0 ≤ 𝑖 ≤ 6 we have 𝑎𝑖
𝑚 = 𝑎𝑖, we get that, 𝜅∗(0) =

{0, 𝑎4, 𝑎5, 𝑎6}, 𝜅
∗(1) = {1}, 𝜅∗(𝑎2) = {𝑎2},  𝜅∗(𝑎3) =

{𝑎3} and so 𝑅/𝜅∗ is a Boolean ring of order 4 as 

follows: 

 

2 3

2 3

3 2

2 2 3

3 3 2

* (0) * (1) * (a ) * (a )

* (0) * (0) * (1) * (a ) * (a )

* (1) * (1) * (0) * (a ) * (a ) ,

* (a ) * (a ) * (a ) * (0) * (1)

* (a ) * (a ) * (a ) * (1) * (0)

    

    

    

    

    
 

2 3

2 3

2 2 2

3 3 3

* (0) * (1) * (a ) * (a )

* (0) * (0) * (0) * (0) * (0)

* (1) * (0) * (1) * (a ) * (a )

* (a ) * (0) * (a ) * (a ) * (0)

* (a ) * (0) * (a ) * (0) * (a )

    

    

    

    

    

 

 

Example 12.  

Let 𝑅 =  {0, 1, 2, 3, 4}. Then (𝑅, +,⋅, −, 0, 1) is a 

hyperring as follows: 

 

0 1 2 3 4

0 0 {1,4} 2 3 {1,4}

1 {1,4} 2 3 0 2
,

2 2 3 0 {1,4} 3

3 3 0 {1,4} 2 0

4 {1,4} 2 3 0 2



 

 

0 1 2 3 4

0 0 0 0 0 0

1 0 {1,4} 2 3 {1,4}

2 0 2 0 2 2

3 0 3 2 {1,4} 3

4 0 {1,4} 2 3 {1,4}



 

 

Let 𝑚 = 2. Then computations show that 𝜅∗(0) =
{0, 2}, 𝜅∗(1) = {1, 3, 4} and 𝑅/𝜅∗ = {𝜅∗(0), 𝜅∗(1)}. 
Hence (𝑅 𝜅∗, +,⋅, −, 𝜅∗(0), 𝜅∗(1))⁄  is a Boolean ring as 

follows: 

 

* (0) * (1)

* (0) * (0) * (1) ,

* (1) * (1) * (0)

  

  

  
 

 

* (0) * (1)

* (0) * (0) * (0)

* (1) * (0) * (1)

  

  

  

 

 

Now, it is easy to see that 𝛾∗(0)  =  {0}, 𝛾∗(1)  =
 {1, 4}, 𝛾∗(2)  =  {2}, 𝛾∗(3)  =  {3} and  𝑅 𝛾∗⁄ =
 {𝛾∗(0), 𝛾∗(1), 𝛾∗(2), 𝛾∗(3)}. Hence 

(𝑅 𝛾∗, +,⋅, −, 𝛾∗(0), 𝛾∗(1))⁄  is a (non Boolean) ring as 

follows: 

 

* (0) * (1) * (2) * (3)

* (0) * (0) * (1) * (2) * (3)

,* (1) * (1) * (2) * (3) * (0)

* (2) * (2) * (3) * (0) * (1)

* (3) * (3) * (0) * (1) * (2)

    

    

    

    

    
 

* (0) * (1) * (2) * (3)

* (0) * (0) * (0) * (0) * (0)

* (1) * (0) * (1) * (2) * (3)

* (2) * (0) * (2) * (0) * (2)

* (3) * (0) * (3) * (2) * (1)

    

    

    

    

    

 

 

In other words, since 𝑅 is a commutative hyperring, 

we get that 𝛼∗ = 𝛾∗ and so 𝑅/𝛼∗  ≅ 𝑅/𝛾∗ ≇ 𝑅/𝜅∗. 
 

Corollary 13. Let 𝑅 be a multiring. 

(i) Necessarily 𝜅 ≠ 𝜅̅, 

(ii) Necessarily 𝜅∗ ≠ 𝛽∗, 
(iii) Necessarily 𝜅∗ ≠ 𝛾∗, 
(iv) Necessarily 𝜅∗ ≠ 𝛼∗. 

