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1 Introduction

A geometric network on a set V' of n points on the plane is the weighted graph G = (V, E)
where the weight of each (p,q) € E is equal to the Euclidean distance |pgq| between the
endpoints of the edge. Assume t > 1 is a real number, a (directed) geometric t-spanner
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on V' is a sub-graph G’ of the complete geometric network on V' if, for every pair of points
p and ¢, a (directed) path in G’ between p and ¢ of maximum weight t|pq| exists. We call
this path a t-path between p and gq.

One of the challenging topics for researchers is to create low-cost methods (in terms of time
and space complexity) to build high-quality spanners (based on some qualitative criteria
such as small edge size (being lightweight), bounded degree of each vertex, ...). These goals
are contradictory because in most cases creating high-quality spanners imposes a high cost.
For situations where reducing construction costs is more important, the use of low-cost
methods that provide an approximation of the desired spanner is suggested [9, 11, 5].

A graph G is called #-angle-constrained, if any two distinct edges in GG sharing an endpoint
make an angle of at least 6 [8]. A f#-angle-constrained spanner is useful for a wireless
network that uses directional antennas, because in addition to ensuring a reduction in
signal interference and energy consumption, it provides short distances between each pair
of the network nodes [12]. Carmi and Smid [8] proposed an algorithm that takes O(nlogn)
time to construct a f-constrained spanner on a set of points, but they did not examine
qualitative features of the resulted spanner. Path-greedy and Gap-greedy spanners are two
well-known geometric spanners that have been shown to be angle-constrained [8, 14]. The
advantage of using these spanners is that their quality is known, however, the algorithms
for computing these spanners impose high costs.

PathGreedy algorithm, which is the most well-known algorithm for computing the Path-
greedy spanner, runs in near-cubic time. Das and Narasimhan [9] proposed Approzimate-
Greedy algorithm that produces a low-cost approximation of this spanner in O(nlog®n)
time. Gudmundsson et al. [11] made some changes in order to reduce time complexity of
the construction to O(nlogn). Although ApproximateGreedy algorithm results in a span-
ner with theoretical features similar to the Path-greedy spanner, in practice it performs
worse than expected in most cases [10]. In contrast to these algorithms, which provide
a non-parametric approximation of the Path-greedy spanner, Bar-On and Carmi [5] pro-
posed an algorithm that constructs a parametric approximation of this spanner. Their
proposed algorithm, which has a time complexity of O(n?logn), has a parameter which,
when equated with input stretch factor, produces the same output as PathGreedy algo-
rithm.

Note that other improvements have been made to PathGreedy algorithm, including algo-
rithm of Bose et al. [6], which has time and space complexity of O(n*logn) and O(n?),
respectively. Alewijnse et al. [2], proposed a linear space algorithm that creates this span-
ner using well-separated pairwise decomposition. They proved that their algorithm can
compute in O(nlog®nlog?logn) expected time the Path-greedy spanner on a point set
whose points are uniformly distributed in a /n x /n square. However, on an arbitrary
point set, time complexity of their algorithm is O(n?log® n).

The output produced by the GapGreedy algorithm, which is proposed by Aria and Smid [3]
to compute the Gap-greedy spanner, provides an angle-constrained spanner. GapGreedy
algorithm imposes a high cost, i.e., it takes O(n?®) time and O(n?) space for computing
the Gap-greedy spanner, so the same authors proposed another algorithm which is called
FastGapGreedy. FastGapGreedy computes in O(n?logn) time a spanner that is asymp-
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totically similar to the Gap-greedy spanner, but not necessarily identical and specifically
not an angle-constrained.

Bakhshesh and Farshi have proposed two algorithms to compute the Gap-greedy span-
ner [4]. Their algorithms, that use the well-separated pairs decomposition, take O(n?) and
O(n?) time to compute this spanner, respectively. Space complexity of their algorithms
are also O(n) and O(n?), respectively.

In this paper, we propose algorithms that compute a parametric approximation of the
Gap-greedy spanner. The approximated spanner, which we call a-Gap greedy spanner, is
constructed at a lower cost than the Gap-greedy spanner. The proposed algorithms have
a parameter called a through which the difference between the a-Gap greedy spanner and
the Gap-greedy spanner can be determined.

