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Abstract

BACKGROUND: Neuropathic pain is a chronic condition which is mediated by complex mechanisms exerted by
the release of nerve neurotransmitter. A correlation exists between the sex hormones and neuropathic pain, however
many aspects of this correlation still remain unclear.

OBJECTIVES: The aim of the current study was to determine the anti-nociceptive activity of testosterone and its
interaction with the opioidergic, GABAergic, and dopaminergic receptors in sciatic nerve-ligated male rats.

METHODS: In this study, 170 adult male rats were randomly allocated into the 4 experimental groups following
the sciatic nerve ligation. In the experimental group 1, the animals were injected intraperitoneally (i.p.) with saline,
testosterone (10 and 15 mg/kg), and morphine (5 mg/kg), and 30 minutes later with formalin into the plantar surface
of the right paw. In the experimental group 2, the animals were injected with saline, testosterone (15 mg/kg), nalox-
one (2 mg/kg), and testosterone (15 mg/kg)+naloxone (2 mg/kg). In the groups 3 and 4, flumazenil (5 mg/kg) and
yohimbine (2 mg/kg) were injected instead of naloxone. Then, the time spent for paw licking was monitored for the
first and second phases after the formalin injection.

RESULTS: According to the results, the injection of testosterone in a dose dependent manner decreased the time
of licking and biting in the injected paw compared to the control group (P<0.05). Likewise, pretreatment with na-
loxone or flumazenil significantly decreased the anti-nociceptive effect of testosterone (P<0.05). While pretreatment
with yohimbine significantly increased the anti-nociceptive effect of testosterone (P<0.05).

CONCLUSIONS: These results suggested testosterone has an anti-nociceptive activity and this effect is mediated
by the opioidergic, GABAergic, and dopaminergic receptors in the sciatic nerve-ligated male rat.
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Introduction

Neuropathic pain is a chronic condition that can
happen at the peripheral and central nervous systems
(Migita et al., 2018). Its symptoms include an un-
pleasant sensation of burning or tingling, increased
sensitivity to the noxious stimuli (hyperalgesia), and
pain due to tissue damages or infections (allodynia)
(\Vahdati Hassani et al., 2015). Numerous factors
such as tissue damages, injury, or infections are as-
sociated with neuropathic syndromes (Trevisan et
al., 2016). Following the nerve injury, the activation
and production of pro- and anti-inflammatory cyto-
kines lead to the activation of the injured nerve and
spinal cord which contribute to the peripheral and
central sensitization (Xu et al., 2018). A prolonged
condition may lead to a serious disability in walking
and even hinder the quality of life. Experimental sci-
atic nerve injury and ligature are useful techniques to
determine the pathophysiology of neuropathic pain
(Sumizono et al., 2018). The appropriate manage-
ment of neuropathic pain should be considered since
pharmacological treatments have a positive effect in
half of the patients afflicted with this problem
(Tsuda, 2016).

Growing evidence on sex differences and the anti-
nociceptive activity of the opioidergic system in
non-human primates and rodents has demonstrated
that males are more sensitive than females (Khakpay
and Khakpai, 2020). Observed differences are re-
lated to hormonal, physiological, psychological,
neuro-immunological, and sociocultural factors
(Nasser and Afify, 2019). There is information about
the anti-nociceptive role of testosterone in males,
where gonadectomy leads to a decrease in morphine-
induced nociception (Beshkani et al., 2017). Testos-
terone plays an analgesic role in temporomandibular
joint pain/damage in male rats (Sharma et al., 2019).
It was reported that clonidine (a2 adrenoceptor ago-
nist) alone, in a dose-dependent manner, reduced the
nociceptive responses in both the first and second
phases in a mouse orofacial formalin model (Yoon
etal., 2015). Moreover, the ap-adrenoceptor-induced
anti-nociception in the trigeminal area was mediated
by testosterone in a male rat (Nag and Mokha, 2016).
The anti-nociceptive effects of clonidine and or-
phanin/FQ were mediated by testosterone in the
spinal cord (Nag and Mokha, 2009). Furthermore,
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higher levels of testosterone propionate (1 mg/kg for
7 days) decreased the temporomandibular joint-in-
duced pain using formalin in the male rats (Fischer
et al., 2007).