 

Theorem 14. Let 𝑛 ∈ ℕ. Then 

(i) there exists Boolean group 𝑅 such that 

|𝑅| = 4𝑛 . 
(ii) there exists Boolean ring 𝑅 such that 

|𝑅| = 4𝑛 . 
 

Proof. Let 𝑛 ∈ ℕ and 𝑅 be non-empty set. (i) If 

|𝑅|  =  𝑛 + 1, then by Theorem 1, there exists a binary 

hyperoperation “ + " on 𝑅, 0 ∈ 𝑅 and a function 

−:𝑅 →  𝑅 such that (𝑅, +,−, 0) is a commutative 

multigroup. Since 𝐶3 = {𝑎1, 𝑎2, 𝑎3} we get that 

𝛽∗(0)  =  𝑅 \ 𝐶3, 𝛽∗(𝑎1)  =  {𝑎1}, 𝛽∗(𝑎2) = {𝑎2}, 
𝛽∗(𝑎3) = {𝑎3} and so 𝑅/𝛽∗ is a Boolean group of order 

4. If 𝑅′ = 𝑅/𝛽∗ × 𝑅/𝛽∗ ×⋯× 𝑅/𝛽∗⏟                
𝑛−𝑡𝑖𝑚𝑒𝑠  

then one can see 

that 𝑅′ is a Boolean group. 

(ii) By item (i) and Theorem 6, there exist a binary 

hyperoperation “ + ", binary operation  “ ∙ ", on 𝑅, 

0, 1 ∈ 𝑅 and a function −: 𝑅 →  𝑅 such that (𝑅, +,⋅
, −, 0, 1) is a multiring. Since 𝐶3 = {𝑎1, 𝑎2, 𝑎3}, we get 

that 𝜅∗(𝑎0) = 𝜅
∗(0) = 𝑅 \ 𝐶3, 𝜅∗(𝑎1)  =  𝜅

∗(1)  =
 {𝑎1}, 𝜅

∗(𝑎2) = {𝑎2},  𝜅∗(𝑎3) = {𝑎3} and so 𝑅/𝜅∗is a 

Boolean ring of order 4. If 𝑅′ =
 𝑅/𝜅∗ × 𝑅/𝜅∗ ×⋯× 𝑅/𝜅∗⏟                

𝑛−𝑡𝑖𝑚𝑒𝑠

 then one can see that 𝑅′ is a 

Boolean ring. 
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Theorem 15. Let 𝑚 ∈ ℕ. If 𝑚 =  1, then 𝛽∗ = 𝜅∗ 
or 𝛾 ∗ = 𝜅∗. 

 

Proof. Let 𝑥, 𝑦 ∈ 𝑅 and (𝑥, 𝑦) ∈ 𝜅∗. If 𝑚 =  1, 

then there exists 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑅 such that {𝑥, 𝑦} ∈
∑ 𝑧𝑖
𝑛
𝑖=1  Thus (𝑥 , 𝑦) ∈ 𝛽∗ Moreover, since 𝑅 is a 

commutative multiring, we get that 𝛽∗ = 𝛾∗. 
 

Example 16. Consider the multiring 𝑅 which is 

defined in Example 11. If 𝑚 =  1, then 𝑅/𝜅∗ ≅
𝑅/𝛽∗ ≅ 𝑅/𝛾∗. 

 

Corollary 17. 𝛽∗ ⊆ 𝜅∗ and 𝛾∗ ⊆ 𝜅∗. 
Theorem 18. Let 𝑅 be a multiring. Then 𝑅/𝜅∗ is a 

Boolean ring. 

 

Proof. Since by Theorem 10, 𝜅∗ is a strongly regular 

equivalence relation on 𝑅, then for all 𝑥, 𝑦 we have 

|𝜅∗(𝑥)  + 𝜅∗(𝑦)|  =  1 and |𝜅∗(𝑥) ∙ 𝜅∗(𝑦)| = 1. Now, 

𝑅 is a multiring, it follows that 𝑅/𝜅∗ is a commutative 

ring. In addition, for all 𝑥 ∈ 𝑅, 𝑥 ∈ 𝑥 +  0 and 𝑥2 ∈
𝑥2 + 0 implies that 𝜅∗(𝑥)  =  𝜅∗(𝑥2)  =  (𝜅∗(𝑥))2. 