The rest of the paper is organized as follows. In Section 2, the Gap property and the Gap-
greedy spanner are introduced. In Section 3, the a-Gap greedy spanner, its construction
algorithms, an analysis of the proposed algorithms and an examination of quality of
resulted spanner are presented. Section 4 is devoted to the construction of the a-Gap
greedy spanner on the points placed randomly in a unit square. In Section 5, results of
experiments done on the proposed algorithms are presented.

2 Gap property and the Gap-greedy spanner

In the following sections, we use some notations defined in [13]. We use angle(pq, rs), for
the angle between two directed edges (p,q) and (r,s), which is defined as the angle of
translation of (p,q) and (r,s) such that their sources are at the origin. Let w > 0 be a
real number, and let E be a set of directed edges in R?. We say that E satisfies the w-gap
property if for any two distinct edges (p, q) and (r,s) in E, we have

[pr| > w - min(|pq, |rs|)

If, in addition to the above condition, the following condition holds for any two distinct
edges (p,q) and (r,s) in E, then F satisfies the strong w-gap property.

lgs| > w - min(|pg|, |rs|)

Using the w-gap property, a way of examining the existence of a short path between two
arbitrary points was proposed by Arya and Smid [3]. In this paper, a modified version
that is proposed by Bakhshesh and Farshi [4] is used that is as follows. Let G = (V, E)
be a directed graph and assume p,q € V are two distinct points. If there exists an edge
(r,s) € E such that (i) the vectors pq and rs have approximately the same direction, (i7)
|rs| is not larger than |pq|, and (iii) at least one of the distances |pr| and |gs| is small
(relative to the length of (7, s)), then we can obtain a short path between p and ¢, by first
going from p to r, then following the edge (r, s), and finally going from s to ¢. Lemma 2
explains the proposed scheme formally.
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Lemma 1 [4] Let ¢, 6, and w be real numbers, such that 0 < § < Z, 0 < w < 1 —

. 37
QSin(%), and ¢t > . Let p, ¢, r, and s be points in R%, such that
L p#qr#s,

2. angle(pgq,rs) <0,

1
(1-2sin(0/2)—2w)

3. Irs| < |pql, and
4. |pr| < wlrs|.

Then |pr| < |pql, [sq| < [pql, and t|pr| + |rs| +t|sq| < t|pq].
Note that condition (4) can also be extended to the case when |gs| < w|rs.

Definition 1 Given real numbers ¢, 6, and w, and points p, ¢, r, and s satisfying the
conditions of Lemma 2, we refer to the edge (7, s) as an evident edge for (p, q).

Now we explain how GapGreedy algorithm construct the Gap-greedy spanner. The con-
struction is started with an empty graph G, and then all pairs of points are processed
in non-decreasing order of their distances. At the time when a point pair (p, q) is to be
processed, if no evident edge is found for it in G, (p, q) is added to G as a new edge. Note
that this search, in worst case, requires examining all edges of G.

However, according to Lemma 2, the evident edges of a point pair are not far from it, and
therefore we can use this locality of the evidences feature to limit the search space. The
algorithms presented in this paper use this feature to speed up the construction process.
The proposed algorithms store some information in the form of a set of cones at every
point, about the evident edges that are close to it. The cones are used by the algorithms
as an alternative and less expensive way to determine the existence of evident edges for
pairs of points.

3 «a-Gap greedy Spanner

In this section, two algorithms are presented that compute the a-Gap greedy spanner
on the input point set. In the algorithms presented, whenever an evident edge is found
for a pair (p,q), some information will be stored in p so that the existence of an evi-
dent edge for the other pairs that are close to (p,q) can be examined less expensively. In
the proposed algorithms, we use the concept of a-evident edge, which is defined as follows.

Definition 2 We call an edge (r, s) an a-evident edge for (p, q), if (r, s) is an evident edge
for (p,q) and angle(pq,rs) < 6 — a, where « is a real number such that 0 < a < 6.

In the Gap-greedy spanner, the angle between each pair and its evident edge is at most
0, however, in the a-Gap greedy spanner, for some pairs this angle is deliberately consid-
ered to be less than 6 (we discuss the reason later). This difference is determined by «
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parameter, such that as closer its value to zero, the more similar the two spanners are in
this respect.

