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In this paper we have developed a numerical method
for solving system of linear equations through taking
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ces. A system of linear equations is usually obtained in
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1 Abstract continued

This relationship is then used for solving a general matrix through converting the matrix
into a repetitive tridiagonal matrix and a remaining matrix that is moved to the right-
hand side of the equation. Therefore, the problem is converted into a repetitive tridiagonal
matrix problem where we have a vector of unknowns on the right-hand side (in addition
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to the left-hand side) of the equation. The problem is solved iteratively by first using
an initial guess to define the vector on the right-hand side of the equation and then
solving the problem using the closed-from relationship for repetitive tridiagonal matrices.
The new obtained solution is then substituted in the right-hand side of the equation
and the tridiagonal problem is solved again. This process is carried out iteratively until
convergence is achieved. Computational complexity of the method is investigated and
efficiency of the method is shown through several examples. As indicated in the examples,
one of the advantages of the proposed method is its high rate of convergence in problems
where the given matrix includes large off-diagonal entries. In such problems, methods
like Jacobi, Gauss-Seidel, and Successive Over-Relaxation will either have a low rate of
convergence or be unable to converge.

2 Introduction

The final step of many engineering problems is solving a system of linear equations. In
general, such systems can be solved using direct or iterative methods. Direct methods,
such as Gaussian elimination or LU decomposition, are not usually used for problems
with large and/or sparse matrices as these methods are computationally expensive and
require storage of data and high speed computations. Therefore, several iterative methods
[1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 15, 18, 20, 21, 22, 24, 28] have been developed that can, in
general, be classified as two groups of stationary and non-stationary methods.
Since the goal is to solve the equation Ax = b, one can rewrite the equation as

x = (I−A)x + b

to form the iterative formula x(k) = (I−A)x(k−1) + b. In general, this equation can be
written in the form x(k) = Bx(k−1) + c where matrix B and vector c can be updated in
each iteration. In stationary methods, matrix B and vector c does not change with itera-
tions and remain unchanged. Specifically, Jacobi and Gaus-Seidel methods are well-known
examples of stationary methods that have been widely used in literature to solve systems
of linear equations. Jacobi method is a straightforward method with simple interpretation
and implementation. The drawback of this method, however, is its relatively low rate of
convergence. Gauss-Seidel method is similar to the Jacobi method, but uses updated
values in each iteration of the algorithm leading to a faster convergence [4, 17, 26, 29]. To
further improve the rate of convergence, Successive Over-Relaxation (SOR) algorithm has
been suggested that is obtained via adding a parameter ω to the Gauss-Seidel method.
The general form of SOR algorithm is

x
(k)
i =x

(k−1)
i + ω

R
(k−1)
i

ai,i
i = 1 : n

R
(k−1)
i =bi −

i−1∑
j=1

ai,jx
(k)
j −

n∑
j=i

ai,jx
(k−1)
j



25 I. Shojaei / JAC 53 issue 1, June 2021, PP. 23 - 39

which is simplified to the Gauss-Seidel method for ω = 1. For the case of 0 < ω <
1 (so-called under relaxation), the method can prevent divergence of the solution and
damps potential oscillations during iterations. For the case of 1 < ω < 2 (so-called over
relaxation), the method increases the rate of convergence. Finally, when ω > 2, the
solution will diverge. Likewise, Ehrlic (1981) introduced a method, called Ad-Hoc SOR,
wherein they used a new approach for updating variables in order to improve the rate of
convergence [12].
In non-stationary methods computations involve information that change in each iteration
of the solution [13, 14, 23]. Specifically, constant values of the algorithm in each iteration of
the solution is updated with the goal of reducing the norm of error. Conjugate Gradient is
a well-known example of such methods. Performance and comparison between stationary
versus non-stationary methods for solving singular problems can be found in [16].
Solving a system of linear equations using the methods above is challenging when the
coefficient matrix is Stieltjes. Stieltjes matrix is a positive definite matrix wherein the
off-diagonal entries are negative and diagonal entries are positive. To solve such matrices
AGMG and CG-AMG multigrid algorithms have been suggested. Todini and Pilati (1987)
used a global Gradient algorithm for hydraulic analysis of pipe networks [25]. Also,
Webster (1998) used an efficient multigrid method to analyze fluid flow in pipe networks
[27].
In this paper we have proposed a numerical method for solving system of linear equations
through taking advantages of properties of repetitive tridiagonal matrices. The method is
computationally efficient, O(n2), and its rate of convergence is high in problems involving
matrices of large off-diagonal entries where methods like Jacobi, Gauss-Seidel, and SOR
will either have a low rate of convergence or be unable to converge. There are several
methods in literature for solving a system of linear equations. Specifically, we have evalu-
ated the performance of our algorithm against three established algorithms in literature:
Jacobi, Gauss-Seidel, and SOR methods. Several practical examples including partial
differential equation (PDE) problems from mathematical finance have been solved using
the proposed method.