Thus 𝑅/𝜅∗ is a Boolean ring. 

 

Theorem 19. Let 𝑅 be a multiring. Then 𝜅∗ is the 

smallest strongly regular equivalence relation on 𝑅, 

such that 𝑅/𝜅∗ is a Boolean ring.  

 

Proof. Since 𝜅∗ is a strongly regular equivalence 

relation on 𝑅, by Theorem 18, we get that 𝑅/𝜅∗ is a 

Boolean ring. Now, we show that it is the smallest. Let 

𝜃 be a strongly regular equivalence relation on 𝑅, such 

that 𝑅/𝜃 is a Boolean ring. Let 𝜑 ∶ 𝑅 → 𝑅/𝜃 be the 

canonical homomorphism and (𝑥, 𝑦)  ∈ 𝜅∗. Thus there 

exist 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑅 and 𝑚 ∈ ℕ such that 𝑥 ∈
∑ 𝑧𝑖
𝑛
𝑖=1   and 𝑦 ∈ ∑ 𝑧𝑖

𝑘𝑖𝑛
𝑖=1 , where 𝑘𝑖 ∈ {1,𝑚}. Since 𝜃 is 

a strongly regular equivalence relation on 𝑅, we have 

𝜑(𝑥) = ∑ 𝜑(𝑧𝑖)
𝑛
𝑖=1  and 𝜑(𝑦) ∈ ∑ 𝜑(𝑧𝑖

𝑘𝑖)𝑛
𝑖=1 =

∑ (𝜑(𝑧𝑖))
𝑘𝑖𝑛

𝑖=1 . Since R/θ is a Boolean ring, we get that 

∑ 𝜑(𝑧𝑖)
𝑛
𝑖=1 = ∑ 𝜑(𝑧𝑖

𝑘𝑖)𝑛
𝑖=1  

 

and so 𝜑(𝑥) = 𝜑(𝑦). 
It follows that (𝑥, 𝑦)  ∈ 𝜃 and so 𝜅∗ ⊆ 𝜃. Therefore, 

𝜅∗ is a smallest strongly regular equivalence relation on 

𝑅, such that R/κ* is a Boolean ring. 

 

Transitivity of 𝜅 via the 𝜅-parts 

In this section, we have determined some necessary 

and sufficient conditions so that the relation 𝜅 would be 

transitive. 

 

Definition 20. Let 𝑀 be a non-empty subset of a 

multiring 𝑅. 𝑀 is called a 𝜅-part if for every 𝑛,𝑚 ∈ ℕ 

and (𝑧1, 𝑧2, . . . , 𝑧𝑛) ∈ 𝑅
𝑛, we have 

∑ 𝑧𝑖
𝑛
𝑖=1  ∩ 𝑀 ≠  ∅ ⇒  ∑ 𝑧𝑖

𝑘𝑖𝑛
𝑖=1 ⊆ 𝑀,  

where 𝑘𝑖 ∈ {1,𝑚}. 
 

Example 21. (i) Let 𝑅 = ℤ5 ∪ {√2}. Then 

(𝑅, +√2,  ⋅√2, − , 0̅, 1̅) is a multiring as follows: 

 

2
0 1 2 3 4 2

0 0 1 2 3 4 2

1 1 2 3 4 {0, 2} 1

,2 2 3 4 {0, 2} 1 2

3 3 4 {0, 2} 1 2 3

4 4 {0, 2} 1 2 3 4

2 2 1 2 3 4 {0, 2}



 

 

2
0 1 2 3 4 2

0 0 0 0 0 0 0

1 0 1 2 3 4 2

2 0 2 4 1 3 2

3 0 3 1 4 2 2

4 0 4 3 2 1 2

2 0 2 2 2 2 0



 

 

Let 𝑀 = {0̅, √2}. Then 𝑀 ∩ (2̅ + 3̅) ≠ ∅ but 2̅2 +
3̅ ⊈ 𝑀, so 𝑀 is not a 𝜅-part, while it is a 𝛽-part. Routine 

computations show that 𝑀 =  𝑅 is only a 𝜅-part of 

multiring 𝑅. 

