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ABSTRACT ARTICLE INFO

In this paper we have developed an iterative method
to solve eigenproblem for non-repetitive tridiagonal ma-
trices. The importance of eigensolution for tridiagonal
matrices is that in many algorithms the eigneproblem
for an arbitrary matrix is first converted to the eigen-
problem for a tridiagonal matrix and then the problem
is tackled. Our proposed method was developed through
taking advantages of some unique properties of repeti-
tive and non-repetitive tridiagonal matrices. First, we
established closed-form solutions for the system of lin-
ear equations Mx = f for the condition M is tridiag-
onal. When M is a repetitive tridiagonal matrix, the
unknown vector x, the vector f , and the coefficient ma-
trix M are expanded using orthogonal basis of matrix
M and closed-form relationships are obtained. For non-
repetitive matrix M, the tridiagonal matrix algorithm is
used to efficiently solve the matrix equation. We then
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1 Abstract continued

using orthogonal basis of matrix M and closed-form relationships are obtained. For
non-repetitive matrix M, the tridiagonal matrix algorithm is used to efficiently solve
the matrix equation. We then implemented these solutions in an iterative relationship
for eigenproblem where eigenpairs of non-repetitive tridiagonal matrices were obtained
through successive solution of the tridiagonal matrix equation efficiently solved above.
Furthermore, closed-form relationships for eigenpairs of repetitive tridiagonal matrices
were implemented in the algorithm as start point for eigensolution of non-repetitive tridi-
agonal matrices so that the required number of iterations was significantly reduced. Com-
putational complexity of the proposed method is O(n2) that is competitive with the best
existing algorithms in literature. As indicated through several numerical examples, the
advantages of the proposed algorithm include high rate of convergence, computational
efficiency in each iteration, simple implementation, and availability of an objective start
point for initialization.

2 Introduction

There are several applications for eigenpairs of a matrix. For instance, eignepairs can
be used for dimensionality reduction in order to detect a set of features that are more
important in description of a random phenomenon such that a simpler and more effi-
cient model is obtained. One of such techniques is principal component analysis wherein
eigenpairs of covariance matrix are used to compact the original matrix of observations.
Therefore, without missing significant information, efficiency and efficacy of the model
increase. Another application of eigenpairs is in defining modal matrices that are used
for diagonalization in many science and engineering problems. Modal matrices may take
different patterns according to the form of eigenpairs. For the case eigenvalues are dis-
tinguished, modal matrix will be a diagonal matrix, whereas for repeated eigenvalues as
well as complex conjugate eigenvalues block diagonal matrices are obtained. Many other
large-scale problems of engineering and scientific computing also require eigensolution so
that developing efficient methods for eigenproblem have always been of interest among
researchers.
Given different applications of eigenpairs in science and engineering, several methods
have been developed for eignesolution. These methods includes Power iteration, Inverse
iteration, Rayleigh quotient iteration, QR algorithm, and Lanczos algorithm among many
others. Specifically, Lanczos method is a general method that can be combined with other
algorithms to convert a Hermitian matrix into a similar tridiagonal matrix. The obtained
tridiagonal matrix can then be solved using other algorithms. A unified overview of theory,
algorithms, and practical software for eigenvalue problems can be found in [2, 5]. Bai et al.
[2] developed an informal decision tree for choosing the best state-of-the-art algorithms
and software for a given eigenproblem. Ji et al. [11] established implementation of the
block power method based on Spark in order to approximate the dominant eigenpairs
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of large-scale sparse matrices. Yuan et al. [17] proposed a solution, called truncated
power method, to approximately solve the underlying nonconvex optimization problem for
sparse eigenvalue problem. Solving generalized eigenvalue problems and their application
in large scale computational models and engineering problems can be found in [1, 14].
Lanczos [13] established an iterative method for the solution of eigenvalue problem of
linear differential and integral operators. Several other works have also been conducted
to study eigenproblem for asymmetric matrices [4], Hermitian matrices [3], block matrices
[6, 7], band matrices [8, 9], and non-linear problems [15]. New algorithms for eigensolution
using Multilevel Newtons Method and Subspace Methods were developed by He et al. [10]
and Watkins [16].
In this paper we have developed an iterative method to solve eigenproblem for tridiago-
nal matrices. In many algorithms for eigensolution, the desired matrix is first converted
to a similar tridiagonal matrix and then eigenproblem for the new matrix is solved. As
such, developing efficient eigensolutions for tridiagonal matrices can be regarded as an
independent vital problem. Our proposed method was developed through taking advan-
tages of unique properties of repetitive tridiagonal matrices in eigenvalue problem and
unique properties of both repetitive and non-repetitive matrices in solution of linear sys-
tem of equations. In summary, we established closed-form solutions for the system of
linear equations Mx = f for the condition M is tridiagonal. We then implemented these
solutions in an iterative relationship for eigenproblem where eigenpairs of non-repetitive
tridiagonal matrices were obtained through successive solution of the tridiagonal matrix
equations efficiently solved above. Furthermore, closed-form relationships for eigenpairs
of repetitive tridiagonal matrices were implemented in the algorithm as the start point
for eigensolution of non-repetitive tridiagonal matrices such that the required number of
iterations significantly decreased.