For each point p € V', we define C'(p) as the set of cones which have p as their apex. Let
c € C(p), if a point ¢ lies in ¢, then it can be shown that there is an evident edge for the
point pair (p,q) in the current spanner (Lemma 2). Due to this, at the moment when
(p, q) is to be processed, the proposed algorithms at first examine existence of such cone
c € C(p). We show that the cost of this examination is constant (Lemma 3).

Cones are added during the construction of the a-Gap greedy spanner. When a point pair
(p,q) is to be processed, if a cone ¢ € C'(p) cannot be found that contains ¢, search for
finding an a-evident edge for (p, q) will be performed and then a cone is added to C(p).
We will show that for each point p € V', the number of times this search is performed is
a constant that depends only on o (Lemma 4).

Let ¢ be a cone with ]ﬁ as bisector that is added to C(p) after a-evident edge search per-
formed for a pair (p, ¢). The angle of ¢ depends on the result of a-evident edge search. If an
a-evident edge (r, s) is found for the pair (p, ¢), the angle of ¢ is set to 2(6 — angle(pg, rs)).
Note that in this case, we have |pr| < w|rs|, otherwise the cone ¢ is not added to C(p).
Lemma 3 shows that the pair (r,s) is an evident edge for all pairs (p, k), where k € V' is
a point that lies in ¢ (See Figure 1). It’s easy to see that the smaller the angle between
(r,s) and (p, q), the larger angle of ¢ is. Note that o parameter limits the minimum size
of c¢. If no a-evident edge is found for the pair (p, q), the angle of ¢ is set to 26.

Lemma 2 Let ¢ and « be real numbers such that 0 < 6 < % and 0 < a < 6. Suppose
(r,s) is an a-evident edge for (p,q), and k is a point on R? such that:

L |pg| < Ipkl,
2. angle(pk, pq) < 0 — angle(pq, rs).
Then (7, s) is an evident edge of (p, k).
Proof It is easy to see that |rs| < |pkl, so if we show angle(pk,rs) < 6, then based on

Lemma 2, it can be concluded that (r, s) is an evident edge for (p, k).
To show that angle(pk,rs) < 6, we use property (2) of Lemma 3:

angle(pk, rs)

< angle(pk, pq) + angle(pg, rs)
< 0 — angle(pq, rs) + angle(pg, rs)
=0.

The lemma follows.

3.1 First algorithm

Our first algorithm is a simple extension of GapGreedy algorithm. It starts with an
empty graph G = (V,{)) and processes the input pairs of points in a non-decreasing order
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o
—angle(pg,7s)

Figure 1: Illustration of Lemma 3. (r,s) is an a-evident edge for (p,¢) and an evident
edge for (p, k).

of their distances. At the step when a pair (p, q) is to be processed, it acts as mentioned
in the previous section, i.e., it examines if there exists a cone ¢ € C(p) that contains gq.
If such a cone ¢ is not found, a-evident edge search operation is performed for (p,q). In
Algorithm 1, the pseudo-code of the proposed algorithm is given.

3.1.1 Algorithm Analysis

Lemma 3 The number of cones stored by each point is at most %”

Proof Suppose (p,q) and (p,r) are two pairs of points that a-evident edge search have
been performed for, and their corresponding cones have been added to C'(p). Without loss
of generality, we assume that (p,q) is processed before (p,r). According to Algorithm 1,
Zrpq is at least «, because otherwise, r lies in a cone with ;@ as bisector and thus, ac-
cording to Lemma 3, there is a t-path between p and r. In other words, angle(pgq, pr) > «,
so we can easily see that |C(p) < 2.

Lemma 4 The number of times that a-evident edge search is performed by the proposed
algorithm is at most 2%”71.

Proof Assume that (r, s) is a-evident edge that is found for (p, ¢). According to the defi-
nition of the a-evident edge, we have |pr| < w|rs| or |gs| < w|rs|. If we have |pr| < w]rs|,
then the algorithm adds a cone to C'(p) after searching for (p, ¢). In case that |gs| < w]rs|,
after searching for an a-evident edge for (g, p), the algorithm adds a cone to C(q). In
other words, when a-evident edge search is performed for (p,q) or (g,p), at least one
cone is added to the set of cones of p or ¢, respectively. On the other hand, according to
Lemma 3.1.1, the number of cones that is maintained by each point is at most %r Since
at most two a-evident edge searches are performed for every cone, the desired result is
obtained.