(ii) Consider the multiring which has been defined in 

Example 8. Let 𝑘 ∈ ℕ. It is easy to see that for all 0 ≤
𝑖 ≤ 6, we have 𝑎𝑖

𝑘 = 𝑎i. Hence for every 𝑚 ∈ ℕ, 1 ≤

𝑖 ≤ 6 and 𝑘𝑖 ∈  {1,𝑚} we get that ∑ 𝑎𝑖
𝑘𝑖6

𝑖=1 = ∑ 𝑎i
6
𝑖=1 . 

So if  𝑇 ∩ ∑ 𝑎i
6
𝑖=1 ≠ ∅ implies that ∑ 𝑎𝑖

𝑘𝑖6
𝑖=1 ⊆ 𝑇 

 therefore, 𝑀 =  𝑇 is a 𝜅-part of multiring 𝑅. 

Lemma 22. Let 𝑀 be a non-empty subset of a 

multiring 𝑅. Then, the following conditions are 

equivalent: 

(i) 𝑀 is a 𝜅-part of 𝑅, 

(ii) 𝑥 ∈ 𝑀, 𝑥 𝜅 𝑦 imply 𝑦 ∈ 𝑀, 

(iii) 𝑥 ∈ 𝑀, 𝑥 𝜅∗𝑦 imply 𝑦 ∈ 𝑀.  

Proof. (𝑖)  ⟹ (𝑖𝑖). Let 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑅 and 𝑥𝜅𝑦. 

Then there  exist 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑅 and 𝑚 ∈ ℕ such that 

𝑥 ∈ ∑ 𝑧𝑖
𝑛
𝑖=1   and 𝑦 ∈ ∑ 𝑧𝑖

𝑘𝑖𝑛
𝑖=1  where 𝑘𝑖 ∈ {1,𝑚}. Since 

𝑀 is a 𝜅-part and ∑ 𝑧𝑖
𝑛
𝑖=1 ∩𝑀 ≠ ∅ we have 𝑦 ∈ 𝑀. 

(𝑖𝑖) ⟹ (𝑖𝑖𝑖). Let 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑅 and 𝑥 𝜅∗𝑦. Then 

there exist 𝑛 ∈ ℕ, 𝑎𝑖 ∈ 𝑅 such that  

𝑥 𝜅 𝑎1 𝜅 𝑎2 𝜅 . . . 𝜅 𝑎𝑛𝜅 𝑦. Now 𝑥 ∈ 𝑀 and 𝑥 𝜅 𝑎1, then 

by the item (ii), we obtain that 𝑎1 ∈ 𝑀. Since for every 

1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖𝜅𝑎𝑖+1, 𝑎1 ∈ 𝑀, using the item (ii), we 

conclude an ∈ M and so y ∈ M. 
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(iii) ⟹ (i). Let n ∈ ℕ and (z1, z2, . . . , zn) ∈ R
n. If 

∑ zi
n
i=1 ∩M ≠ ∅, then there exists 

y ∈ ∑ zi
n
i=1 ∩M. Now, for all t ∈ ∑ zi

kin
i=1  where ki ∈

 {1,m}, y ∈ ∑ zi
n
i=1  implies that t κ∗y. Hence y ∈ M, 

t κ∗y and the item (iii), imply that t ∈ M.  

 

Example 23. Let R =  {0, 1, a2, a3, a4, a5}. Then 

(R,+,⋅, −,0, 1) is a multiring as follows: 

 

2 3 4 5

2 3 4 5

3 2

2 2 3 2 2

3 3 2 3 3

4 4 2 3

5 5 2 3

0 1 a a a a

0 0 1 a a a a

1 1 T a a 1 1

a a a T 1 a a ,

a a a 1 T a a

a a 1 a a T T '

a a 1 a a T ' T



 

 

2 3 4 5

2 3 4 5

2 2 4 4 4 4

3 3 4 3 4 4

4 4 4 4 4 4

5 5 4 4 4 5

0 1 a a a a

0 0 0 0 0 0 0

1 0 1 a a a a

a 0 a a a a a

a 0 a a a a a

a 0 a a a a a

a 0 a a a a a



 

 

where T =  {0, a4, a5} and T′ =  T \{0}. Obviously 

κ∗(0)  =  T, κ∗(1)  =  {1}, κ∗(a2 )  =  {a2} and 

κ∗(a3) = {a3}. Clearly T is a κ-part, {1}, {a2}, {a3} and 

R are κ-parts. But T =  {0, a4, a5} is a γ-Part, {1}, {a2} 
and {a3} are γ-parts. 