3 Closed-form solution of a system of linear equa-

tions for tridiagonal matrices

Eigenpairs of a repetitive tridiagonal matrix M with the following form

M =


b c . . . 0

a b c
...

a
. . . . . .

...
. . . b c

0 . . . a b


N−1

(1)
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can be obtained using the following equation [12, 18]

λn = b+ 2
√
ac cos(

nπ

N
) and n = 1, 2, . . . , N − 1

vnj =

(√
a

c

)j−1
sin

njπ

N
and j = 1, 2, , N − 1 (2)

vn = [vn1 , v
n
2 , . . . , v

n
N−1]

t

For the case where matrix M is symmetric (i.e., a = c), eigenpairs in Eq(2) are simplified
to λn = b+ 2a cos nπ

N
and vnj = sin njπ

N
.

To solve the matrix equation Mx = f , one can expand the unknown vector x and the
given vector f using the orthogonal eigenvectors (v1, v2, . . . , vN−1) of matrix M:

x =
N−1∑
k=1

xkv
k and f =

N−1∑
k=1

fkv
k (3)

Since f is given, fks can be calculated as fk = (vk)
t
f . xks are unknowns of the problem,

now lets substitute Eq (3) in Mx = f :

M
N−1∑
k=1

xkv
k =

N−1∑
k=1

fkv
k

M
N−1∑
k=1

xkv
k =

N−1∑
k=1

xkMvk =
N−1∑
k=1

xkλkv
k (4)

N−1∑
k=1

λkxkv
k =

N−1∑
k=1

fkv
k

From the last term in Eq (4) we can write

λkxk = fk → xk =
fk
λk

and k = 1, 2, . . . , N − 1, (5)

Therefore [12],

x =
N−1∑
k=1

fk
λk

vk =
∑
k=1

N − 1vk
fk
λk

=
N−1∑
k=1

vk(vk)t

λk
f

x =
N−1∑
k=1

[sin kπ
N
, sin 2kπ

N
, . . . sin (N−1)kπ

N
]t[sin kπ

N
, sin 2k

N
, . . . , sin (N−1)kπ

N
]

b+ 2a cos kπ
N

f (6)
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For the case matrix M is not repetitive as in Eq (7)

M =


b1 c1 . . . 0

a2 b2 c2
...

a3
. . . . . .

...
. . . bn−1 cn−1

0 . . . an bn


N−1

(7)

the tridiagonal matrix algorithm is used to solve the system of linear equations in O(n)
operations and vector x is obtained as follows:

c′k =

{
ck
bk
, k = 1
ck

bk−akc′k−1
, k = 2, 3, , n− 1

f ′k =

{
fk
bk
, k = 1

fk−akf ′k−1

bk−akc′k−1
, k = 2, 3, , n− 1

(8)

And by the back substitution

xn = f ′n
xk = f ′k − c′kxk+1

And
x = [x1, x2, , xn]t.

