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ABSTRACT ARTICLE INFO

If we think of the graph as modeling a network, the
vulnerability measure the resistance of the network to
disruption of operation after the failure of certain sta-
tions or communication links. In assessing the ”vulner-
ability” of a graph one determines the extent to which
the graph retains certain properties after the removal
of vertices and / or edges. Many graph theoretical pa-
rameters have been used to describe the vulnerability
of communication networks, including connectivity, in-
tegrity, toughness, binding number, tenacity and... .
In this paper we survey and discuss tenacity and its
properties in vulnerability calculation and we will com-
pare different measures of vulnerability with tenacity for
several classes of graphs.
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1 PRELIMINARIES

Throughout this paper we will let n be the number of vertices of G, and we use α(G)
to denote the independence number of G. Let A be a subset of V(G). The neighborhood
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of A, N(A), consists of all vertices of G adjacent to at least one vertex of A. We define
G-A to be the graph induced by the vertices of V-A. Also, for any graph G, τ(G) is the
number of vertices in a largest component of G and ω(G) is the number of components
of G. A cutset of a connected graph G is a collection of vertices whose removal results in
a disconnected graph.
Since we are primarily interested in the case where disruption of the graph is caused
by the removal of a vertex or vertices (and the resulting loss of all edges incident with
the removed vertices), we shall restrict our discussion to vertex stability measures. In
the interest of completeness, however, we have included several related measures of edge
stability.
The first two measures provide information about how easily the graph can be broken-up
by the removal of specific sets of vertices.
The vertex connectivity [15, 16, 17], κ = κ(G), of a finite, undirected, connected, simple
graph G (without loops or multiple edges) is the minimum number of vertices whose
removal results in a disconnected graph or results in the trivial graphK1. Graph G is called
n-connected if κ ≥ n. Analogously, the edge-connectivity [15, 16, 17], λ = λ(G), of a finite,
undirected, connected simple graph G is the minimum number of edges whose removal
results in a disconnected or trivial graph K1. A graph G is called n-edge- connected if
λ(G) ≥ n.
A collection of vertices in V(G) is called a cutset if their removal disconnects G, and a
collection of edges in V(G) is called an edge-cutset if their removal disconnects G.
The binding number of a graph G was defined by Woodall in [50], as

bind(G) = min
A
{| N(A) |
| A |

}

where φ 6= A ⊆ V (G) and N(A) 6= V (G). In [51, 52], the binding number was called the
melting-point of the graph. the reason for the name ”binding number” is that, roughly
speaking, if bind(G) is large, then the vertices of G are bound tightly together, in the
sense that G has many edges fairly well distributed.
We stat some of the results in [50].

(1) bind(Kn) = n− 1 for n ≥ 1.

(2) bind(Ka,b) = min(a
b
, b
a
) for (a ≥ 1, b ≥ 1).

(3) If G = Cn, with n ≥ 3, then bind(G) =

{
1, for n even,
n−1
n−2

, for n odd.

(4) If G = Pn, with n ≥ 1, then bind(G) =

{
1, for n even
n−1
n+1

, for n odd.

Kane, Mohanty and Hales [25], studied the binding numbers of four types of product
graphs : cartesian product, tensor product, strong cartesian product and lexicographic
product. Since it is difficult to determine the binding numbers of products of arbitrary
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graphs, they restricted themselves to products of two graphs which could be any one of
the following types of graphs : complete graph (Kn), complete bipartite graph (Km,n),
cycle (Cn) and path (Pn).

In [50] Woodall proved that, if bind(G) ≥ c, then G contains at least |V (G)|c
c+1

disjoint edges

if 0 ≤ c ≤ 1
2
, at least |V (G)|(3c−2)

3c
− 2(c−1)

c
disjoint edges if 1 ≤ c ≤ 4

3
, a Hamiltonian circuit

if c ≥ 3
2
, and a circuit of length at least 3(|V (G)|−1)(c−1)

c
if 1 < c ≤ 3

2
.