Theorem 24. Let 𝑅 be a multiring. Then, the 

following conditions are equivalent: 

(i) 𝜅 is a transitive relation 

(ii) for any 𝑥 ∈ 𝑅, 𝜅∗(𝑥) is a 𝜅-part. 

Proof. (𝑖) ⟹ (𝑖𝑖). Let 𝑥 ∈ 𝑅, 𝑛 ∈ ℕ and 

(𝑧1, 𝑧2, . . . , 𝑧𝑛) ∈ 𝑅
𝑛. If ∑ 𝑧𝑖

𝑛
𝑖=1 ∩ 𝜅∗(𝑥) ≠ ∅ then for 

every 𝑦 ∈ ∑ 𝑧𝑖
𝑘𝑖𝑛

𝑖=1  where 𝑘𝑖 ∈  {1,𝑚}, there exists 𝑡 ∈
∑ 𝑧𝑖
𝑛
𝑖=1 ∩ 𝜅∗(𝑥) and so 𝑦 𝜅 𝑡. Hence 𝑥 𝜅 𝑡 𝜅 𝑦 and by 

the item (i), transitivity of 𝜅 implies that 𝑦 ∈ 𝜅∗(𝑥).  
(𝑖𝑖) ⟹ (𝑖). Let 𝑥 𝜅 𝑦 and 𝑦 𝜅 𝑧. Then there exist 

𝑛, 𝑛′ ∈ ℕ, 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑅, 𝑧1
′ , 𝑧2

′ , . . . , 𝑧𝑛
′ ∈ 𝑅, 𝑚,𝑚′ ∈

ℕ such that 𝑥 ∈ ∑ 𝑧𝑖
𝑛
𝑖=1 , 𝑦 ∈ ∑ 𝑧𝑖

𝑘𝑖𝑛
𝑖=1 , 𝑦 ∈ ∑ 𝑧𝑖

′𝑛′
𝑖=1  and 

𝑧 ∈ ∑ 𝑧𝑖
′𝑘𝑖
′

𝑛′
𝑖=1 , where 𝑘𝑖, 𝑘𝑖

′ ∈ {1,𝑚}. Since 𝜅∗(𝑥) is a 𝜅-

part, 𝑥 ∈ 𝜅∗(𝑥) ∩ ∑ 𝑧𝑖
𝑛
𝑖=1  and 𝑦 ∈ ∑ 𝑧𝑖

𝑘𝑖𝑛
𝑖=1  then 

 

 ∑ 𝑧𝑖
𝑘𝑖𝑛

𝑖=1 ⊆ 𝜅∗(𝑥)                   

⇒ 𝑦 ∈ ∑ 𝑧𝑖
′𝑛′

𝑖=1 ∩ 𝜅∗(𝑥)                                                                                

⇒ ∑ 𝑧𝑖
′𝑘𝑖
′

𝑛′

𝑖=1 ⊆ 𝜅∗(𝑥)               
(𝜅∗(𝑥) 𝑖𝑠 𝑎 𝜅 − 𝑝𝑎𝑟𝑡) 

⇒ 𝑧 ∈ 𝜅∗(𝑥).                             

 

Now, 𝑧 ∈ 𝜅(𝑧) and 𝑧 𝜅∗𝑥, then by Lemma 22, 𝑥𝜅𝑧. 

 

Example 25. Consider the multiring 𝑅 which has 

been defined in Example 23. We saw that 𝑇 is a 𝜅-Part, 

𝑇1  =  {𝑎1}, 𝑇2  =  {𝑎2}, 𝑇3  =  {𝑎3} and 𝑅 are only 𝜅-

parts. 

 

Let 𝑅 be a multiring and 𝑥, 𝑦 ∈ 𝑅. We denote by 𝛽+ 

and 𝛽.
(𝑚)

.
 the following binary relations: 

𝑥𝛽+𝑦 if and only if ∃𝑎1, 𝑎2, . . . , 𝑎𝑛  ∈ 𝑅 

such that {𝑥, 𝑦} ⊆ ∑ 𝑎𝑖
𝑛
𝑖=1  

 

𝑥𝛽.
(𝑚)𝑦 if and only if ∃𝑚 ∈ ℕ  

such that 𝑥 = 𝑦𝑚  or 𝑦 = 𝑥𝑚. 