Recent studies have identified a role for the cen-
tral and spinal y-aminobutyric acid (GABA)
receptors in pain modulation (Witkin et al., 2019;
Ness et al., 2020). The spinal GABAA receptors have
an important role in the management of inflamma-
tory and neuropathic pains (Bravo-Hernandez et al.,
2016). Despite the fact that the anti-nociceptive ac-
tivity of testosterone has been well documented, its
analgesic activity in sciatic nerve injury remains un-
clear. Additionally, its neurological connection to
the central nervous system (CNS) has been investi-
gated in several types of research (Yoon et al., 2015;
Nag and Mokha, 2016), however, limited infor-
mation exists on its role in the peripheral nervous
system (PNS). Therefore, the primary aim of the cur-
rent study was to determine the anti-nociceptive
mechanisms of testosterone in the sciatic nerve-li-
gated male rat. The secondary purpose was to
determine its interaction with the opioidergic, GA-
BAergic, and dopaminergic (DAergic) receptors in
the sciatic nerve-ligated male rat.

Materials and Methods

Animals and Surgical Procedure

In this study, 170 adult male Wistar rats (200-250
g) were used in 4 experimental procedures (4 groups
in each). Anesthesia was induced by the combination
of ketamine HCL (60 mg/kg) and Xylazine HCL (10
mg/kg). The skin on the right paw was shaved and
prepared with 10% povidone-iodine solution. A par-
tial sciatic nerve ligation was performed using a tight
ligature with a surgical suture, around 1/3 to 1/2 of
the diameter of the sciatic nerve located in the right-
paw side (Zimmermann, 1983; Kim et al., 2014;
Koga et al., 2017). In experimental group 1, animals
were injected intraperitoneally (i.p.) with saline, tes-
tosterone propionate (Iran hormone, Tehran, Iran)
(10 and 15 mg/kg), and morphine (5 mg/kg), and 30
minutes later with 1% formalin (10 pL) into the plan-
tar surface of the right paw (Mahdian Dehkordi et al.,
2019). The test was performed according to a proto-
col proposed by Hunskaar and Hole (1987). Thirty
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minutes after formalin injection, the time spent for
licking the injected paw was considered as the first
(0-5 minutes) and second (15-30 minutes) phases
(Hajhashemi et al., 2011). In the experimental group
2, the rats were injected (i.p.) with saline, testos-
terone (15 mg/kg), naloxone (2 mg/kg), and
testosterone (15 mg/kg) + naloxone (2 mg/kg). In the
group with two injections, first, antagonist was in-
jected and 15 minutes later testosterone (15 mg/kg)
and 15 minutes later formalin (10 pL of the 1% so-
lution) were injected. Then, the time spent for paw
licking was monitored in both phases. In the experi-
mental group 3, saline, testosterone (15 mg/kg),
flumazenil (5 mg/kg), and flumazenil (5 mg/kg) +
testosterone (15 mg/kg) were injected. In the experi-
mental group 4, the rats received saline, testosterone
(15 mg/kg), yohimbine (2 mg/kg), and yohimbine (2
mg/kg) + testosterone (15 mg/kg). The doses of the
drugs used were selected based on the previous re-
ports (Hasanvand et al., 2018; Hassanpour et al.,
2020) as well as a preliminary pilot study. The ex-
perimental procedures were followed according to
the Guide for the Care and Use of Laboratory Ani-
mals to investigate the experimental pain in the
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animals. The study was approved by the Ethics Com-
mittee of Faculty of Veterinary Medicine, Science
and Research Branch, Islamic Azad University, Teh-
ran, Iran (IAU 42546).

Statistical Analyses

Data was analyzed by the one-way analysis of var-
iance using the SPSS software version 18.0 (PASW
Statistics for Windows, Version 18.0. Chicago:
SPSS Inc.) and presented as mean * standard error
(SE). The Tukey post-hoc test was also used for the
differences between the groups. P-value <0.05 was
considered to indicate a significant difference.

Results

In experimental group 1, the injection of testos-
terone (10 and 15 mg/kg, i.p.) in a dose dependent
manner decreased the time of licking and biting in
the injected paw compared to the control group
(P<0.05). Likewise, morphine (5 mg/kg, i.p.) signif-
icantly decreased the time of licking and biting in
comparison to the control group (P<0.05) (Figure 1).

e

0-5 min
B Control

B Testosterone (15mg/kg)

15-30 min

M Testosterone (10mg/kg)
M@ Morphine (Smg/kg)

Figure 1. Effect of testosterone and morphine on licking and biting time of the injected paw in sciatic nerve ligated male rat
(n=50). Data are expressed as mean + SE. Different letters (a-d) indicate significant differences between treatments (P<0.05).