The next set of measures also take into consideration the structure of the graph G-A. In
particular, they reflect how badly the graph G-A has been disconnected. Since we must
ultimately face the reconnection problem - repairing a broken network - these measures
could prove to be very useful.

The concept of integrity of a graph G was introduced in [3, 4], as a useful measure of the
vulnerability of a graph G. If we think of the graph as modeling a network, vulnerability
parameters measure the resistance of the network to disruption of operation after the
failure of certain stations. The vertex integrity of a graph G, is defined as I(G) = min{|
A | +τ(G − A)}, where the minimum is taken over all A ⊆ V (G) and τ(G − A) is the
maximum order of a component of G-A.
The integrity is a measure which deals with the first fundamental question. How many
vertices can still communicates? Integrity has been studied in numerous papers, including
[3, 12].
In [4], Barefoot, Entringer and Swart compared integrity, connectivity, binding number
and toughness for several classes of graphs. The integrities of the several classes of graphs
calculated in [4], were determined using ad hoc methods. Any set A with the property
that | A | +τ(G−A) = I(G) is called an I-set of G. The corresponding edge version called
the edge-integrity I’(G) is defined as I ′(G) = min{| E ′ | +τ(G−E ′)}, where the minimum
is taken over all E ′ ⊆ E(G). Thus, for instance, a small edge-integrity is in some sence a
measure of how a graph can be split into ”small pieces” by the removal of a ”few” edges.
Bagga, Beineke, Lipman and Pippert in [2], first listed some basic facts about the edge
integrity : In [20] Fellows and Stuekle studied the computational complexity of edge -
integrity. In [2], a new lower bound on the edge integrity of graphs in general is given,
but most of the results concern trees.

The toughness of a graph G was introduced by Chvátal in [10], who observed the relation-
ship between this parameter and the existence of Hamilton cycles in the given graph, and
several results regarding this invariant were obtained. The original approach to toughness
is as follows. A connected graph G is called t-tough if tω(G − A) ≤| A | for any subset
A of V(G) with ω(G−A) > 1, [13,23,37,38]. If G is not complete, then there is a largest
t such that G is t-tough; this number is the toughness of G and denoted by t(G). Thus

t(G) = min{ |A|
ω(G−A)

}, where A is a cutset of G. Since a complete graph has no cutset A,

we set t(Kn) =∞ for all n ≥ 1.
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An alternate definition is easier to apply in some cases. Let G be an (n,e) gragh of connec-
tivity κ, G 6= Kn, ωp = max{ω(G− A)},where | A |= p, and tp = p

ωp
. Then G is t-tough

for 0 ≤ t ≤ min(tp), where κ ≤ p. The toughness deals with the second fundemental
question, namely, how difficult is it to reconnect the graph ? The toughness has been
studied extensively; see for example [19, 38].

The tenacity is another vulnerability measure, incorporating ideas of both toughness
and integrity and dealing with both of the above questions, [13, 14]. The tenacity of

a graph G, T(G), is defined by T(G) = min{ |A|+τ(G−A)
ω(G−A)

}, where the minimum is taken

over all vertex cutset A of G, G-A is the graph induced by the vertices of V-A, τ(G− A)
is the number of vertices in the largest component of the graph induced by G-A and
ω(G− A) is the number of compnents of G-A. A connected graph G is called T-tenacious if
| A | +τ(G− A) ≥ Tω(G− A) holds for any subset A of vertices of G with ω(G− A) > 1.
If G is not complete, then there is a largest T such that G is T-tenacious; this T is the
tenacity of G. On the other hand, a complete graph contains no vertex cutset and so it
is T-tenacious for every T. Accordingly, we define Kp = ∞ for every p (p ≥ 1). A set

A ⊆ V(G) is said to be a T-set of G if T(G) = |A|+τ(G−A)
ω(G−A)

.

We also consider the edge-tenacity, T’(G), defined by T ′(G) = min{ |F |+τ(G−F )
ω(G−F )

}, where

the minimum is taken over all edge cutset F of G. A set F ⊆ E(G) is said to be a T’-set

of G if T ′(G) = |F |+τ(G−F )
ω(G−F )

.