Lemma 5 Let 0, w and « be real numbers such that 0 < 6§ < Z and 0 < w < 1 —

QSin((Sin—gm), 0 < a <6, and let V be a set of n points in the plane.

1. Algorithm a-GapGreedy(V, w, 0, ) computes a graph in which each vertex has

degree at most 2[ 7= 1.
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Algorithm 1: a-GapGreedy(V, w, 0, «)

[y

© 000 N O Uk W N

NONON N R R e e e e e e e
W N R O © N A W N RO

Input : A set V of n points in the plane and three real numbers

0<w<1—2sin(®2) 0<h<Tand0<a<d

Output: An a-Gap greedy spanner for V

Sort the 2(;) pairs of distinct points in non-decreasing order of their distances and
store them in list L;

E + (;

C(p) < 0,¥YpeV;

G =(V,E);

foreach (p,q) € L do

if ¢ € C(p) then
continue
end
Let e = (7, s) be an a-evident edge found for (p, q);
if e is null then
E<«— EU{(p,q)};
(26, q) < cone of angle 26 with apex at p and bisector ]ﬁ;
Clp) « Cp) Ucy:
end
else
if |pr| < w|rs| then
v < 0 — angle(pgq, rs);
(27, q) < cone of angle 2y with apex at p and bisector it
Clp) — C(p) Ucy,
end

end

end
return G = (V, E)

2. If w > 0, then the weight of this graph is less than [72=](1 + 2)logn times the

weight of a minimum spanning tree of V.

Proof The proof is similar to Lemma 7.2.2 of Narasimhan and Smid [13], we only need
to substitute § — a for 6.

Theorem 6 a-GapGreedy(V, w,0, a) computes the a-Gap greedy spanner in O(n?logn+
%) time and O(n? + ) space.

Proof The algorithm starts by sorting 2 (g) of input pairs of points that requires O(n?logn)
time. According to Lemma 3.1.1, the number of times the algorithm searches for an a-
evident edge is O(Z). Every such search costs O(n), therefore processing of the pairs has

the cost of O(%Q), thus total time cost of the algorithm is O(n?logn + %2) The list of
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points pairs requires O(n?) space and space cost of the cones based on Lemma 3.1.1 is at
most Zn, so space cost of the algorithm will be O(n® + 2).

3.2 Second Algorithm

In our second algorithm, named LinearSpace-a-GapGreedy, we were inspired by the
method of Bouts et al. [7], used to construct Path-greedy spanner, to reduce memory
usage of the first proposed algorithm. In this method, the set of input pairs of points
are partitioned into O(n) sets, and thus processing of (72‘) pairs of points is convert to
processing of O(n) sets of pairs of points.

Let S, be a set of pair of points that have p as starting point, e.g. S, ={(p,q) | ¢ € V}.
We refer to p as the center of S,. We denote the candidate of S, as C(S,) and define it
as a pair (p, q) such that (i) there is no a-evident edge for (p,q) in the current spanner,
and (i7) ¢ be the closest point to p. We say that p is dirty if the newly added edge to the
spanner is an a-evident edge for C(S,).

The LinearSpace-a-GapGreedy algorithm considers S, for each point p € V' and repeat-
edly selects the smallest C'(S,). Suppose (p,q) is the current smallest candidate. If p is
not dirty, (p, ¢) will be added to the spanner as a new edge, otherwise, the new candidate
for S, is identified and replaced using an operation named ClosestPair. When an edge
(p,q) is added to the spanner, a cone is also added to C(p), as described in the previous
section. The pseudo-code of LinearSpace-a-GapGreedy is shown in Algorithm 2.