In experimental group 2, naloxone (2 mg/kg, i.p.)
had no significant effect on the time of licking and
biting in comparison to the control group (P>0.05).
This is while testosterone (15 mg/kg, i.p.) signifi-
cantly decreased the time of licking and biting

38

compared to the control group (P<0.05). Moreover,
pre-treatment with the opioid receptor antagonist
significantly decreased the anti-nociceptive effect of
testosterone compared to the group injected with tes-
tosterone alone (P<0.05) (Figure 2).
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Figure 2. Effect of testosterone, naloxone and their co-injection on licking and biting time of the injected paw in sciatic

nerve ligated male rat (n=40). Naloxone: opioid receptor antagonist. Data are expressed as mean + SE. Different letters (a-
c) indicate significant differences between treatments (P<0.05).

Regarding experimental group 3, flumazenil (5 the previous group, the pre-treatment with the selec-
mg/kg, i.p.) had no significant effect on the time of tive GABAA antagonist significantly diminished the
licking and biting in comparison to the control group anti-nociceptive effect of testosterone compared to
(P>0.05). While testosterone (15 mg/kg, i.p.) signif- the solely testosterone-injected group (P<0.05) (Fig-
icantly reduced the time of licking and biting ure 3).

compared to the control group (P<0.05). Similar to
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Figure 3. Effect of testosterone, flumazenil and their co-injection on licking and biting time of the injected paw in sciatic

nerve ligated male rat (n=40). Flumazenil: selective GABAA antagonist. Data are expressed as mean * SE. Different letters
(a-c) indicate significant differences between treatments (P <0.05)

Considering the experimental group 4, yohimbine group (P>0.05). While testosterone (15 mg/kg, i.p.)
(2 mg/kg, i.p.) had no significant effect on the time significantly reduced the time of licking and biting
of licking and biting in comparison to the control compared to the control group (P<0.05). despite the
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previous two groups, the pre-treatment with the o-
adrenergic receptor antagonist (yohimbine) signifi-
cantly improved the anti-nociceptive effect of
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testosterone compared to the group injected with tes-
tosterone alone (P<0.05) (Figure 4).

O Control BYohimbine (2mg/kg) M Testosterone (15mg/kg) B Yohimbine +Testosterone

Figure 4. Effect of testosterone, clonidine and their co-injection on licking and biting time of the injected paw in sciatic
nerve ligated male rat (n=40). Yohimbine: a-adrenergic receptor antagonist. Data are expressed as mean + SE. Different
letters (a-c) indicate significant differences between treatments (P <0.05).

Discussion

The central and peripheral mechanisms of neuro-
pathic pain consist of the changes in the ion channel
expression and nerve neurotransmitter release (Tre-
visan et al., 2016). Pain acts via several chemical
mediators released during this process and leads to
nociceptive sensitization. The mechanism underly-
ing the formalin-induced pain behavior involves a
series of events including peripheral and central bi-
phasic responses (Shi etal., 2011). Acute pain serves
as a warning system that signals imminent tissue
damage. Whereas chronic pain has no protective role
and persists for a long time after injury without re-
flecting a definite lesion or disease (Labuz et al.,
2016). The formalin test is a reliable and sensitive
behavioral biphasic model of nociception (Vahdati
Hassani et al., 2015) that is used to determine the
mechanism of action of testosterone. The rats sub-
jected to the formalin test do not usually display any
pain response between the two phases, as observed
in the current study. Actually, the interphase is the
result of hyperpolarization and transient inactivation
by formaldehyde of the surviving neurons (Fischer
etal., 2014).

40

According to the results, the injection of testos-
terone in a dose dependent manner decreased the
time of licking and biting in the injected paw. More-
over, the pre-treatment with naloxone significantly
decreased the anti-nociceptive effect of testosterone
in the sciatic nerve-ligated male rat. In the present
study, 14 days after the unilateral sciatic nerve liga-
tion, hyperalgesia to the thermal stimulation was
significantly observed (pilot study for the accuracy
of ligation protocol). Testosterone and its metabo-
lites have an anti-nociceptive effect on the
inflammation-induced mechanical allodynia. In ad-
dition, the replacement of testosterone reversed the
inflammation-induced sensitivity in the gonadecto-
mized rat (Nasser and Afify, 2019). Furthermore, the
testosterone replacement improved the responses to
morphine in the castrated rats (Hosseini et al., 2011).
Despite several types of research, the cellular and
molecular mechanisms underlying the regulatory ac-
tivity of testosterone on opioid analgesia remain still
unclear (Nasser and Afify, 2019).