4 An Iterative Eigensolution Algorithm

In previous section we presented the closed-form relationships to solve eigenproblem and
system of linear equations for repetitive tridiagonal matrices and to solve system of linear
equations for non-repetitive tridiagonal matrices. We can now take advantages of these
closed-form solutions to develop an efficient iterative algorithm for eigensolution of non-
repetitive tridiagonal matrices. Consider the following eigenvalue problem:

Av = λv (9)

where matrix A is a non-repetitive tridiagonal matrix of the form in Eq (7). We can write
the following approximation

(A− λ0I)v1 = v0 (10)

and lets initialize λ0 and v0 as the eigenpairs of matrix A1 that is a repetitive tridiagonal
matrix (see Eq(1)) corresponding to matrix A.a, b, and c entries in matrix A1 are chosen to
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be, respectively, the average of diagonal entries (i.e., b1, . . . , bn) and the average of upper
and lower neighboring-diagonals entries (i.e., a2, . . . , anandc1, . . . , cn−1) of matrix A:

A1v
0 = λ0v0 (11)

Because A1 is a repetitive tridiagonal matrix (see Eq(1)), its eigenpairs are readily avail-
able from Eq(2).
Now, we can write the general form of Eq(10) for the ith eigenpair as follows

(A− λmi I)vm+1
i = vmi (12)

where according to Eq(2)

λ0i = λi = b+ 2a cos
iπ

N

vij = sin
ijπ

N
and j = 1, 2, . . . , N − 1 (13)

v0
i = vi = [vi1, v

i
2, . . . , v

i
N−1]

t

In Eq(12), for m = 0, the values for λ0i and v0
i are replaced using relationships above. The

obtained system of linear equations is efficiently solved using the relationships developed
in previous section (see Eq(6) and Eq(8)) and vm+1

i (that is v1
i for the first step, m = 0)

is found. It should be noted that in Eq(12), when solving the system of linear equations,
the term A− λmi I is considered as our tridiagonal matrix such that vm+1

i is calculated as
follows:

c′k =

{
ck

bk−λmi
k = 1

ck
(bk−λmi )−akc′k−1

k = 2, 3, . . . , n− 1

(vmik)′ =


vmik

bk−λmi
k = 1

vmik−ak(v
m
ik−1)

′

(bk−λmi )−akc′k−1
k = 2, 3, . . . , n

(14)

And by the back substitution

vm+1
in = (vmin)′

vm+1
ik = (vmik)′ − c′kvm+1

ik+1

and
Im+1
i = [vm+1

i1 , vm+1
i2 , . . . , vm+1

in ]t

Now, using Rayleigh quotient we will have

λm+1
i =

(vm+1
i )tAvm+1

i

(vm+1
i )Avm+1

i

(15)
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λm+1
i (that is λ1i for the first step, m = 0) is obtained. The new vm+1

i and λm+1
i (v1

i and λ1i
for the first step) are then replaced in Eq(12) and the system of linear equations is solved
again. This process is repeated until convergence is achieved. As such ith eignepair is
obtained and we can similarly define next eigenpairs. It should also be noted that during
all iterations for the solution of ith eigenpair, we always remove the components of vm+1

i

and vm
i that are parallel to the previously-defined eigenvectors (i.e., v1 to vi−1 ) . This

will help us to avoid convergence of the solution to previous eigenpairs. After removing
the excessive components, vm+1

i and vm
i are also normalized to have a unit length. In

the proposed eigensolution algorithm we are taking advantages of 1) the efficient solution
of system of linear equations for tridiagonal matrices (Eq(6) or Eq(8)) and 2) an efficient
start point (λ0i and v0

i ) taken from repetitive tridiagonal matrices. The algorithm can be
summarized as follows:

1. Form the approximation (A− λmi I)vm+1
i = vm

i for ith eigenpair of matrix A

2. Construct matrix A1 that is a repetitive tridiagonal matrix corresponding to matrix
A

3. Calculate ith eigenpair of matrix A1 using Eq(2) or Eq(13) and call it λ0i and v0
i .

Remove the components of v0
i that are parallel to the previous eigenvectors and

then normalize it.

4. In the equation (A− λmi I)vm+1
i = vm

i , set m = 0, and replace λ0i and v0
i from step

3.

5. Calculate vm+1
i (that is v1

i for the first step, m = 0) using Eq(14). Remove the com-
ponents of vm+1

i that are parallel to the previous eigenvectors and then normalize
vm+1
i .

6. Update λm+1
i Using Eq(15),λm+1

i =
(vm+1

i )tAvm+1
i

(vm+1
i )tvm+1

i

.

7. Replace vm+1
i in the right-hand and λm+1

i in the left-hand of the system of linear
equations (A−λmi I)vm+1

i = vm
i and repeat from step 5 until convergence is achieved.