 

and denote the transitive closures of the relations 𝛽+ 

and 𝛽.
(𝑚) by 𝛽+

∗  and 𝛽.
(𝑚,∗). Clearly for all 𝑎 ∈ 𝑅 we 

have, 𝛽+
∗(𝑎) ⊆ 𝜅∗(𝑎) and 𝛽.

(𝑚,∗)(𝑎) ⊆ 𝜅∗(𝑎). Define 

𝜑+: 𝑅 → 𝑅/𝛽+
∗  by 𝜑+(𝑎) = 𝛽+

∗(𝑎),𝜑.: 𝑅 → 𝑅/𝛽.
(𝑚,∗) by 

𝜑.(𝑎) = 𝛽.
(𝑚,∗)(𝑎) and 𝜑 ∶  𝑅 → 𝑅/𝜅∗ by 𝜑(𝑎) =

𝜅∗(𝑎). We denote by 𝑤+, 𝑤 the kernels of 𝜑+ and 𝜑, 

respectively and define 

𝑤+ = {𝑎 ∈ 𝑅 |  𝛽+
∗(𝑎) =  𝛽+

∗(0), 
𝑤 =  {𝑎 ∈ 𝑅 |  𝜅∗(𝑎)  = 𝜅∗(0)}. 
 

Corollary 26. Let 𝑚 ∈ ℕ and 𝑅 be a multiring. 

Then 

 

(i) 𝛽∙
(1,∗)  is a regular relation on 𝑅, 

(ii) for all 𝑥 ∈ 𝑅, 

𝛽.
(𝑚,∗)(𝑥)  =  𝛽.

(𝑚,∗)(𝑥𝑚). 
 

Example 27. Condider the multiring 𝑅 in Example 

8. Routine computations 

show that for all 𝑚 ∈ ℕ and 1 ≤ 𝑖 ≤ 6, we have 

𝛽.
(𝑚,∗)(𝑎𝑖)  =  {𝑎𝑖}. Then 𝑅/ 𝛽.

(𝑚,∗) ≅ 𝑅 

is a multiring and so for all 𝑚 ∈ ℕ, 𝛽.
(𝑚,∗) is a regular 

relation on 𝑅. 

 

Let 𝛽.
(𝑚,∗∗) be the regular closure of 𝛽.

(𝑚,∗) (the 

smallest regular relation such that contains 𝛽.
(𝑚,∗)). 

Theorem 28. Let 𝑅 be a multiring and 𝑚 ∈ ℕ. Then 

(i) 𝑅/𝛽+
∗  is a commutative group, 

(ii) ((𝑅, +,∙)/𝛽.
(𝑚,∗∗))/𝛽+

∗ ≅ (𝑅,+,∙)/𝜅∗, 
where 

 𝛽.
(𝑚,∗∗)(𝑎) ⊕ 𝛽.

(𝑚,∗∗)(𝑏) = 

{𝛽.
(𝑚,∗∗)(𝑐)|𝑐 ∈ 𝛽.

(𝑚,∗∗)(𝑎) + 𝛽.
(𝑚,∗∗)(𝑏)} 

and 

𝛽.
(𝑚,∗∗)(𝑎) ⊙ 𝛽.

(𝑚,∗∗)(𝑏) = 

{𝛽.
(𝑚,∗∗)(𝑐)|𝑐 ∈  𝛽.

(𝑚,∗∗)(𝑎) ∙ 𝛽.
(𝑚,∗∗)(𝑏)} 
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Proof. (i) Clearly 𝑅/𝛽+
∗   is a group. Since 𝑅 is a 

multiring, then 𝑅 is a commutative multigroup and so  

𝑅/𝛽+
∗   is a commutative group. 

(ii) Define a map  

𝜑 ∶  (𝑅/𝛽.
(𝑚,∗∗))/𝛽+

∗ 𝑅/𝜅∗ by 

𝜑(𝛽+
∗(𝛽.

(𝑚,∗∗)(𝑥)))  = 𝜅∗(𝑥). Let 𝛽+
∗  (𝛽.

(𝑚,∗∗)(𝑥1) ) =
 𝛽+
∗  (𝛽.