When ClosestPair operation is called for S,, unprocessed pairs of S, are examined in
a non-decreasing order of their distances and the first found pair without an a-evident
edge is returned as output. When ClosestPair operation processes a pair (p,q), at first
examines C'(p) to find a cone containing ¢. If no such cone is found, a-evident edge search
is performed. Suppose (r,s) is the a-evident edge found, if we have |pr| < w|rs|, a cone
of angle 2(6 — angle(pg, rs)) with pg as its bisector is added to C(p). The ClosestPair
operation is presented in Algorithm 3.

According to Algorithm 3, ClosestPair operation is completed in two cases: 1) @, is
empty, and 2) the extracted element from @, has no a-evident edge. The first case occurs
when all elements of S, are processed and the desired element is not found, so it is the last
time the operation is called for S,. The second case occurs when a-evident edge search
operation is performed and the current element is identified as a new candidate of S,,. In
fact, except for the last time that this operation is called for S, at the other times, the
completion requires at least one call to a-evident edge search operation.

Observation 1 a-evident edge search operation is called at least once every time Clos-
estPair operation is called for a set with the center point p (except for the last time).

Lemma 7 The number of times that ClosestPair operation is called is at most 2%’%.

Proof According to Lemma 3.1.1, the number of times the a-evident edge search is called
is at most Z%n. On the other hand, according to Observation 1, every time ClosestPair
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Algorithm 2: LinearSpace-a-GapGreedy(V, w, 0, «)

Input : A set V of n points in the plane and three real numbers
0§w<1—2sin(%),0<9<gand0<a<0
Output: An a-Gap greedy spanner for V

1 E+ 0;
2 C(p) « 0,VpeV;

3 @ < {(a,b) | bis the nearest point to a};
4 G=(V,E);

5 foreach a € V do

6 ‘ Mark a as clean;

7 end

s while Q # () do

9 (p,q) < ExtractMin(Q);

10 if p is dirty then

11 k < ClosestPair(C(p),p);

12 if k£ is not null then

13 ‘ Insert (p, k) into Q;

14 end

15 end

16 else

17 E<+— EU{(p,q)};

18 Insert (p, q) into Q;

19 (26, q) < cone of angle 26 with apex at p and bisector pi:
20 C(p) < C(p) Uy

21 foreach (a,b) € @ do

22 if (p,q) is an a-evident edge for (a,b) then
23 ‘ Mark a as dirty;

24 end

25 end

26 end

27 end

28 return G = (V, E)

operation is called for a set (except for the last time), a-evident search operation is also
called at least once. So total number of times that ClosestPair operation is called is at
most 2%’%.

Theorem 8 Algorithm LinearSpace-a-GapGreedy(V, w, 6, «) computes the a-Gap
greedy spanner in O(”2 + n?logn) time and O(Z) space.

a

Proof The only information held by the algorithm is the cones, so according to Lemma 3.1.1,



50 H. Salami / JAC 53 issue 1, June 2021, PP. 41 - 60

Algorithm 3: ClosestPair(C(p), p)

Input : A set C(p) of cones and a point p
Output: New candidate for the S, (or null if there is no candidate)

1 Let (p, k) be the current candidate of S,;
2 Qp 0

3 foreach a € V do

4 if |pa| > |pk| then

5 ‘ Insert a into Qp;

6 end

7 end

s while Q, # 0 do

9 q < ExtractMin(Q,);

10 if ¢ € C(p) then

11 continue

12 end

13 Let e = (7, s) be an a-evident edge found for (p, q);
14 if e is null then

15 ‘ return ¢

16 end

17 | if |pr| < w|rs| then

18 v < 0 — angle(pg, rs);

19 (27, q) < cone of angle 2y with apex at p and bisector pé;
0 | | Clo) e Cp)Uey

21 end

22 end

23 return null

the space cost of the algorithm is O(Z2).

Determining the nearest point to the central point of each set, that is done at the beginning
of the algorithm, costs O(n?). According to Lemma 3.2, ClosestPair operation is called
at most 2%’%. Each time this operation is performed, at most n elements are inserted in
queue. This step can be done by a specific implementation at a cost of O(n), so the total
cost of this step is O(%Q) For a specific set, a point is extracted from the queue only
once, so the overall cost of this extraction for each set is O(nlogn), and therefore total
cost of this extraction is O(n?logn).