3 Jacobi method for solving system of linear equa-

tions Au = c

Consider matrix A below

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann

 (1)
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Matrix A is decomposed into a diagonal matrix D and the remainder R

A =


a11

a22

. . .
ann

+


0 a12 . . . a1n

a21 0 . . . a2n
...

... . . .
...

an1 an2 . . . 0

 = D + R. (2)

We will have
(D + R)u = c (3)

and
Du = c−Ru (4)

Setting an initial approximation as u0 = D−1c and obtaining a solution

u1 = D−1(c−Ru0) (5)

Repeating the procedure leads to an iterative algorithm from which the solution is ob-
tained

un+1 = D−1(c−Run) and n = 0, 1, 2, . . . (6)

The condition for convergence of Jacobi method (and any other iterative method) is
when the spectral radius of the iteration matrix (D−1R) is less than 1. One sufficient
condition for convergence of the method is that matrix A is diagonally dominant. Here we
presented the algorithm for Jacobi method as the simplest iterative method for system of
linear equations. Readers are referred to the relevant literature for detail and formulation
of other iterative methods such as Gauss-Seidel and SOR.

4 Closed-Form Solution of Mx = f when M is a tridi-

agonal matrix

Eigenvalues and eigenvectors of a tridiagonal matrix, of dimension N − 1, of the form

M =


b c . . . 0

a b c
...

a
. . . c

. . . a b c
0 . . . a b

 (7)

are calculated [19, 30] using

λn =b+ 2
√
ac cos

nπ

N
and n = 1, 2, . . . , N − 1

vnj =
(a
c

)j−1

sin
njπ

N
and n = 1, 2, . . . , N − 1 (8)

vn =[vn1 , v
n
2 , . . . , v

n
N−1]t.
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And if a = c, we will have

λn =b+ 2a cos
nπ

N
and n = 1, 2, . . . , N − 1

vnj = sin
njπ

N
and n = 1, 2, . . . , N − 1 (9)

vn =[vn1 , v
n
2 , . . . , v

n
N−1]t.

Since the matrix is symmetric (of dimension N − 1), its eigenvectors (v1,v2, . . . ,vN−1)
provide an orthogonal basis for N − 1 space. Therefore, we can expand x and f in terms
of (v1,v2, . . . ,vN−1) basis:

x =
N−1∑
i=1

xiv
i and f =

N−1∑
i=1

biv
i (10)

where fis are known (i.e., can readily be computed)

fi = (vi)tf (11)

and xis are our unknowns that should be computed through substitution in Mx = f

M
N−1∑
i=1

xiv
i =

N−1∑
i=1

fiv
i (12)

where we can write

M
N−1∑
i=1

xiv
i =

N−1∑
i=1

xiMvi =
N−1∑
i=1

xiλiv
i (13)

We can now re-express Eq. (12) as

N−1∑
i=1

λixiv
i =

N−1∑
i=1

fiv
i (14)

Because vis are linearly independent (they form a basis), we will have

λixi = fi → xi =
fi
λi

and n = 1, 2, . . . , N − 1. (15)

Therefore,

x =
N−1∑
i=1

fi
λi
vi =

N−1∑
i=1

vi
fi
λi

=
N−1∑
i=1

vi(vi)t

λi
f (16)

Finally,

x =
N−1∑
i=1

[sin iπ
N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N
]t[sin iπ

N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N
]

b+ 2a cos iπ
N

f (17)
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5 A numerical method for the solution of Au = c

when A is an arbitrary matrix

Here, we want to get advantages of the closed form solution for tridiagonal matrices to
develop an efficient numerical method for a linear system of equations Au = c when A is
arbitrary. Consider matrix A below

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann

 (18)

Lets decompose matrix A into a tridiagonal matrix, A1, and the remaining terms, A2. b
and a entries in tridiagonal matrix A1 are chosen to be, respectively, the average of diag-
onal entries (i.e., a11, . . . , ann) and the average of upper and lower neighboring-diagonals
entries (i.e., a12, . . . , an−1,n . . . , a21, . . . , an,n−1).