5 Computational complexity of the method

Since the proposed solution is iterative, first the computational complexity for one itera-
tion is calculated:

• For calculation of vm+1
i from Eq(14)

– The solution can be obtained in O(n) operations. This should be conducted n
times for n eigenparis (the algorithm above was developed for ith eigenpair).
Therefore, the computational complexity is O(n2).
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• For calculation of λni in Eq(15)

– Avm+1
i : Multiplication of a tridiagonal matrix (A) and a vector (V) that will

be of the computational complexity 3O(n). The outcome here would be a
vector (F)

– (vm+1
i )tF: Multiplication of a row vector (vm+1

i )t and a column vector (F),
that would be of the complexity O(n). Here, the outcome (i.e., the numerator)
will be a scaler

– (vn+1
i )tvn+1

i : Multiplication of a row vector (vn+1
i )t and a column vector vn+1

i ,
that would be of the complexity O(n). Here, the outcome (i.e., the denomina-
tor) will be a scaler

– The three steps above should be conducted n times for n eigenparis. Therefore,
the computational complexity is 5O(n2).

As such, for one iteration of the proposed method the dominant computational complexity
is O(n2). We have a total of 6O(n2) from the two steps above (1 from the first step and
5 from the second step). If m is the number of required iterations to attain a desired
accuracy for eigensolution, one needs to complete operations of the complexity O(6mn2)
for the entire method. In the numerical examples section, it was shown that the required
number of iterations m is much smaller than dimension of matrix A, that is 6m << n.
Therefore, computational complexity of the proposed method is O(n2).
There are two factors that contribute to the efficiency of the proposed eigensolution al-
gorithm. First, we have used efficient numerical methods for the solution of system of
linear equations for tridiagonal matrices (see step 5 of the eigensolution algorithm as well
as Eq(14), and second we have used an efficient start point (λ0i and v0

i ) in the eigensolu-
tion algorithm, which was taken from closed-form eigensolution of repetitive tridiagonal
matrices. In the following section the method is applied to several numerical examples.

6 Numerical Examples

Example 1. Consider the following symmetric matrix of dimension n = 50 for which an
eigensolution is sought:

A =



6.9597 12.9286
12.9286 15.4335 10.3042

10.3042
. . . . . .
. . . 14.8193 8.7557

8.7557 13.1183 8.4659
8.4659 14.4679


50×50
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The repetitive tridiagonal matrix A1 in the proposed algorithm and its eigenpairs λ0i and
v0
i are as follows:

A1 =



11.2942 10.5654
10.5654 11.2942 10.5654

10.5654
. . . . . .
. . . 11.2942 10.5654

10.5654 11.2942 10.5654
10.5654 11.2942



λ =



−9.7966
−9.6765

. . .

32.0653
32.2649

32.3850



V =



−0.0337 −0.0659 . . . −0.1282 −0.0506 −0.0175
0.0436 0.0807 . . . −0.3743 −0.1320 −0.0887

...
...

...
...

...
...

−0.0956 −0.2270 . . . −0.0573 0.0411 −0.0093
0.0478 0 . . . 0.0867 −0.0240 −0.0121
−0.0418 0.0213 . . . 0.0097 −0.0008 0.0188


The problem was solved using the proposed method as well as four established iterative

methods: power iteration, inverse iteration, Rayleigh quotient iteration, and QR algo-
rithm. All methods were also compared against the exact solution of the problem (Table
1):
Table 1: Comparison between the exact solution, the proposed method, and four iterative
methods for eigensolution of a symmetric matrix of dimension n = 50. After 6 iterations
the proposed method reached the desired accuracy of the order 10−2. Rayleigh quotient
method reached the same accuracy after 9 iterations. The power, inverse, and QR meth-
ods reached the maximum allowed iterations (500 iterations) before meeting the desired
accuracy of 10−2. The CPU time for the proposed method was 0.0202 s that was the
fastest among all methods. Additional analyses indicated that the power and QR meth-
ods needed, respectively, 571 and 843 iterations to reach the desired accuracy; requiring
0.7429 s and 0.4259 s to complete. The inverse method did not meet the desired accuracy
even after 5000 iterations.