After extracting a pair (p,q), we first examine whether ¢ lies in a cone of p. Note that

the number of cones held by each point is O(+) (Lemma 3.1.1), and this check is per-
formed exactly once for each pair, so the total cost of this step is O(%Q) According
to Lemma 3.1.1, the number of times that a-evident search operation is called is O(%),
therefore, the cost imposed by this operation in the algorithm is O(%) After adding
a new edge to the spanner, at most n candidates must be examined. The cost of this
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examination is O(n), and since the number of edges added to the spanner is O(n), the
total cost of this step is O(n2), thus total cost of the algorithm will be O(% + n%logn).

«

4 Construction of the a-Gap greedy Spanner on Ran-
dom Point Set in Unit Square

Suppose n points are randomly and uniformly distributed in a unit square. In this section,
we show that by making some changes to our first proposed algorithm, it is possible to
create the a-Gap greedy spanner on such points in expected O(nlogn) time. The method
used in this section is inspired by work of Bar-on and Carmi [5], which was proposed to
construct the Path-greedy spanner on such points. To show that the proposed changes
lead to the expected running time of O(n logn) for constructing the a-Gap greedy spanner,
it is necessary to show the followings:

1. For each point, a-evident edge search is called a constant number of times, which
follows from Lemma 3.1.1,

2. The expected number of edges examined in a-evident edge search is constant.

Note as the points are randomly distributed in unit square, the expected number of points
at the distance of at most x from p is ©(z*n). Also, based on Lemma 3.1.1, the number
of a-evident edge searches performed by the algorithm for a point is O( é) Each of these
searches define a cone with apex at p of angle at least o, such that no a-evident edge search

from p is performed to any point in this cone. we set y = i and z = \/iﬁ In this case, the

expected number of points around each point in a distance = will be O(y?) = O(Z%).

We divide the plane into y cones with apex at p of equal angles. It’s easy to see that
the probability of having a cone that does not contain a point from the set of points in a
distance z from p is at most y(1 — 5)92. Let @ be a set consists of all the points g such
that a-evident edge search has performed for (p, q). Consider g € @) be the farthest point
of () from p, so the expected Euclidean distance between p and ¢ is at most x. In other
words, with high probability, the farthest pair of points that search for an a-evident edge
will be performed, has distance at most z.

To show the expected number of edges examined in a-evident edge search is constant, we
use the locality of evidence property. As in Lemma 2 it was shown, the (a-) evident edges
of a pair (p,q) are placed in a distance at most |pg| from p and ¢g. On the other hand,
the number of edges of the spanner at such a distance is limited. The expected number
of points in the distance |pg| from point p and ¢ are:

2(|pg|*n)
< 21°n

= 2°.
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According to Lemma 3.1.1, the degree of vertices in the a-Gap greedy spanner is at most
2[62_—”a1. With some simplifications, the expected number of edges of the spanner that
should be examined from one point in a-evident edge search is O(@).

Note that the main cost of the first proposed algorithm is implied from sorting all pairs
of points. It is possible to obtain the next pair in the sorted order at an expected cost of
O(log n) without sorting all the pairs. The method is as follows [5]. The unit square is
divided to n x n grid cells with side length % The points in every non-empty grid cell is
mapped into a hash table of size 3n.

For each point p € V, an initially empty minimum heap H, is maintained, which contains
a subset of the pairs that include p. In addition, the top element of each H,, is maintained
in a minimum heap H. The algorithm uses the hash table to scan all the cells of distance
at most x from every point p € V to find all the points in these cells. The points found
are added to H, according to their Euclidean distance from p.

The pairs are held in the main heap H in an increasing order. Assuming the extracted
pair from H is belong to a point p, the next pair added to H is the minimum pair in
H,. Note that if it needed, the distance to the scanned cells is increased to ensure the
correctness of the heaps, but the only cells that are not contained in cones of C(p) are
scanned to add more pairs to H,. Therefore, the total expected running time of the
algorithm is O(Wﬂlog n).

)

5 Experimental Results

In this section, we compare the a-Gap greedy construction algorithms experimentally.
The experiments were performed on sets consisting of 250 to 4000 points with uniform
and clustered distributions. We followed the method proposed by Alewijnse et al. [1, 2]
to generate points with clustered distribution. In the experiments, four different configu-
rations of C'1 - C'4 were considered. The specifications of each of these configurations are
shown in Table 1.