A =


b a
a b . . .

. . . . . . a
a b

+


a11 − b a12 − a . . . a1n

a21 − a a22 − b . . . a2n
...

... . . .
...

an1 − b an2 . . . ann − b

 = A1 + A2. (19)

We will have
(A1 + A2)u = c (20)

and
A1u = c−A2u. (21)

Replacing A2 by A−A1

A1u = c− (A−A1)u (22)

Lets initialize u using the following approximation

A1u
0 = c (23)

Since A1 is tridiagonal, according to previous section we will have

u0 =
N−1∑
i=1

[sin iπ
N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N
]t[sin iπ

N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N
]

b+ 2a cos iπ
N

c (24)

Now, we can improve the results through:

A1u
1 = c− (A−A1)u0 (25)

And in general we can use the following iterative equation to solve the problem

A1u
(n+ 1) = c− (A−A1)un (26)
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Since A1 is tridiagonal, we can write the equation as follows

un+1 =

N−1∑
i=1

[sin iπ
N , sin 2iπ

N , . . . , sin (N−1)iπ
N ]t[sin iπ

N , sin 2iπ
N , . . . , sin (N−1)iπ

N ]

b + 2a cos iπN
[c−(A−A1)un] (27)

As such, an iterative formula for solving a general linear system of equations is obtained
through properties of tridiagonal matrices. The condition for convergence of the method
is when the spectral radius of the iteration matrix, A−1

1 (A−A1), is less than 1.
We did not formally study the potential sufficient conditions for convergence of the pro-
posed method. However, through several examples we have shown that in many cases that
Jacobi, Gauss-Seidel, and SOR methods do not converge the proposed method converges.

6 Computational complexity of the method

For one iteration of the method, the dominant computational complexity is O(n2):

• (A − A1)un = MV: Multiplication of a matrix (M) and a vector (V), of the
complexity O(n2).

For sigma calculations we will have

• [sin iπ
N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N
][c−(A−A1)un] = PtV. Multiplication of a row vector

(Pt) and a column vector (V), of the complexity O(n). The outcome here would be
a scaler (S).

• [sin iπ
N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N
]tS = PS: Multiplication of a column vector (P) and a

scaler (S), of the complexity O(n).

• n times calculation of the two steps above (because of sigma) leads to a computa-
tional complexity of O(n2).

Therefore, the dominant computational complexity of the method for one iteration is
O(n2). If m iterations are required to achieve a desired accuracy, the computational
complexity of the method would be O(mn2). However, since the required number of
iterations to achieve convergence is much smaller than the dimension of matrix A (i.e.,
m << n), computational complexity of the method would be O(n2).

7 Examples

Example 1. Consider the following linear system of equations taken from:

A =


10 −1 2 0
−1 11 −1 3
2 −1 10 −1
0 3 −1 8

 , x =


x1

x2

x3

x4

 , b =


6
25
−11
15
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The system of equations was solved using matrix inversion (i.e., the exact solution), the
proposed method, and three iterative methods (Table 1). Matrix A1 in the proposed
method and matrix D in Jacobi method are as follows:

A1 =


9.75 −1 0 0
−1 9.75 −1 0
0 −1 9.75 −1
0 0 −1 9.75

 D =


10 0 0 0
0 11 0 0
0 0 10 0
0 0 0 8



Table 1: Comparison between the exact solution, the proposed method, and three iterative
methods for solving a matrix equation of 4 unknowns.

x = A−1b 5 iterations 5 iterations 5 iterations 5 iterations
Exact Proposed Jacobi GaussSeidel SOR (ω = 1.2)
1.0000 1.0003 0.9981 1.0001 1.0021
2.0000 2.0008 2.0023 2.0000 1.9993
−1.0000 −0.9995 −1.0019 −1.0000 −0.9999
1.0000 1.0008 1.0035 0.9999 1.0009

‖Exact− Iterative‖ 0.0012 0.0050 0.0001 0.0023

It is observed that the convergence rate of the proposed method is higher than that of
the Jacobi and SOR methods but a little bit lower than that of the Gauss-Seidel method.

Example 2. BlackScholes equation
BlackScholes equation is a partial differential equation in mathematical finance that de-
scribes the price of the option over time:

∂V

∂t
+

1

2
σ2s2∂

2V

∂s2
+ rs

∂V

∂s
− rV = 0,

or in a more general form we can write:

∂V

∂t
+ a(s, t)

∂2V

∂s2
+ b(s, t)

∂V

∂s
+ c(s, t)V = 0.