After 6 iterations the proposed method reached the desired accuracy of the order 10−2.
Rayleigh quotient method reached the same accuracy after 9 iterations. The power,
inverse, and QR methods reached the maximum allowed iterations (500 iterations) before
meeting the desired accuracy of 10−2 (Table 1). The convergence rate of the proposed
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Table 1:
λ 6 iterations 500 iterations 500 iterations 9 iterations 500 iterations

Exact Proposed Power Inverse Rayleigh quotient OR
−14.1150 −14.1150 −14.1150 −14.1150 −14.1150 −14.1150
−11.9367 −11.9365 −11.9367 −11.9367 −11.9367 −11.8090

...
...

...
...

...
...

9.2255 9.2255 9.2255 9.2255 9.2255 9.2255
12.4291 12.4291 12.4291 12.4291 12.4291 12.0921
14.3926 14.3926 14.3926 14.3645 14.3926 14.3926

...
...

...
...

...
...

35.1767 35.1767 35.1767 35.1766 35.1767 35.1773
36.3573 36.3573 36.3573 36.3573 36.3573 36.3573
37.4807 37.4807 37.4807 37.8447 37.4807 37.4802

‖Exact-Iterative‖ 0.0015 0.0254 5.0401 5.1e− 07 0.4170
Time Complexity

n = 50 0.0202 s 0.6217 s 0.5843 s 0.0434 s 0.1827 s

method was higher than that of the four iterative methods. Specifically, the CPU time
for the proposed method was 0.0202 s that was the fastest among all methods (Table
1). Additional analyses indicated that the power and QR methods needed, respectively,
571 and 843 iterations to reach the desired accuracy; requiring 0.7429 s and 0.4259 s
to complete. The inverse method did not meet the desired accuracy even after 5000
iterations.

Example 2. BlackScholes equation
Consider the following matrix equation obtained from numerical formulation of BlackSc-
holes equation [12]:

ML
1V1 =





1.0000 0.0000
0.0000 1.0000 0.0000

0.0000
. . . . . .
. . . 0.5186 0.2358

0.2487 0.5125 0.2389
0.2519 0.5063


159×159

V1



= b =


0
0
...

9.75
7.39


159×1

Efficient solution of the system of linear equations using repetitive tridiagonal matrices
has already been discussed [12]. Here eigensolution of the coefficient matrix ML

1 is aimed.
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The problem was solved using the proposed method, power iteration, inverse iteration,
Rayleigh quotient iteration, and QR method. All methods were also compared against
the exact solution of the problem (Table 2).
The tridiagonal matrix A1 in the proposed algorithm and its eigenpairs λ0i and v0

i were
as follows:

A1 =



0.8339 0.0828
0.0828 0.8339 0.0828

0.0828
. . . . . .
. . . 0.8339 0.0828

0.0828 0.8339 0.0828
0.0828 0.8339



λ =



0.06684
0.06685

. . .

0.9991
0.9993

0.994



V =



3.2e− 05 −4.0e− 05 . . . −5.1e− 05 −4.0e− 05 3.2e− 05
−6.7e− 05 8.4e− 05 . . . −0.0001 −8.4e− 05 6.7e− 05

...
...

...
...

...
...

0.0468 0.0590 . . . −0.0749 0.0590 0.0468
−0.0352 −0.0410 . . . −0.0521 0.0410 0.0325
0.0169 0.0213 . . . −0.0271 0.0213 0.0169


Table 2: Comparison between the exact solution, the proposed method, and four iterative
methods for eigensolution of a matrix of dimension n = 159 obtained from numerical
solution of BlackScholes equation. After 5 iterations the proposed method reached the
desired accuracy of the order 10−2. The Rayleigh quotient, inverse, and power methods
reached the same accuracy after 6, 76, and 301 iterations, respectively. The QR method
reached the maximum allowed iterations (500 iterations) before meeting the desired ac-
curacy of 10−2. The CPU time for the proposed algorithm was 0.2522 s that was about 3,
7, and 27 times faster than Rayleigh quotient, inverse, and power methods, respectively.
Additional analyses indicated that the QR method needed 1861 iterations, taking 8.3970
s, to reach the desired accuracy.