We will compare integrity, connectivity, binding number, toughness and tenacity for sev-
eral classes of graphs. The results suggest that tenacity is a most suitable measure of
vulnerability in that it is best able to distinguish between graphs that intuitively should
have different levels of vulnerability.

There exist other stability measures such as the edge-connectivity vector [29], the ratio of
disruption [28], the complement of disruption, the cut frequency vector, cohesion [41, 43],
and neighbor-connectivity [17].

2 Calculation of Vulnerability Measure

Let Cn = (v1v2 · · · vn) be the n-cycle and define the k-th power of the n-cycle, Ck
n by

Ck
n = Cn + {vivj || i− j |≤ k}.

We wil calculate the five measures of vulnerability for the complete bipartite graph Kk,n−k,
k ≤ n− k, powers Ck

n of the n-cycle, and the graph G(n, k), 1 ≤ k ≤ bn−1
2
c, has n vertices

and vertex v which is adjacent to all vertices of the two complete subgraphs, copies of Kk

and Kn−k−1, i.e Gn,k ≡ K1 + (Kk ∪Kn−k−1).
These graphs were purposefully chosen, because they exhibit the widest possible rang
of edge density and because they illustrate where the different measures of vulnerability
differ in their effectiveness in measurring important structural characteristics of graphs.
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Lemma 2.1 : If A is a minimal T-set for Ck
n, then A consists of the union of sets of k

consecutive vertices such that there exists at least one vertex not in A between any two
sets of consecutive vertices in A.

Proof : We assume Ck
n is labeled by 0, 1, 2, · · · , n − 1. Let A be a minimal T-set for

Ck
n and j be the least integer such that S = {j, j + 1, · · · , j + t − 1} is a maximal set

of consecutive vertices such that S ⊆ A. Re-label the vertices of Ck
n as v1 = j, v2 =

j + 1, · · · , vt = j + t − 1, · · · , vn. Since A 6= V (Ck
n), S 6= V (Ck

n) so vn does not belong
to A. Since A must leave at least two components, t 6= n − 1, so vt+1 6= vn. Therefore
{vt+1, vn}∩A = φ. Now suppose t < k. Choose vi such that 1 ≤ i ≤ t, and delete vi from
A yielding a new set A′ = A−{vi} with | A′ |=| A | −1. The edges vivn and vivt+1 are in
Ck
n −A′. Consider a vertex vp adjacent to vi in Ck

n −A′, if p ≥ t+ 1, then p < t+ k, so vp
is also adjacent to vt+1 in Ck

n −A′ and if p < n then p ≥ n− k+ 1 and vp is also adjacent
to vn in Ck

n − A′. Since t < k, then vn and vt+1 are adjacent in Ck
n − A. Therefore we

can conclude that deleting vertex vi from A does not change the number of components,
and so ω(Ck

n − A) = ω(Ck
n − A′) and the maximum order of a component of Ck

n − A is
τ(Ck

n − A′) ≤ τ(Ck
n − A) + 1.

Therefore |A
′|+τ(Ck

n−A′)
ω(Ck

n−A′)
≤ |A|−1+τ(Ck

n−A)+1
ω(Ck

n−A)
= T (Ck

n), contrary to our choice of A. Thus we
must have t ≥ k.
Now suppose t > k. Delete vt from the set A yielding a new set A1 = A − {vt}. Since
t > k, the edge vtvn is not in Ck

n − A1. Consider a vertex vp adjacent to vt in Ck
n − A1.

Then p ≥ t + 1 and p ≤ t + k. So vp is also adjacent to vt + 1 in Ck
n − A1. There-

fore deleting vt from A yields ω(Ck
n − A) = ω(Ck

n − A1), τ(Ck
n − A1) ≤ τ(Ck

n − A) + 1.

Therefore |A1|+τ(Ck
n−A1)

ω(Ck
n−A1)

≤ |A|−1+τ(Ck
n−A)+1

ω(Ck
n−A)

, again contrary to our choice of A. Thus t = k
and so A consists of the union of sets of exactly k consecutive vertices.