Using Crank-Nicholson finite difference method we will have:

Vn,j+1 − Vn,j
∆t

+
an,j+1

2

(
Vn+1,j+1 − 2Vn,j+1 + Vn−1,j+1

∆s2

)
+
an,j
2

(
Vn+1,j − 2Vn,j + Vn−1,j

∆s2

)
+
bn,j+1

2

(
Vn+1,j+1 − Vn−1,j+1

2∆s

)
+
bn,j
2

(
Vn+1,j − Vn−1,j

2∆s

)
+

1

2
cn,j+1Vn,j+1 +

1

2
cn,jVn,j = 0.

We can rewrite the equation as

An,j+1Vn−1,j+1+(1+Bn,j+1)Vn,j+1+Cn,j+1Vn+1,j+1 = −An,jVn−1,j+(1+B(n, j))Vn,j−Cn,jVn+1,j,
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where

An,j =
1

2
v1an,j −

1

4
v2bn,j

Bn,j =− v1an,j +
1

2
∆tcn,j,

Cn,j =
1

2
v1an,j +

1

4
v2bn,j,

v1 =
∆t

∆s2
and v2 =

∆t

∆s
.

These equations hold for n = 1, 2, , N − 1. Boundary conditions provide two additional
equations. In a matrix form and for boundary conditions of V (0, t) = 0 and V (smax, t) =
smax − Ee−r(T−t), we will have

V0,j = 0,

VN,j = N∆s− Ee−r(j)∆t,
V0,j+1 = 0,

VN,j+1 = N∆s− Ee−r(j+1)t.

ML
j+1Vj+1 + rLj+1 = MR

j Vj + rRj

ML
j+1Vj+1 + rLj+1 =


1 +B1,j+1 C1,j+1

A2,j+1 1 +B2,j+1 C2,j+1

A3,j+1 . . . . . .
. . . 1 +BN−2,j+1 CN−2,j+1

AN−1,j+1 1 +BN−1,j+1




V1,j+1

V2,j+1

...
VN−2,j+1

VN−1,j+1

 +


A1,j+1V0,j+1

0
...
0

CN−1,j+1VN,j+1



MR
j Vj + rRj =


1 −B1,j −C1,j

−A2,j 1 −B2,j −C2,j

−A3,j . . . . . .
. . . 1 −BN−2,j −CN−2,j

−AN−1,j 1 −BN−1,j




V1,j
V2,j

..

.
VN−2,j

VN−1,j

 +


A1,j+1V0,j+1

0
.
..
0

CN−1,j+1VN,j+1



ML
j+1Vj+1 = MR

j Vj + rRj − rLj+1

The matrix and vectors on the right hand side of the equation are known so we can write
the equation as

ML
j+1Vj+1 = b

Now, using the known matrix ML
j+1 and vector b, we can find vector Vj+1. The obtained

vector is then used on the right hand side of the equation in the next iteration to find
vector V in subsequent step.
Consider the following parameters for the problem:
σ = 0.25 Volatility of the stock
r = 0.2 Interest rate
Smax = 20 Maximum stock price
Smin = 0 Minimum stock price
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T = 1 Maturation of contract
E = 10 Exercise price of the underlying
M = 1600 Number of time points
N = 160 Number of stock price points
∆t = T

M
= 0.000625 Time step

∆s = Smax−Smin

N
= 0.125 Price step

Starting with j = 0, we will have

ML
1 V1 =





1.0000 0.0000
0.0000 1.0000 0.0000

0.0000 . . . . . .
. . . 0.5186 0.2358

0.2487 0.5125 0.2389
0.2519 0.5063


159×159

V1


= b =


0
0
. . .

9.75
7.39


159×1

The linear system of equations was solved using the three iterative methods, the proposed
method, and matrix inversion (i.e., the exact solution). Matrix A1 in the proposed method
and matrix D in Jacobi method are as follows:

A1 =


0.8339 0.0828
0.0828 0.8339 0.0828

0.0828 . . . . . .
. . . 0.8339 0.0828

0.8339 0.0828
0.0828 0.8339



D =


1.0000

1.0000
. . .