Table 1: Specification of configuration used in the experiments

Parameter Stretch factor=2 Stretch factor=1.2
C1 C2 C3 C4

W 0.1555 0.2045 0.0655 | 0.008870

0 0.174533 | 0.087267 | 0.034907 | 0.139626

The implementation of the algorithms was done using C++ language, and compiled into
machine codes using Visual Studio 2015 compiler. The experiments were performed on
a machine with an Intel Core i5-2410M processor with 4GB of main memory on the
Windows 7 operating system.
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5.1 Construction Time

In this section, we investigate the construction time of the a-Gap greedy spanner that
is imposed by the two proposed algorithms. The results are divided into two parts.
Section 5.1.1 examines the effect of a-evident edge selection policy used by the proposed
algorithms on the a-Gap greedy spanner construction speed, and in section 5.1.2, we
examine the effect of o value on this property.

5.1.1 Effect of the a-evident edge selection policies on the construction time

For a pair of points, there may be more than one a-evident edge in a spanner, so the
proposed algorithms may have more than one choice at the time of searching for an
a-evident edge. In order to determine the effectiveness of possible choices during the
construction of the a-Gap greedy spanner, two implementations have been done for each
of the two proposed algorithms. In the first implementation, the first eligible edge found,
is considered as the a-evident edge. In the second one, we use the best eligible edge as the
a-evident edge. The best eligible edge is the edge whose cone has bigger angle than the
other candidates. Note that the output spanner produced by these two implementations
is the same.

The Figures 2 and 3 present the results of the first proposed algorithm with first candidate
policy (AGFC), the first proposed algorithm with best candidate policy (AGBC'), the
second proposed algorithm with first candidate policy (LSFC') and the second proposed
algorithm with best candidate policy (LSBC). In the results shown, we use 6° for the «
parameter.

As can be seen in almost all experiments, the algorithms with a first candidate policy
spend less time for constructing the a-Gap greedy spanner, and this advantage increases
with increasing number of points (especially in clustered distribution). The results also
show that in uniform distribution, the range of variations in construction time of the
a-Gap greedy spanner is smaller than that of cluster distribution.

According to the results, in subsequent experiments, the policy of first candidate has been
used for the proposed algorithms.

5.1.2 Effect of a parameter on the construction time

In this section, we examine the effect of a parameter value on the construction speed
of the a-Gap greedy spanner. The values used for this parameter are equal to 65, 62
and #3. For the comparison purposes, the Gap-greedy spanner is also constructed using
the GapGreedy algorithm (GapGR) on the set of input points and the construction time
is shown in the following results along the results related to the proposed algorithms
(Figures 4.5).

As can be seen, the superiority of the proposed algorithms over the GapGreedy algorithm
is obvious, however, in the clustered distribution of points, the degree of superiority is
slightly higher than in the case where the distribution of points is uniform. Based on the
time cost analysis of the algorithm, it is obvious that as the number of points increases,
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Figure 2: Construction time of the a-Gap greedy spanner imposed by the proposed al-
gorithms with different a-evident edge selection policies. Configuration C'1 (a and b),
Configuration C2 (¢ and d)
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Figure 3: Construction time of the a-Gap greedy spanner imposed by the proposed al-
gorithms with different a-evident edge selection policies. Configuration C3 (a and b),
Configuration C4 (¢ and d)
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Figure 4: Comaprison of the proposed a-Gap greedy spanner construction algorithms and
GapGreedy algorithm. Configuration C'1 (a and b), Configuration C2 (c and d)
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Figure 5: Comaprison of the proposed a-Gap greedy spanner construction algorithms and
GapGreedy algorithm. Configuration C3 (a and b), Configuration C'4 (c and d)
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Table 2: Unifrom distribution