Lemma 2.1 gives us an indication of the size of the cut-set for the tenacity of Ck
n ; the

next lemma gives us the size of the largest component.

Lemma 2.2 : There is a T-set, A, for Ck
n such that all components of Ck

n have order
τ(Ck

n − A) or τ(Ck
n − A)− 1.

Proof : Among all minimum order T-sets, consider those sets with maximum order, s, of
the minimum order component. Among these sets let A be one with the fewest components
of order s. Suppose s ≤ τ(Ck

n−A)−2. Note that all of the components must be sets of con-
secutive vertices. Suppose Cp is a smallest component, so | V (Cp) |= s, and without loss
of generality let Cp = {v1, v2, · · · , vs}. Suppose Cl is a largest component, so | V (Cl) |=
τ(Ck

n−A) = m, and Cl = {vj, · · · , vj+m}. Let C1, C2, · · · , Ca be components with vertices
between vs and vj, such that | Ci |= ni for 1 ≤ i ≤ a and Ci = {vi1 , vi2 , · · · , vini

}. Now
construct A′ as follows, A′ = A−{vs+1, v1n1+1, v2n2+1, · · · , vana+1}∪{v11 , v21 , · · · , va1 , vj}.
Therefore | A′ |=| A |, τ(Ck

n − A′) ≤ τ(Ck
n − A) and ω(Ck

n − A′) = ω(Ck
n − A). So,
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|A′|+τ(Ck
n−A′)

ω(Ck
n−A′)

≤ |A|+τ(Ck
n−A)

ω(Ck
n−A)

. Therefore τ(Ck
n −A′) = τ(Ck

n −A). But Ck
n −A′ has one less

component of order s than Ck
n − A, and this is a contradiction. Thus all components of

Ck
n − A have order τ(Ck

n − A) or τ(Ck
n − A)− 1. So τ(Ck

n) = dn−kω
ω
e.

Theorem 2.1 : ( Chvàtal [10] ). For all graphs G, κ(G)
α(G)
≤ t(G) ≤ 1

2
κ(G).

Theorem 2.2 : ( Woodal [50] ). For all graphs G, bind(G) ≤ n+κ(G)
n−κ(G)

.

Theorem 2.3 : (Woodal [50]). For all graphs G, bind(G) ≤ t(G) + 1.

The following four proposition were proved in [14].

Proposition 2.1 : If G is a spanning subgraph of H, then T (G) ≤ T (H).

Proposition 2.2 : For any graph G, T (G) ≥ κ(G)+1
α(G)

.

Proposition 2.3 : If G is not complete, then T (G) ≤ n−α(G)+1
α(G)

.

Proposition 2.4 : If k ≤ n− k, then T (Kk,n−k) = k+1
n−k .

Lemma 2.1 and lemma 2.2 allow us to determine precisely the tenacity of the power of
cycles.

Theorem 2.4 : Let Ck
n be a power of cycles and n = r(k + 1) + s, for 0 ≤ s < k + 1.

Then T (Ck
n) = k +

1+d s
r
e

r
.

Proof : Let A be a minimal T-set of Ck
n. By lemma 1 and lemma 2, | A |= kω, and

τ(Ck
n − A) = dn−kω

ω
e. Thus, from the definition of tenacity we have

T = min{
kω + dn−kω

ω
e

ω
| 2 ≤ ω ≤ r}.

Now consider the function f(ω) =
kω+dn−kω

ω
e

ω
= k +

dn
ω
−ke
ω

. Let ω1 and ω2 be any two

integers in [2 , r] with ω1 ≤ ω2, then d n
ω2
e ≤ d n

ω1
e. Thus f(ω2) = k+

d n
ω2
−ke
ω2

≤ k+
d n
ω1
−ke
ω1

=
f(ω1). Hence the function f(ω) is a nonincreasing function and the minimum value

occurs at the boundary. Thus ω = r and dn−kω
ω
e = d r(k+1)+s−kr

r
e = 1 + d s

r
e. Therefore,

T (Ck
n) = k +

1+d s
r
e

r
.