0.5186
0.5124

0.5063


Vector V1 of dimension 159× 1 was obtained as (Table 2):
It can be observed that the difference between exact and proposed solutions (the norm
of difference between the two vectors) is smaller than 0.1 after 8 iterations (Table 2, Fig.
1). The proposed method outperformed Jacobi and Gauss-Seidel methods but had close
performance to that of SOR method. To achieve almost same accuracy using Jacobi and
Gauss-Seidel methods, we needed 34 and 10 iterations, respectively (Table 2, Fig. 1). In
this problem ω = 1.2 was the optimal value of ω in SOR algorithm. It is notable that
although SOR algorithm had the same performance as the proposed method, adjusting
ω in this algorithm to achieve the best performance requires trial and error leading to
several additional iterations.
Now with V1 in hand, we can continue with the solution to calculate V2 in the next time
step. The procedure is reaped until all unknowns are found (j = 0, 1, ,M = 1600). This
means that to solve the problem using a Jacobi and Gauss-Seidel methods, we will need
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Figure 1: Performance of the proposed and SOR methods after 8 iterations were very
close to the exact solution (norm of error ∼ 0.1). Gauss-Seidel method reached the same
accuracy after 10 iterations whereas Jacobi method needed ∼ 34 iterations to become
comparable with the exact solution. The indicated results in the figure are for 8 iterations
in all methods.

Table 2: Comparison between the exact solution, the proposed method, and three iterative
methods for solving a matrix equation of 159 unknowns. After 8 iterations the proposed
method outperformed Jacobi and Gauss-Seidel methods but had close performance to
that of SOR method. Jacobi and Gauss-Seidel methods reached the desired accuracy
after 34 and 10 iterations, respectively. In this problem ω = 1.2 was the optimal value of
ω in SOR algorithm. Although SOR algorithm had the same performance as the proposed
method, adjusting ω in this algorithm required trial and error leading to several additional
iterations.

V1 = (ML
1 )−1b 8 iterations 8 iterations 8 iterations 8 iterations 34 iterations 10 iterations

Exact Proposed Jacobi GaussSeidel SOR (=1.2) Jacobi GaussSeidel
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

...
...

...
...

...
...

...
0.3762 0.3762 0.3762 0.3762 0.3762 0.3762 0.3762
0.5012 0.5012 0.5012 0.5012 0.5012 0.5012 0.5012
0.6262 0.6262 0.6262 0.6262 0.6262 0.6262 0.6262

...
...

...
...

...
...

...
9.5474 9.4974 7.0627 9.4623 9.5196 9.5040 9.5051
9.8749 9.9234 7.9059 9.9373 9.8926 9.8395 9.9056
9.6928 9.6620 8.5132 9.6618 9.6851 9.6717 9.6776

‖Exact− Iterative‖ 0.0914 5.8903 0.1794 0.1082 0.0938 0.0986

∼ 341600 = 54, 400 and ∼ 101600 = 16, 000 iterations, whereas to solve the problem with



34 I. Shojaei / JAC 53 issue 1, June 2021, PP. 23 - 39

the same accuracy using the proposed method we will need ∼ 81600 = 12, 800 iterations.

Example 3. Another advantage of the proposed method is its power in solving problems
with large off-diagonal entries. In such cases Jacobi, Gauss-Seidel, and SOR methods
were either slow or unable to converge.
Consider a coefficient matrix M with relatively large off-diagonal entries above and below
the main diagonal and consider same matrix b as in previous example:

M =


2.0500 0.5000
0.5001 2.0500 0.5000

0.5002 . . . . . .
. . . 1.5686 0.7358

0.7487 1.5625 0.7389
0.7519 1.5563


159×159

and b =


0
0
...

9.75
7.39


159×1

Figure 2: : In a problem with relatively large off-diagonal entries the norm of error for the
proposed solution was ∼ 0.02 after 3 iterations (the exact and proposed solutions are not
distinguishable visually in the figure). Jacobi, Gauss-Seidel, and SOR methods needed
55, 14, and 11 iterations respectively to achieve the same accuracy. The indicated results
in the figure are for 3 iterations in all methods.

It can be observed that the convergence rate of Jacobi, Gauss-Seidel, and SOR methods
is lower than the proposed method (Table 3, Fig. 2). Now, lets further increase the value
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Table 3: Comparison between the exact solution, the proposed method, and three iterative
methods for a problem with relatively large off-diagonal entries. The proposed method
reached the error of ∼ 0.02 after 3 iterations whereas Jacobi, Gauss-Seidel, and SOR
methods needed 55, 14, and 11 iterations respectively to achieve the same accuracy. In
this problem ω = 1.2 was the optimal value of ω in SOR algorithm.