(𝑚,∗∗)(𝑥2) ). Then there exist 𝑡 ∈ 𝛽.
(𝑚,∗∗)(𝑥2) and 

𝑚 ∈ ℕ such that 𝑥1 = 𝑡
𝑚 or 𝑥1

𝑚 = 𝑡 and  𝛽+
∗(𝑥1)  =

 𝛽+
∗(𝑡). Hence there exist 𝑚 ∈ ℕ such that 𝑥1 = 𝑥2

𝑚 or 

𝑥1
𝑚 = 𝑥2 and 𝛽+

∗  (𝑥1)  =  𝛽+
∗  (𝑥2). It concludes that 

𝜅∗(𝑥1)  = 𝜅
∗(𝑥2) and so 𝜑 is a well-defined map. 

Let 𝜅∗(𝑥1)  = 𝜅
∗(𝑥2). Then there exist 

 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈ 𝑅 and 𝑚 ∈ ℕ such that 𝑥1 ∈ ∑ 𝑧𝑖
𝑛
𝑖=1   

and 𝑥2 ∈ ∑ 𝑧𝑖
𝑘𝑖𝑛

𝑖=1  where 𝑘𝑖 ∈ {1,𝑚}. Thus 

𝛽.
(𝑚,∗∗)(𝑥1)  ∈  𝛽.

(𝑚,∗∗)(∑ 𝑧𝑖
𝑛
𝑖=1 ) = ∑ 𝛽.

(𝑚,∗∗)(𝑧𝑖)
𝑛
𝑖=1  and 

𝛽.
(𝑚,∗∗)(𝑥2) ∈ 𝛽.

(𝑚,∗∗)(∑ 𝑧𝑖
𝑘𝑖𝑛

𝑖=1 ) = ∑ 𝛽.
(𝑚,∗∗)(𝑧𝑖

𝑘𝑖)𝑛
𝑖=1 . 

So by Corollary 26, {𝛽.
(𝑚,∗∗)(𝑥1), 𝛽.

(𝑚,∗∗)(𝑥2)}  ⊆
∑ 𝛽.

(𝑚,∗∗)(𝑧𝑖)
𝑛
𝑖=1 . 

Hence 𝛽+
∗(𝛽.

(𝑚,∗∗)(𝑥1))  = 𝛽+
∗(𝛽.

(𝑚,∗∗)(𝑥2)) and so 𝜑 

is an one to one map. Clearly 𝜑 is an epimorphism and 

so it is an isomorphism. 

 

Example 29. Consider the multiring 𝑅 in Example 

21. For 𝑚 =  2, we have 𝛽.
(𝑚,∗∗)(0̅)  =  {0̅, √2}, 

𝛽.
(𝑚,∗∗)(1̅)  =  {1̅, 2̅, 3̅, 4̅} and so we have the following 

tables: 

 
(2,**) (2,**)
. .

(2,**) (2,**) (2,**)
. . .

(2,**) (2,**)
. .

(0) (1)

(0) (0) (1) ,

(1) (1) R

  

  

 
 

 
(2,**) (2,**)
. .

(2,**) (2,**) (2,**)
. . .

(2,**) (2,**) (2,**)
. . .

(0) (1)

(0) (0) (0)

(1) (0) (1)

 

  

  
   

 

 

and so 

 ((𝑅, +,∙)/𝛽.
(2,∗∗))/𝛽+

∗ ≅ (𝑅,+,∙)/𝜅∗, where |(𝑅, +,∙
)/𝜅∗| = 1.  

If 𝑚 =  3, then 𝛽.
(3,∗∗)(0̅)  =  {0̅, √2}, 𝛽.

(3,∗∗)(1̅)  =

 {1̅}, 𝛽.
(3,∗∗)(2̅)  =  {2̅, 3̅}  and 𝛽.

(3,∗∗)(4̅) =  {4̅}. So we 

have 

 
(3,**) (3,**) (3,**) (3,**)
. . . .

(3,**) (3,**) (3,**) (3,**) (3,**)
. . . . .

(3,**) (3,**) (3,**) (3,**)
. . . .

(3,**) (3,**)
. .

(3,**) (3,**) (3,**)
. . .

(0) (1) (2) (4)

(0) (0) (1) (2) (4)

(1) (1) (2) A (0)

(2) (2) A B C

(4) (4)

    

    

   

 

   (3,**)
.