3 DISCUSION

Now consider the complete bipartite graph Kk,n−k. In [50], the binding number for a com-
plete bipartite graph was calculated by Woodall, where he gives the result bind(Ka,b) =
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min{a
b
, b
a
} for a ≥ 1 and b ≥ 1. Thus if k ≤ n − k, then bind(Kk,n−k) = k

n−k . The

connectivity of Kk,n−k obviously is equal to k. From [10], we have t(Kk,n−k) = k
n−k . It is

shown in [4] that Kk,n−k has integrity equal to k+1. By proposition 2.4, T (Kk,n−k) = k+1
n−k .

Thus we have the following results for G = Kk,n−k:
κ(G) = k; t(G) = k

n−k ; bind(G) = k
n−k ; I(G) = k + 1; T (G) = k+1

n−k . The binding number
implies that the neighborhood of subset A ⊆ V (Kk,n−k) has order k and | A |= n−k. The
value of κ(Kk,n−k) shows us that at least k vertices must be destroyed in order to break a
complete bipartite graph. But these two measures do not indicate how many components
exists after removing the cutset from the graph. Since the toughness of Kn,n−k is equal
to k

n−k , then the cardinality of the cutset and the number of components are k and n-k
respectively. The integrity of Kk,n−k implies that | A |= k and τ(Kk,n−k −A) = 1. Hence
both toughness and integrity attempt to describe the structure of the resulting graph
after removing the cutset A from Kk,n−k. The tenacity of a bipartite graph shows us that
| A |= k, τ(Kk,n−k − A) = 1, ω(Kk,n−k − A) = n − k. Hence we obtain the number of
components, cardinality of cutset and, since τ(Kk,n−k −A) = 1, all n-k components have
order 1. Thus we have all of the necessary information for the repair and reconfiguration
of the complete bipartite graphs. therefore, in this class, tenacity appears to be a better
vulnerability measure.
In [4], the connectivity, binding number and toughness of Ck

n were determined. The in-
tegrity of Ck

n was calculated in [3]. By Theorem 2.4, we have the tenacity of Ck
n. Hence

we have the following results for G = Ck
n :

κ(G) = 2k, 2 ≤ k ≤ n− 2;

bindG =


1 k = 1, 2 | n

n
2
− 1 2k = n− 2
n−1
n−2k

otherwise
;

I(G) = kd
√

n
k
− 1

4
− 3

2
e+ d n√

n
k

+ 1
4
− 1

2

e,where 1 ≤ k ≤ n
2
;

t(G) = k;

T (G) = k +
1+d s

r
e

r
.

The value of κ(Ck
n) shows us that it is necessary (and sufficient) to remove two disjoint

nonadjacent subsets of k consecutive vertices each, along the circumference of the polygon.
The toughness of Ck

n, uses the above fact and it was calculated and proved that the
cardinality of the cutset is equal to 2k and the number of components is 2. But the
enemy will selectively target more resources to break the network, since the resulting
network with only two components is easily repaired. Also, toughness does not take
into account the order of the components. Therefore, for breaking or reconstruction of
Ck
n, tenacity and its minimal cutset seem to be better measures than connectivity and

toughness in this class. If n is even and k = 1, the neighborhood of subset A ⊆ V (Ck
n) and

| A |, have the same order. When n is odd and k = 1, bind(Ck
n) = 1+min |N(A)|

|A| . However,

A is as large as possible when | A |= n − 2 and this maximum value of | A | coincides
with the minimum value of N(A), namly, N(A) = 1. In both of the above cases and when
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k > 1, the binding number does not show the order of the components, or number of
components. By theorem 2.4 and lemma 2.2 tenacity gives us the number of components
and the order of the largest component. If we compare connectivity, binding number and
toughness with this class, integrity seems to be a better measure for the vulnerability
of a network. But for repair and reconfiguration of Ck

n, we have a lack of information
about the number of components. Thus in this class, for disruption and reconstruction of
network, tenacity appears to be a better measure of the vulnerability of a graph.
We now turn our discussion to the vulnerability of Gn,k. For G = Gn,k :
κ(G) = 1;
t(G) = 1

2
;

bind(G) =


1 k = 1
n−1
n−2

k = 2
n−k
n−k−1

k ≥ 3
;

I(G) = n− k;
T (G) = n−k

2
.

