تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,114,630 |
تعداد دریافت فایل اصل مقاله | 97,218,374 |
تأثیر محلولپاشی و مصرف خاکی روی بر وزن دانه و برخی صفات بیوشیمیایی گندم در شرایط شوری خاک | ||
به زراعی کشاورزی | ||
مقاله 1، دوره 24، شماره 2، تیر 1401، صفحه 269-281 اصل مقاله (506.09 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2021.307461.2429 | ||
نویسندگان | ||
حامد نریمانی* 1؛ رئوف سید شریفی2؛ فاطمه اقایی3 | ||
1دانشجوی دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران. | ||
2استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران. | ||
3دانشجوی کارشناسی ارشد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران. | ||
چکیده | ||
بهمنظور بررسی تأثیر محلولپاشی و مصرف خاکی روی بر وزن دانه و برخی صفات بیوشیمیایی گندم (Triticum aestivum L.) در شرایط شوری خاک، آزمایشی بهصورت فاکتوریل در قالب طرح پایه بلوکهای کامل تصادفی در سه تکرار در گلخانه پژوهشی دانشگاه محقق اردبیلی در سال 98-1397 اجرا شد. فاکتورهای موردبررسی شامل سطوح شوری خاک (سطح شاهد و اعمال شوریهای 30، 60 و 90 میلیمولار در خاک) و چهار روش کاربرد روی (شاهد یا عدم کاربرد روی، مصرف خاکی سولفاتروی، محلولپاشی نانواکسیدروی و مصرف خاکی و محلولپاشی روی) بود. نتایج نشان داد که کاربرد همزمان مصرف خاکی سولفاتروی و محلولپاشی نانواکسیدروی در شوری 90 میلیمولار خاک، بهطور معنیداری فعالیت آنزیمهای کاتالاز، پراکسیداز، محتوای آنتوسیانین، پرولین و قندهای محلول را بهترتیب 24/20، 68/17، 16/13، 88/32 و 08/14 درصد نسبت به عدم کاربرد روی در شرایط شوری 90 میلیمولار خاک افزایش داد. همچنین، کاربرد همزمان مصرف خاکی سولفاتروی و محلولپاشی نانواکسیدروی در شرایط عدم اعمال شوری، محتوای پراکسید هیدروژن و مالوندیآلدهید در مقایسه با عدم کاربرد روی در بالاترین سطح از شوری خاک کاهش داد. کاربرد همزمان مصرف خاکی سولفاتروی و محلولپاشی نانواکسیدروی تحت شرایط عدم اعمال شوری دارای بیشترین وزن دانه (016/1 گرم در بوته) نسبت به کاربرد این ترکیب تیماری در سایر سطوح شوری بود. بهنظر میرسد که کاربرد همزمان مصرف خاکی سولفاتروی و محلولپاشی نانواکسیدروی میتواند وزن دانهی گندم در شرایط شوری را، بهدلیل بهبود صفات بیوشیمیایی افزایش دهد. | ||
کلیدواژهها | ||
پرولین؛ قندهای محلول؛ کاتالاز؛ مالوندیآلدهید؛ نانواکسید روی | ||
عنوان مقاله [English] | ||
Effect of Foliar and Soil Application of Zinc on Grain Weight and Some Biochemical Traits of Wheat (Triticum aestivum L.) under Salinity Stress | ||
نویسندگان [English] | ||
Hamed Narimani1؛ Raouf Seyed sharif2؛ fatemeh aghaei3 | ||
1Ph.D. Student, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
2Proffesor, Department Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
3M.Sc. Student, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
چکیده [English] | ||
In order to study the effect of foliar and soil application of Zinc on grain weight and some biochemical traits of wheat (Triticum aestivum L.) under soil salinity, an experiment has been conducted as factorial based on randomized complete block design with three replications in research greenhouse of University of Mohaghegh Ardabili in 2018-2019. Experimental factors include soil salinity levels [control and salinity of 30, 60, and 90 mM] and four methods of zinc application [no zinc as control, soil application zinc as ZnSO4, foliar application nano zinc oxide, and combination of soil and foliar application of zinc]. Results show that both application of ZnSo4 and foliar application nano Zn oxide under 90 mM soil salinity condition increase the catalase and peroxidase enzymes activity, anthocyanin, proline, and soluble sugars content by 20.24%, 17.68%, 13.16%, 32.88%, and 14.08%, respectively, in comparison with no application of zinc under 90 mM soil salinity condition. Also, both soil application of ZnSo4 and foliar application of nano Zn oxide under non-salinity condition decrease hydrogen peroxide and malondialdehyde content in comparison with no application of Zinc under 90 mM soil salinity. Both soil application ZnSo4 and foliar application nano Zn oxide under non-salinity condition has had the highest grain weight (1.016 g per plant), compared to the application of this treatment combination at other salinity levels. It seems that both application of ZnSo4 and nano Zn oxide can increase weight yield of wheat under salinity condition due to their ability in improving biochemical traits. | ||
کلیدواژهها [English] | ||
Catalase, Malondialdehyde, Nano Zn oxide, Proline, Soluble sugars | ||
مراجع | ||
Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24(12), 1337-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x Alloway, B. J. (2006). Zinc In Soils And Crop Nutrition, Online book published by the International Zinc Association, Brussels, Belgium. http://www.zinc-crops.org/ Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003 Babaei, K., Seyed Sharifi, R., Pirzad, A., & Khalilzadeh, R. (2017). Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. Journal of Plant Interactions, 12(1), 381-389. https://doi.org/10.1080/17429145.2017.1371798 Baniabbass, Z., Zamani, G., & Sayyari, M. (2012). Effect of drought stress and zinc sulfate on the yield and some physiological characteristics of sunflower (Helianthus annuus L.). Environmental Biology, 6(2), 518-525. Bates, L. S., Walderen, R. D., & Taere, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207. DOI: 10.1007/BF00018060 Bybordi, A., & Mamedov, G. (2010). Evaluation of application methods efficiency of zinc and iron for Canola (Brssica napus L.). Notulae Scientia Biologicae, 2(1), 94-103. DOI: 10.15835/nsb213531 Boorboori, M. R., EradatmandAsli, D., & Tehrani, M. (2012). The Effect of dose and different methods of iron, zinc, manganese and copper application on yield components, morphological traits and grain protein percentage of barley plant (Hordeum vulgare L.) in greenhouse conditions. Journal of Advances in Environmental Biology, 6(2), 740746. Bowler, C., Van Montagu, M., & Inze´, D. (1992). Superoxide dismutase and stress tolerance. Plant Physiology and Plant Molecular Biology, 43, 83-116. DOI: 10.1146/annurev.pp.43.060192.000503 Brenna, R. F. )1992(. The effect of zinc fertilizer on take-all and the grain yield of wheat grown on zinc – deficient soil of the Esperance region, Western Australia, Fertizer Research, 31, 215-219. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677-702. Cakmak, l. (2000). Role of Zinc in protecting plant cells from reactive oxygen species. New phytology, 146(2), 185-205. DOI: https://doi.org/10.1046/j.1469-8137.2000.00630.x Dolatiyan, N. (2013). The effect of humic acid on qualitative and quantitative characteristics of strawberry (Fragaria ananassa var Selva), in greenhouse. MSc Thesis. Faculty of Agriculture. Ferdowsi University of Mashhad, Khorasan Razavi, Iran. (In Persian) Dubios, M., Gilles, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Annals of Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017 Ehdaei, B., Alloush, G. A., Madore M. A., & Waines, J. G. (2006). Genotype variation for stem reserves and mobilization in wheat: II. Postanthesis changes in internode water soluble carbohydrates. Crop Science, 46(5), 2093-2103. https://doi.org/10.2135/cropsci2006.01.0013 Eryilmaz, F. (2006). The relationship between salt stress and anthocyanin content in higher plants. Biotechnology, 26, 100112. https://doi.org/10.1080/13102818.2006.10817303 Farsi, M., Abdollahi, F., Salehi, A., & Ghasemi, Sh. (2017). Study of physiological characteristics of marjoram (Origanum majorana), as a medicinal plant in response to zinc levels under drought stress conditions. Environmental Stresses in Crop Science, 10(4), 559-570. DOI: 10.22077/escs.2017.68.1017 (In Persian) Ginzberg, I., Stein, H., Kapulnik, Y., Szabados, L., Strizhov, N., Schell, J., Koncz, C., & Zilberstein, A. (1998). Isolation and characterization of two different cDNAs of Δ1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Molecular Biology, 38(5), 755-764. DOI: 10.1023/A:1006015212391 Hacisalihoglu, G., Hart, J.J., Wang, J. Y. H., Cakmak, I., & Kochian, L.V. (2003). Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiology, 131(2), 595-602. DOI: 10.1104/pp.011825 Hagh Bahari, M, & Seyed Sharifi, R. (2014). Effects of seed inoculation with growth promoting bacteria (PGPR) on yield, rate and grain filing at various levels of soil salinity. Environmental Stresses in Crop Science, 6(1), 65-75. (In Persian) Hejazi Mehrizi, M. (2010). The Effects of zinc and copper nutrition on physiological, biochemical and antioxidant properties of rosemary under saline condition. Ph.D Thesis. Faculty of Agriculture. Isfahan University of Technology, Isfahan, Iran. (In Persian) Karami, S., Modarres-Sanavy, M., Ghanehpour, S., & Keshavarz, H. (2016). Effect of foliar zinc application on yield and, physiological traits and seed vigor of two soybean cultivars under water deficit. Notulae Scientia Biologicae, 8(2), 181-191. DOI: 10.15835/nsb.8.2.9793 Kheirizadeh Arough, Y., Seyed Sharifi R., Sedghi, M., & Barmaki, M. (2016). Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in Triticale under salinity condition. Journal of Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 116-124. Lamas, A., Ullrich, C.I., & Sanz, A. (2002). Cadmium effects on transmembrance electrical potential difference, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and Soil, 219(1), 21-28. DOI: 10.1023/A:1004753521646 Liang, X., Zhang, L., Natarajan, S.K., & Becker, D. F. (2013). Proline Mechanisms of Stress Survival. Antioxidants and Redox Signaling, 19(9), 998-1011. DOI: 10.1089/ars.2012.5074 Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9 Munns, R., & Tester, M. (2008). Mechanisms o f salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. DOI: 10.1146/annurev.arplant.59.032607.092911 Okcu, G., Kaya, M.D., & Atak, M. (2005). Effect of salt and drought stresses on germination and seedling growth of pea (Pisum sativum). Turkish Journal of Agriculture, 29, 137-243. Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants. Plant, Soil and Environment, 54(3), 89-99. DOI: 10.17221/2774-PSE Prasad, R. (2010). Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Current Science, 98(10), 1300-1304. Rohman, A., Riyanto, S., Yuniarti, N., Saputra, W. R., Utami, R., & Mulatsih, W. (2010). Antioxidant activity, total phenolic, and total flavaonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). International Food Research Journal, 17, 97-106. Saadatmand, M., & Enteshari, S. (2013). The effects of pretreatment duration with silicon on salt stress in Iranian borage (Echium amoenum Fisch & C.A. mey). Journal of Science and Technology of Greenhouse Culture, 3(4), 45-57. (In Persian) Saeidi Aboueshaghi, R., Yadavi, A., Movahhedi Dehnavi, M., & Baluchi, H. (2014). Effect of irrigation intervals and foliar application of iron and zinc on some physiological and morphological characteristics of red bean (Phaseolous vulgaris L.). Journal of Plant Process and Function, 3(7), 27-42. (In Persian) Said-Al Ahl, H.A.H., & Hussein M.S. (2010). Effect of drought stress and potassium humate on the productivity of oregano plant using saline and fresh water irrigation. Ozean Journal of Applied Sciences, 3(1), 125-141. Seilsepour, M. (2006). Study of Zinc effects on quantitative and qualitative traits of winter wheat in saline soil condition. Desert Journal, 11(2), 17-23. (In Persian) Selote, D. S. & Khanna-Chopra, R. (2004). Drought-induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Plant Physiology, 121(3), 462-471. DOI: 10.1111/j.1399-3054.2004.00341.x Seyed Sharifi, R., & Kamari, H. (2015). Effects of nano-zinc oxide and seed inoculation of Triticale. Journal of Plant Process and Function, 4(13), 97-112. (In Persian) Singh, G., Sarvanan, S., Rajwat, K. S., Rathore, J. S., & Singh, G. (2017). Effect of different micronutrient on plant growth, yield and flower bud quality of broccoli (Brassica oleracea). Current Agriculture Research Journal, 5(1), 108-115. http://dx.doi.org/10.12944/CARJ.5.1.12 Skopelitis, D. S., Paranychianakis, N. V., Paschalidis, K. A., Pliakonis, E. D., Delis, I. D., Yakoumakis, D. I. (2006). Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell, 18(10), 2767-2781. DOI: 10.1105/tpc.105.038323 Song, C. Z., Liu, M. Y., Meng, J.F., Chi, M., Xi, Z.M., & Zhang, Z. W. (2015). Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv, Merlot growing on zinc deficient soil. Molecules, 20(2), 2536-2554. DOI: 10.3390/molecules20022536 Sperdouli, I., & Moustakas, M. (2012). Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 169, 577-585. Stewart, R. C., & Beweley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2), 245-248. DOI: 10.1104/pp.65.2.245 Sudhakar, C., Lakshmi, A., & Giridara Kumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161(3), 613-619. https://doi.org/10.1016/S0168-9452(01)00450-2 Vinocur, B., & Altmanو A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123-132. https://doi.org/10.1016/j.copbio.2005.02.001 Wagner, G. J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars free amino acids, and anthocyanins in protoplast. Plant Physiology, 64(1), 88-93. DOI: 10.1104/pp.64.1.88 Xu Y. C., Zhang, J. B., Jiang, Q. A., Zhou, L. Y., & Miao, H. B. (2006). Effects of water stress on the growth of Lonicera japonica and quality of honeysuckle. Zhong Yao Cai, 29(5), 420-423. | ||
آمار تعداد مشاهده مقاله: 574 تعداد دریافت فایل اصل مقاله: 500 |