After 5 iterations the proposed method reached the desired accuracy of the order 10−2.
The Rayleigh quotient, inverse, and power methods reached the same accuracy after 6,
76, and 301 iterations, respectively. The QR method reached the maximum allowed iter-
ations (500 iterations) before meeting the desired accuracy of 10−2 (Table 2). The CPU
time for the proposed algorithm was 0.2522 s that was about 3, 7, and 27 times faster
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λ 5 iterations 301 iterations 76 iterations 6 iterations 500 iterations
Exact Proposed Power Inverse Rayleigh quotient OR
0.0774 0.0774 0.0774 0.0774 0.0774 0.0774
0.1325 0.1325 0.1325 0.1325 0.1325 0.1325

...
...

...
...

...
...

0.9679 0.9679 0.9679 0.9679 0.9679 0.9652
0.9693 0.9693 0.9692 0.9693 0.9693 0.9660
0.9707 0.9707 0.9713 0.9707 0.9706 0.9668

...
...

...
...

...
...

0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 1.0000 1.0000 1.0000 0.9999 0.9999
0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

‖Exact-Iterative‖ 0.0051 0.0099 0.0094 0.0088 0.0715
Time Complexity

n = 159 0.2522 s 6.8457 s 1.6853 s 0.7782 s 1.6434 s

than Rayleigh quotient, inverse, and power methods, respectively. Additional analyses
indicated that the QR method needed 1861 iterations, taking 8.3970 s, to reach the de-
sired accuracy.

Example 3. Consider a coefficient matrix M of the same dimension with relatively larger
entries as compared to Example 1:

M =



2.0500 0.5000
0.5001 2.0500 0.5000

0.5002
. . . . . .
. . . 1.5686 0.7358

0.7487 1.5625 0.7389
0.7519 1.5563


159×159

The tridiagonal matrix A1 in the proposed algorithm and its eigenpairs λ0i and v0
i are as

follows:

A1 =



1.8839 0.5795
0.5861 1.8839 0.5795

0.5861
. . . . . .
. . . 1.8839 0.5795

0.5861 1.8839 0.5795
0.5861 1.8839
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Table 2: Comparison between the exact solution, the proposed method, and four iter-
ative methods for eigensolution of a matrix of dimension n = 159. After 5 iterations
the proposed method reached the desired accuracy of the order 10−2. The Rayleigh quo-
tient method reached the same accuracy after 11 iterations. The power, inverse, and QR
methods reached the maximum allowed iterations (500 iterations). The CPU time for
the proposed algorithm was 0.2528 s that was about 5 times faster than Rayleigh quo-
tient method. Additional analyses indicated that the power and QR methods needed,
respectively, 543 and 1525 iterations to reach the desired accuracy; requiring 14.8105 s
and 7.6588 s to complete. The inverse method did not meet the desired accuracy even
after 5000 iterations.

λ 5 iterations 500 iterations 500 iterations 11 iterations 500 iterations
Exact Proposed Power Inverse Rayleigh quotient OR
0.1618 0.1618 0.1618 0.1618 0.1618 0.1618
0.2421 0.2421 0.2421 0.2421 0.2421 0.2421

...
...

...
...

...
...

2.2973 2.2973 2.2973 2.2761 2.2973 2.2979
2.3184 2.3184 2.3184 2.3132 2.3184 2.3210
2.3393 2.3393 2.3393 2.3212 2.3393 2.3414

...
...

...
...

...
...

3.0480 3.0480 3.0479 3.0482 3.0480 3.0336
3.0491 3.0491 3.0489 3.0483 3.0491 3.0396
3.0498 3.0498 3.0496 3.0498 3.0498 3.0455

‖Exact-Iterative‖ 0.0098 0.0100 1.0659 0.0099 0.1828
Time Complexity

n = 159 0.2528 s 11.1972 s 12.6215 s 1.3718 s 1.3839 s

λ =



0.7184
0.7191

. . .

3.0475
3.0486

3.0493



V =



1.6e− 04 0.0102 . . . −0.0061 −0.00051 9.3e− 04
−0.0018 −0.0038 . . . −0.0122 −0.0102 0.0019

...
...

...
...

...
...

0.1077 −0.0585 . . . −0.0217 −0.0116 0.0102
0.0510 0.0047 . . . −0.0146 0.0078 0.0068
−0.1453 −0.0741 . . . −0.0074 −0.0039 0.0034


After 5 iterations the proposed method reached the desired accuracy of the order 10−2.