The graphs Gn,k perhaps best illustrate the inability of connectivity to provide a realistic
measure of the vulnerability of graphs. Certainly disabling a station located at vertex v is
less damaging to the operation of the remaining system when k = 1 than when k = bn−1

2
c.

Yet neither κ(Gn,k) nor t(Gn,k) reflect this. Also, bind(Gn,k) is quite insensitive to the
value of k. On the other hand, T (Gn,k) provides a significant indication of the change
in the nature of the structure of the system for 1 ≤ k ≤ bn−1

2
c. The integrity of Gn,k

implies that the cardinality of cutset A ⊆ V (Gn,k) is equal to 1 and τ(Gn,k − A) =
n− k− 1. Hence if we remove the vertex v, the integrity shows us the order of the largest
component, but does not show the number of components. Therefore since T (Gn,k) has
ω(G − A) in the denominator indicating the number of components, it then provides a
more realistic measure of the vulnerability of the graphs. For instance, if a similar graph
were constructed with three copies of Km, the integrity would remain unchanged while
tenacity would recognized this change.

4 CONCLUDING REMARKS

Deterministic measure tend to provide a worst case analysis of some aspects of the overall
disconnection process. For example κ(G), means that for a particular network, even if
the enemy knows how the edges have been assigned to the vertices, at least κ(G) vertices
must be destroyed in order to break communications. Unfortunately, this measure does
not indicate how many of these sets of vertices (called minimal cutset) actually exist in
the network, nor does it attempt to describe of the resulting network.
For both of these reasons we would like to attempt to quantify connectivity as a relative,
as well as an absolute parameter.
Vertex integrity provides some information about the network after disconnection has
taken place but, once again, it does not seem to provide the fine resolution that is often
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needed.
Deterministic measure are generally very difficult to compute. Eventhough κ(G) can be
computed quickly-linear in the number of vertices plus the number of edges - determination
of vertex integrity of a graph is, in general, an NP-complete problem (see, for example
[12]).
The effective design of a survivable communications network requires a means of ac-
curately evaluating its structural vulnerability both as a whole and with respect to its
individual resources. For a communications network operating in a tactical environment,
this evaluation should be based on a worst-case assumption that the enemy will selec-
tively target those resources most critical to its topological integrity. A critical concern of
overall system survivability, therefore, must be the specific level of connectivity associated
with the topological structure of the supporting communications network. In [23] Harary
showed that in any graph or communications network, the connectivity of a graph with
p vertices and q edges cannot exeed b2q

p
c if q ≥ n − 1 and is 0 otherwise. The power of

cycles, Ck
n, is an example of a graph with maximum connectivity. We would like to show

the maximum tenacity relative to the maximum connectivity. We found this relation
in theorem 2.4. Since communication networks must be constructed to be as stable as
possible, not only with respect to initial disruption, but also with respect to the possible
reconstruction of the network, then Ck

n is a good example for network designers who are
looking for a network with maximum connectivity relative to maximum tenacity.

5 Stability Measure of a Graph

Now we discuss about tenacity and its properties in stability calculation. We indicate
relationships between tenacity and connectivity, tenacity and binding number, tenacity
and toughness. We also give good lower and upper bounds for tenacity.

5.1 Tenacity and its Properties:

In this paper we will prove a number of basic results about tenacity. Without attempting
to obtain the best possible result, we can prove the following relation between T(G) and
t(G). This result gives us a number of corollaries.

Theorem 5.1: For any graph G, T (G) ≥ t(G) + 1
α(G)

.

Proof: Let A ⊆ V (G) be a t-set and B ⊆ G be a T-set. Then |B|+τ(G−B)
ω(G−B)

≥ |B|
ω(G−B)

+
1

ω(G−B)
≥ |A|

ω(G−A)
+ 1

α(G)
.

Corollary 5.1: For any graph G, T (G2) > κ(G).