V1 = M−1b 3 iterations 3 iterations 3 iterations 3 iterations 55 iterations 14 iterations 11 iterations
Exact Proposed Jacobi GaussSeidel SOR (ω = 1.2) Jacobi GaussSeidel SOR (ω = 1.2)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

...
...

...
...

...
...

...
...

0.7379 0.7379 0.8159 0.7505 0.8013 0.7379 0.7379 0.7380
0.7789 0.7789 0.8634 0.7922 0.8457 0.7789 0.7789 0.7790
0.8199 0.8199 0.9112 0.8340 0.8902 0.8199 0.8199 0.8200

...
...

...
...

...
...

...
...

3.1328 3.1215 4.9600 2.9120 2.9274 3.1402 3.1329 3.1279
3.2304 3.2404 4.7282 3.4229 3.3536 3.2359 3.2304 3.2335
3.1907 3.1847 3.9699 3.0977 3.1399 3.1936 3.1907 3.1893

‖Exact− Iterative‖ 0.0217 7.4424 0.5266 1.6869 0.0238 0.0217 0.0225

of off-diagonal entries:

M =


2.0500 0.5000
0.5001 2.0500 0.5000

0.5002 . . . . . .
. . . 1.5686 0.7358

0.7487 1.5625 0.7389
0.7519 1.5563


159×159

It can be observed that while in the proposed method the error after 15 iterations is less
than 0.06, the other three methods cannot converge. In the SOR method, all other values
of 0 < ω < 2 also lead to divergence of the solution.

8 Discussion and Conclusions

There are several methods to solve a system of linear equations. In general, these meth-
ods can be classified as direct and iterative methods. Given the computational demand
of direct methods, iterative methods are more often used in practice. One of simplest
iterative methods used to solve a system of linear equations is Jacobi method. This
method, however, has a slow rate of convergence and may also diverge in many prob-
lems with non-dominant diagonals of coefficient matrices. Therefore, several algorithms
(Gauss-Seidel and SOR amongst others) have been developed to improve the efficiency of
Jacobi method. These methods, however, have their own advantages and disadvantages
so that we still need to develop new efficient methods for many challenging problems.
In this paper a new iterative method for system of linear equations was presented. We
first developed a closed-form solution for repetitive tridiagonal matrices. Then, for a given
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Table 4: Comparison between the exact solution, the proposed method, and three iterative
methods for a problem with dominant off-diagonal entries. The error for the proposed
solution is ∼ 0.05 after 15 iterations. The iterative methods could not converge. In the
SOR method, all other values of 0 < ω < 2 also lead to divergence of the solution.

V = M−1b 15 iterations 15 iterations 15 iterations 15 iterations
Exact Proposed Jacobi GaussSeidel SOR (ω = 1.2)
0.9948 1.0002 0 0 0
−0.5098 −0.5117 0 0 0
−0.7335 −0.7383 0 0 0

...
...

...
...

...
0.8424 0.8380 0 0 0
−0.7934 −0.7886 0 0 0
−0.4439 −0.4413 0 0 0

...
...

...
...

...
1.6268 1.6300 1.2608e+ 12 2.2481e+ 54 3.8421e+ 62
1.7270 1.7315 9.0905e+ 11 −7.2086e+ 54 −1.4778e+ 63
0.0330 0.0266 4.8016e+ 11 1.9694e+ 55 4.8308e+ 63

‖Exact− Iterative‖ 0.0569 Diverged Diverged Diverged

arbitrary matrix, it was decomposed into a tridiagonal matrix and the remainder. The re-
mainder was added to the right-hand side of the equation such that the vector of unknowns
was generated on both sides of the equation. As such, a typical iterative formulation was
obtained where the solution was achieved through iterations over the closed-form solution
of tridiagonal matrices. One of the advantages of the proposed method is its high rate
of convergence without additional computational cost (the computational complexity of
the method is O(n2)). Furthermore, as opposed to many iterative algorithms developed
to improve the convergence rate of Jacobi method, the proposed method does not need
any additional parameters to be adjusted. For instance, in SOR algorithm there exists
a parameter adjustment of which requires trial and error which adds additional cost
to the problem. As indicated in several examples, the proposed algorithm is efficient in
tackling problems involving matrices of large off-diagonal entries whereas methods like
Jacobi, Gauss-Seidel, and SOR either have a slow rate of convergence or are unable to
converge in such problems. This feature of the algorithm is because of taking directly the
off-diagonal entries into account when formulating the tridiagonal matrices.
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