,

(0) C (2)

(3,**) (3,**) (3,**) (3,**)
. . . .

(3,**) (3,**) (3,**) (3,**) (3,**)
. . . . .

(3,**) (3,**) (3,**) (3,**) (3,**)
. . . . .

(3,**) (3,**) (3,**) (3,**)
. . . .

(0) (1) (2) (4)

(0) (0) (0) (0) (0)

(1) (0) (1) (2) (4)

(2) (0) (2) (4)

   

    

    

    (3,**)
.

(3,**) (3,**) (3,**) (3,**) (3,**)
. . . . .

(2)

(4) (0) (4) (2) (1)    

 

 

where 𝐴 = 𝛽.
(3,∗∗)(2̅) ∪ 𝛽.

(3,∗∗)(4̅), 𝐵 = 𝛽.
(3,∗∗)(0̅) ∪

𝛽.
(3,∗∗)(1̅) ∪ 𝛽.

(3,∗∗)(4̅) and 𝐶 = 𝛽.
(3,∗∗)(2̅) ∪ 𝛽.

(3,∗∗)(1̅). 

It is easy to see that ((𝑅, +,∙)/𝛽.
(3,∗∗))/𝛽+

∗ ≅ (𝑅,+,∙)/𝜅∗, 
where |(R,+,∙) /κ* |= 1. 

 

Theorem 30. Let 𝑅 be a multiring. Then 

(i) 𝑤+ ⊆ 𝑤 and 𝑤+ + 𝑤+ ⊆ 𝑤, 

(ii) 𝑤 + 𝑤 ⊆ 𝑤, 

(iii) 𝑅𝑤 ⊆ 𝑤, 

Proof. (i) Let 𝑥 ∈ 𝑤+ Since 𝛽+
∗ ⊆ 𝜅∗, we get that 

𝑥 ∈ 𝑤. In addition, if 𝑥 ∈ 𝑤+ + 𝑤+, then there exists 

𝑦, 𝑧 ∈ 𝑤+ such that 𝜑+(𝑥) =  𝜑+(𝑦) + 𝜑+(𝑧) =
 𝜑+(0). Hence 𝑥 ∈ 𝑤+ and by (i), 𝑤+ + 𝑤+ ⊆ 𝑤. 

(ii) Let 𝑥 ∈ 𝑤 + 𝑤. Then there exists 𝑦, 𝑧 ∈ 𝑤 such 

that 𝜅∗(𝑥)  = 𝜅∗(𝑦 +  𝑧) and so 𝜑(𝑥)  =  𝜑(𝑦)  +
 𝜑(𝑧)  =  𝜑(0). Hence 𝑥 ∈ 𝑤 and 𝑤 +𝑤 ⊆ 𝑤. 

(iii) Let 𝑥 ∈ 𝑅𝑤. Then there exist 𝑟 ∈ 𝑅 and 𝑡 ∈ 𝑤 

such that 𝑥 =  𝑟𝑡 and so 

𝜑(𝑥)  =  𝜑(𝑟)𝜑(0)  =  𝜑(0). Hence 𝑥 ∈ 𝑤 and so 

𝑅𝑤 ⊆ 𝑤. 

 

Example 31. Consider the multiring 𝑅 in Example 

11. Routine computations show that 𝑤+ = {0̅, √2}, 𝑤 =

{0̅, 2̅, √2} and 𝑅𝑤 =  𝑤. 

 

 

Results and Discussion 

The current paper considered the notion of 

multigroup, multirings and investigated some properties 

of them. It is introduced a strongly regular relation 𝜅∗on 

multirings and is shown that: 

(i) Boolean rings with identity are obtained 

via the fundamental relation on multirings. 

(ii) 𝜅∗ ≠ 𝛾∗and 𝜅∗ ≠ 𝛼∗. 
(iii) Boolean rings are obtained from quotient 

of multirings on 𝜅∗. 
(iv) Necessarily 𝑘 ≠ 𝑘̅ 

(v) The conditions for transitivity of 𝜅 are 

obtained with respect to complete parts.  

We hope that these results are helpful for furthers 

studies in multigroup, multirings and rings. In our future 

studies, we hope to obtain more results regarding fuzzy 

multiring and soft and rough multiring. 
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