The Rayleigh quotient method reached the same accuracy after 11 iterations. The power,
inverse, and QR methods reached the maximum allowed iterations (500 iterations) (Table
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2). The CPU time for the proposed algorithm was 0.2528 s that was about 5 times
faster than Rayleigh quotient method (Table 2). Additional analyses indicated that the
power and QR methods needed, respectively, 543 and 1525 iterations to reach the desired
accuracy; requiring 14.8105 s and 7.6588 s to complete. The inverse method did not meet
the desired accuracy even after 5000 iterations.
Now, lets change the coefficient matrix M by increasing the values of off-diagonal entries:

M =



2.0500 4.0000
4.0001 2.0500 4.0000

4.0002
. . . . . .
. . . 1.5686 4.2358

4.2487 1.5625 4.2389
4.2519 1.5563


159×159

The tridiagonal matrix A1 in the proposed algorithm and its eigenpairs λ0i and v0
i are as

follows:

A1 =



1.8839 4.0795
4.0861 1.8839 4.0795

4.0861
. . . . . .
. . . 1.8839 4.0795

4.0861 1.8839 4.0795
4.0861 1.8839



λ =



−6.2801
−6.2754

. . .

10.0354
10.0432

10.0480



V =



0.0091 −0.0111 . . . 0.0083 0.0041 0.0017
−0.0213 −0.0131 . . . 0.0166 0.0082 0.0035

...
...

...
...

...
...

0.0163 0.0770 . . . 0.0092 −0.0142 0.0072
0.0244 −0.0321 . . . 0.0062 −0.0095 0.0048
0.0163 0.0289 . . . 0.0031 −0.0048 0.0024


The proposed method reached the desired accuracy of the order 10−2 after 6 iterations.
The Rayleigh quotient method reached the same accuracy after 11 iterations. The power,
inverse, and QR methods reached the maximum allowed iterations (500 iterations) without
meeting the desired accuracy. The CPU time for the proposed algorithm was 0.2526 s
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Table 3: The proposed method reached the desired accuracy of the order 10−2 after 6
iterations. The Rayleigh quotient method reached the same accuracy after 11 iterations.
The power, inverse, and QR methods reached the maximum allowed iterations (500 iter-
ations) without meeting the desired accuracy. The CPU time for the proposed algorithm
was 0.2526 s that was about 6 times faster than Rayleigh quotient method. We performed
additional analyses up to 5000 iterations for the power, inverse, and QR methods but they
did not meet the desired accuracy of 10−2.

λ 6 iterations 500 iterations 500 iterations 11 iterations 500 iterations
Exact Proposed Power Inverse Rayleigh quotient OR
−6.7521 −6.7521 −6.7521 −6.7521 −6.7521 −6.6686
−6.6124 −6.6124 −6.6124 −6.6124 −6.6124 −6.6102

...
...

...
...

...
...

4.7115 4.7115 4.0523 3.9472 4.71156 4.3487
4.8614 4.8614 4.0604 4.1019 4.8614 4.3925
5.0100 5.0100 4.2557 4.3615 5.0100 4.4325

...
...

...
...

...
...

10.0359 10.0359 10.0360 10.0312 10.0359 9.9955
10.0438 10.0438 10.0433 10.0330 10.0438 10.0152
10.0485 10.0485 10.0477 10.0338 10.04852 10.0351

‖Exact-Iterative‖ 1.2e− 04 5.5669 14.3944 0.0087 3.1861
Time Complexity

n = 159 0.2526 s 13.8993 s 11.3784 s 1.5030 s 1.5129 s

that was about 6 times faster than Rayleigh quotient method. We performed additional
analyses up to 5000 iterations for the power, inverse, and QR methods but they did not
meet the desired accuracy of 10−2.

Example 4. Consider matrix M of dimension n = 500. The matrix entries were randomly
generated where the diagonal and off-diagonal entries were considered to be positive and
negative, respectively. Such a pattern is seen in the final coefficient matrix of many
engineering problems such as stiffness matrices in structural mechanics problems:

M =



40.8072 −24.2129
−24.2129 84.0156 −13.1912

−13.1912
. . . . . .
. . . 47.9983 −19.8795

−19.8795 61.8956 −14.7955
−14.7955 35.4551


500×500

The tridiagonal matrix A1 in the proposed algorithm and its eigenpairs λ0i and v0
i are as
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Table 4: Comparison between the exact solution, the proposed method, and four iterative
methods for eigensolution of a matrix of dimension n = 500. The diagonal and off-
diagonal entries of the matrix were considered to be positive and negative, respectively.
Such a pattern is seen in the final coefficient matrix of many engineering problems such
as stiffness matrices in structural mechanics. After 10 iterations the proposed method
reached the desired accuracy of the order 10−2. The Rayleigh quotient method reached
the same accuracy after 12 iterations. The power, inverse, and QR methods reached the
maximum allowed iterations (500 iterations) before meeting the desired accuracy of 10−2).
The CPU time for the proposed algorithm was 4.7158 s that was about 10 times faster
than Rayleigh quotient method. We performed additional analyses up to 5000 iterations
for the power, inverse, and QR methods but they did not meet the desired accuracy of
10−2.

λ 10 iterations 500 iterations 500 iterations 12 iterations 500 iterations
Exact Proposed Power Inverse Rayleigh quotient OR
−17.6568 −17.6568 −17.6568 −14.6747 −17.6568 −17.2662
−14.6747 −14.6747 −13.1904 −14.2335 −14.6747 −10.7323

...
...

...
...

...
...

52.1357 52.1357 52.1357 52.9599 52.1357 53.2381
52.9599 52.9599 53.1414 53.4833 52.9599 53.5436
53.4833 53.4833 53.4857 53.6320 53.4833 53.7103

...
...

...
...

...
...

120.3324 120.3324 120.3324 117.9816 120.3324 117.0530
120.9336 120.9336 120.9336 119.1215 120.9336 117.9679
122.2814 122.2814 122.2814 119.7364 122.2814 118.8489

‖Exact-Iterative‖ 1.9e− 04 7.4583 12.9249 8.4e− 06 28.1120
Time Complexity

n = 500 4.7158 s 173.2776 s 170.213558 s 46.0952 s 33.8641 s

follows:

A1 =



53.4284 −21.7844
−21.7844 53.4284 −21.7844

−21.7844
. . . . . .
. . . 53.4284 −21.7844

−21.7844 53.4284 −21.7844
−21.7844 53.4284



λ =



9.8604
9.8630

. . .

96.9895
96.9938

96.9964
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V =



−0.0005 0.0017 . . . −0.0019 0.0003 −0.0008
−0.0003 0.0003 . . . 0.0005 −0.0019 0.0004

...
...

...
...

...
...

−0.0008 −0.0008 . . . −0.0030 0.0004 −0.0007
−0.0008 0.0010 . . . −0.0066 −0.0006 −0.0021
0.0003 0.001894 . . . 0.0026 0.0015 −0.0002


It was observed that after 10 iterations the proposed method reached the desired accuracy
of the order 10−2. The Rayleigh quotient method reached the same accuracy after 12
iterations. The power, inverse, and QR methods reached the maximum allowed iterations
(500 iterations) before meeting the desired accuracy of 10−2 (Table 4). The CPU time
for the proposed algorithm was 4.7158 s that was about 10 times faster than Rayleigh
quotient method (Table 4). We performed additional analyses up to 5000 iterations for
the power, inverse, and QR methods but they did not meet the desired accuracy of 10−2.

7 Discussion and Conclusions

There are several methods in literature for eigensolution of matrices. Given the com-
putational demand of analytical methods, iterative methods are often used in practice;
especially for the solution of large-scale matrices. Some of such iterative methods include
Power iteration, Inverse iteration, Rayleigh quotient iteration, and QR algorithm among
others. Given that it is possible to first convert a desired matrix into a similar tridiagonal
matrix using Lanczos algorithm and then solve the problem, the focus of the present study
has been efficient eigensolution of tridiagonal matrices. The proposed method was devel-
oped through taking advantages of unique properties of repetitive tridiagonal matrices in
eigenvalue problem and unique properties of both repetitive and non-repetitive matrices
in solution of linear system of equations. Computational complexity of the method was
of the order O(n2) being competitive with the best existing algorithms in literature. The
method was compared against Power iteration, Inverse iteration, Rayleigh quotient iter-
ation, and QR algorithm through several numerical examples and outperformed for the
number of iterations and the total required time to achieve a desired accuracy. The main
advantages of the method include the high rate of convergence, computational efficiency
in each iteration, simple implementation, and availability of an objective start point for
initialization.
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