Corollary 5.2: Let G be a non-empty graph and let m be the largest integer such that
K1,m is an induced subgraph of G. Then T (G) ≥ κ(G)

m
+ 1

α(G)
.
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Theorem 5.2: If G is connected and a noncomplete K1,3-free graph then T (G) > κ(G)
2

.

Theorem 5.3: For any nontrivial noncomplete graph G on n vertices and any vertex v,
T (G− v) ≥ T (G)− 1

2
.

Proof: Let G′ = G− v. If G′ = Kn−1, then T (G′) =∞, and the theorem holds. Hence,

assume G′ 6= Kn−1. Let A’ be a T-set for G’, and let | A′ |= m, then T (G′) = m+τ(G′−A′)
ω(G′−A′) .

Now define A = A′∪{v}. Clearly A is a disconnecting set for G and so T (G) ≤ |A|+τ(G−A)
ω(G−A)

.

But | A |= m+ 1 and G−A = G′−A′, so T (G) ≤ m+1+τ(G′−A′)
ω(G′−A′) = m+τ(G′−A′)

ω(G′−A′) + 1
ω(G′−A′) =

T (G′) + 1
ω(G′−A′) ≤ T (G′) + 1

2
, since ω(G′ − A′) ≥ 2. Hence T (G) ≤ T (G′) + 1

2
.

We next obtain some bounds on the tenacity of a graph.

Proposition 5.5: If G is connected, then T (G) ≥ 1
∆(G)

.

Proof: Kn is a speacial case, otherwise the removal of any vertex of a connected graph G
yields at most ∆(G) components. Similarly, the removal of any n verices yields at most
n∆(G) components. Then, from the definition we have T (G) ≥ n+1

n∆(G)
≥ 1

∆(G)
.

Lemma 5.1: If A is a minimal T-set for the graph G then, for each vertex v of A, the
induced subgraph < V (G)− A+ v > has fewer components than does G-A.

Proof: Let A′ = A − v. If G-A’ has at least as many components as G-A, then
| A′ |=| A | −1 and τ(G − A′) ≤ τ(G − A) + 1. Therefore |A

′|+τ(G−A′)
ω(G−A)

= |A|−1+τ(G−A′)
ω(G−A)

≤
|A|−1+τ(G−A)+1

ω(G−A)
= T (G), contrary to our choice of A.

Theorem 5.4: Let G = G1 + G2, where | V (G) |= n, | V (Gi) |= pi, T (G) = T and
T (Gi) = Ti for i = 1, 2. Then if G 6= Kn we have

min{ [n+ τ(G1 − A1)]T1

p1 + τ(G1 − A1

,
[n+ τ(G2 − A2)]T2

p2 + τ(G2 − A2)
} < T ≤ min{n− α1 + 1

α1

,
n− α2 + 1

α2
},

where αi is the independence number of Gi, and Ai is a disconnecting set of Gi for i = 1, 2.

Proof: Because of the structure of G, the graph cannot be disconnected without remov-
ing one of V (G1) or V (G2). Having removed the appropriate set, we can then disconnect
the graph by disconnecting the remaining graph, either G1 or G2. Candidates for T
are of the form n1+p2+τ(G1−A1)

ω(G1−A1)
or n2+p1+τ(G2−A2)

ω(G2−A2)
where ni =| Ai | for i = 1, 2. Then

T = min{n1+p2+τ(G1−A1)
ω(G1−A1)

, n2+p1+τ(G2−A2)
ω(G2−A2)

}, where the minimum is taken over all A1 and

A2 as defined. Also T1 ≤ n1+τ(G1−A1)
ω(G1−A1)

which implies ω(G1 − A1) ≤ n1+τ(G1−A1)
T1

. Thus
n1+p2+τ(G1−A1)

ω(G1−A1)
≥ [n1+p2+τ(G1−A1)]T1

n1+τ(G1−A1)
. Similary,n2+p1+τ(G2−A2)

ω(G2−A2)
≥ [n2+p1+τ(G2−A2)]T2

n2+τ(G2−A2)
. Thus
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T ≥ min{[1+ p2
n1+τ(G1−A1)

]T1, [1+ p1
n2+τ(G2−A2)

]T2}. Also we know that n1 < p1 and n2 < p2,

therefore T > min{ [n+τ(G1−A1)]T1
p1+τ(G1−A1)

, [n+τ(G2−A2)]T2
p2+τ(G2−A2)

}. From Proposition 5.3, we observe that

two candidates for T are (p1−α1)+1+p2
α1

and (p2−α2)+p1
α2

, which yield T ≤ min{n−α1+1
α1
},

n−α2+1
α2
}.