Number of Points=1000 Number of Points=4000
Configuration o % Weight Maximum Degree % Edge Size | % Weight Maximum Degree % Edee Size
a—GG GG ’ | a—GG GG =
0.00532 | 1.0307 52 50 0.7999 1.0302 54 54 1.1536
1 0.03046 | 1.2211 60 50 0.9936 1.2208 64 54 1.2374
0.07291 | 1.7416 83 50 0.9573 1.7331 87 54 1.1098
0.00066 | 1.0056 88 86 0.9882 1.0058 94 94 0.9452
2 0.00762 | 1.0688 94 86 1.1801 1.0837 100 94 1.1147
0.02578 | 1.3417 117 86 1.0136 1.3547 121 94 1.0626
0.00004 | 1.0018 212 212 1.0000 1.0013 236 236 1.0000
3 0.00122 | 1.0348 220 212 1.0000 1.0393 242 236 1.1002
0.00652 | 1.2305 255 212 1.0020 1.2317 282 236 1.1144
0.00272 | 1.0228 66 64 0.9873 1.0350 70 70 1.0082
cu 0.01950 | 1.1981 76 64 1.0616 1.2091 80 70 1.0004
0.05217 | 1.7223 98 64 1.0749 1.7867 107 70 1.0377

the difference between the proposed algorithms increases compared to the GapGreedy
algorithm.

Another observation in the displayed results is that the value of a parameter in the uniform
distribution has a greater effect on the construction time of the proposed algorithms, while
in the clustered distribution, this effect is negligible. Finally, as you can see, as the closer
the value of a parameter is to zero, the shorter the construction time of the a-Gap greedy
spanner due to the smaller number of edges (see the results in Section 5.2).

5.2 Quality of the a-Gap greedy spanner

In this section, the results related to qualitative features of the a-gap greedy spanner are
given. The features include weight, maximum degree of vertices and size of the longest
edge in the spanner. In order to investigate the effect of the o parameter, the a-Gap
greedy spanner was constructed for different values of this parameter, as Section 5.1.2.
We also include the above qualitative features associated with the Gap-greedy spanner
built on the same set of input points so that we can examine the differences between the
resulting spanners. Note that regarding the weight of graph and the heaviest edge, the
ratio of their value in the a-Gap greedy to that of the Gap-greedy spanner is shown.

As expected, as a value decreases and approaches 0, the maximum degree of vertices and
the weight of the a-Gap greedy spanner get closer to the values associated with these
characteristics in the Gap-greedy spanner. Note that this observation is the same in all
experiments performed (different number of points and distributions, as well as different
values for # and w parameters).

Also note that the quality of the resulting a-Gap greedy spanner is affected more by
changing the value of o parameter when the distribution of points is uniform. As shown in
Tables 2-3, changing this parameter, if the distribution of points is uniform, has a greater
impact on the characteristics of the resulting the a-Gap greedy spanner (maximum degree
of vertices and weight). This observation justifies the results of the previous section,
in which the construction time by the proposed algorithms for points with clustered
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Table 3: Clustered distribution
Number of Points=1000 Number of Points=4000
Configuration o % Weight Maximum Degree % Edge Size | % Weight Maximum Degree % Edee Size
a—GG GG ’ " a—GG GG o
0.00532 1.0210 34 34 1.0000 1.0321 46 46 1.0709
1 0.03046 1.1237 38 34 0.9919 1.2308 50 46 1.2684
0.07291 1.5053 44 34 0.9887 1.6962 64 46 1.2769
0.00066 1.0071 44 44 1.0000 1.0012 68 68 1.0000
2 0.00762 1.0650 46 44 0.9919 1.0520 68 68 1.1308
0.02578 1.1935 50 44 0.9887 1.2878 78 68 1.1308
0.00004 1.0000 64 62 1.0000 0.9992 100 100 1.0000
3 0.00122 1.0650 65 62 1.0000 1.0146 102 100 0.9990
0.00652 1.1935 70 62 1.0735 1.1115 112 100 1.0150
0.00272 0.9959 44 44 0.9822 1.0096 56 56 1.1119
cu 0.01950 1.0597 46 44 1.0340 1.1195 58 56 1.0696
0.05217 1.2794 48 44 0.9451 1.3547 76 56 1.0584

distributions at different o values did not make a significant difference.

Finally, the above observation is not true about the size of the largest edge. In fact, as
can be seen, changing « value does not have a significant effect on this feature in the
a-Gap greedy spanner compared to the Gap-greedy spanner.
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