Theorem 5.5: Let G be a graph with n vertices and G 6= Kn, then T (G) + T (G) ≥ 1
n−1

.

Proof: We observe that at least one of G or G is connected. Suppose G is not con-
nected. We proved (Proposition 5) that T (G) ≥ 1

∆(G)
≥ 1

n−1
for any graph G. Thus,

T (G) + T (G) ≥ 1
n−1

. Now suppose G is not connected but G is connected. Again by

Proposition 5, we have T (G) ≥ 1
n−1

. Therefore T (G) + T (G) ≥ 1
n−1

.

Theorem 5.6: Let G be a graph with 0 < T (G) < ∞, and let λ(G) = λ, then
T (L(G)) > λ

2
.

Proof: Assume there exist vertex cutsets A for L(G) such that A is a t-set. By Theorem 1,
T (L(G)) > t(L(G)). Let E be those edges of G which are incident to vertices of A. Then E

is an edge-cutset of G. Thus we have t(L(G)) = min{ |A|
ω(L(G)−A)

} ≥ min{ |E|
ω(G−E)

} = t′(G),
where A is a cutset and E is an edge cutset of G.
Using the result of Chvátal [13] we have t′(G) = min{ |E|

ω(G−E)
} = λ

2
. Therefore T (L(G)) >

λ
2
.

Theorem 5.7: For any graph G, T (G) ≥ bind(G)− 1.

Proof: Let bind(G) = c. If c < 1, then c − 1 < 0 and the result follows since T(G)
is nonnegative. Consider c ≥ 1. Suppose that A is a subset of V(G) such that ω =

ω(G − A) ≥ 2. We want to prove that |A|+1
ω

> (c − 1). If each of the ω components of
G-A has at least two vertices, let S consist of the vertices in all the components except
the smallest, so that

| S |≥ | V (G)− A | (ω − 1)

ω
≥ 2ω(ω − 1)

ω
= 2(ω − 1) ≥ ω.

If, on the other hand, V(G)-A contains an isolated vertex, let S = V (G) − A. So that
| S |=| V (G)− A |≥ ω. In either case N(S) 6= V (G), and since bind(G) = c ≥ 1,

| S | + | A | +1 >| S | + | A |≥| N(S) |≥ c | S | .

It follows that | A | +1 > (c− 1) | S |≥ (c− 1)ω. Therefore |A|+1
ω

> c− 1, so T > c− 1.

In [14] we showed the Hamiltoinan Properties of tenacity. The results follows for a graph
G:
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1) 1 < κ(G)
α(G)

< κ(G)+1
α(G)

≤ T (G)

2) κ(G)+1
α(G)

≤ T (G) < 1.

Graphs satisfying the second inequality are not Hamiltonian-connected. Graphs satisfy-
ing the first inequality are Hamiltonian-connected.

3) 1 + n+1
α(G)
≤ κ(G)+1

α(G)
≤ T (G)

4) κ(G)+1
α(G)

≤ T (G) < 1 + n+1
α(G)

If G satisfies the forth inequality it is not n-Hamiltonian.

If G satisfies the third inequality then G is n-Hamiltonian.

In [14], we also obtained some bounds on the tenacity of products of graphs. Note that
the first inequality in the following theorem, is a corollary to Theorem 1

In [34], we compared integrity, connectivity, binding number, toughness and tenacity for
several classes of graphs. The results suggest that tenacity is a most suitable measure of
stability or vulnerability in that for many graphs it is best able to distinguish between
graphs that intuitively should have different levels of vulnerability.
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