The Effect of adrenoceptors on pain has been well
documented as the administration of clonidine atten-
uates the nociception and hyperalgesia in the animal
models of acute and chronic pain (Nag and Mokha,
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2009). As observed in the current study, pre-treat-
ment with yohimbine increased the anti-nociceptive
effect of testosterone in the sciatic nerve-ligated
male rat. On the contrary, the pre-treatment with
flumazenil decreased the anti-nociceptive effect of
testosterone in the sciatic nerve-ligated male rat.
During the prolonged chronic pain, mediators such
as bradykinin and substance P were released into the
nerve terminals. The analgesic activity of a- adreno-
ceptors were mediated by a decrease in the levels of
glutamate and substance P in the spinal cord
(Claiborne et al., 2006). Testosterone plays a key
role in the expression of anti-nociception induced by
az-adrenoceptor in the trigeminal region of the male
rats and our findings in terms of sciatic nerve-ligated
male rat was similar to this report. The testosterone
replacement in the ovariectomized rats improved the
anti-nociceptive effect of clonidine (Nag and Mo-
kha, 2009). It is assumed there is a correlation
between the anti-nociceptive effects of testosterone
and a-adrenoceptors. A similar report about the re-
quirement of testosterone for the expression of a-
adrenoceptors in the spinal cord and trigeminal re-
gion implies the importance of the trigeminal region
as a relay center for the nociceptive signals of lower
area such as temporomandibular joint (Jahanshahi et
al., 2018). Perhaps testosterone and a-adrenoceptors
act via decreasing the release of pain mediators;
however, more investigations are required to deter-
mine the accuracy of this phenomenon.

The effect of the GABAergic system on neuro-
pathic pain is clear (Zeilhofer et al., 2012). The
blockade of spinal GABAA receptors decreases the
tonic excitability of primary afferent fibers (Loeza-
Alcocer et al., 2013), as well as decreases the inflam-
matory and neuropathic pain (Bravo-Hernandez et
al., 2016). The central and spinal GABAA receptors
inhibit the basal synaptic transmission and increase
the pain thresholds in mice (Xue et al., 2017). How-
ever, because of the limitations of the current study,
we were not able to determine the interaction of tes-
tosterone with specific adrenergic and GABAergic
receptors. The nociceptive response in the formalin
test was higher in the mice lacking the a5-GABAAa
receptors (Perez-Sanchez et al., 2017). Furthermore,
the GABA receptors play a crucial role in different
nuclei of the CNS such as the parabrachial nucleus
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as a nociceptive relay between the spinal laminas and
intralaminar thalamus that mainly project to the pre-
frontal cortex (Roeder et al., 2014). There is an
interaction between testosterone and GABA in the
regulation of several physiologic and pathophysio-
logic conditions. The anxiolytic effects of
testosterone are mediated by the GABAA receptors
and this effect is blocked by the administration of
picrotoxin (a GABAA receptor antagonist) in the fe-
male rats (Flores-Ramos et al., 2019).

Exposure to neurosteroids increases the open
probability of the GABAA receptor and leads to a ClI
influx and decreases neuronal excitability (Wang et
al., 2016). Reddy and Jian (2010) reported that tes-
tosterone-derived metabolites such as rostanediol
can activate the GABAA and GABA receptors. Ad-
ditionally, the GABAC receptors have an interaction
with the anxiolytic effect of testosterone. Perhaps the
findings of this study also is regulated by these inter-
actions though because of limitations of the current
study, we were not able to determine the interaction
of testosterone with specific receptors. Hence, fur-
ther researches are needed to determine the accurate
neurologic mechanisms involved in the anti-noci-
ceptive activity of testosterone in unilateral sciatic
nerve ligation. The limitations of the current study
hampered us to determine the anti-nociceptive activ-
ity of the central testosterone and its interconnections
with the opioidergic, GABAergic, and DAergic sys-
tems.

Conclusion

In conclusion, these results suggested testosterone
has an anti-nociceptive activity and this effect is me-
diated by the opioidergic, GABAergic, and DAergic
receptors in the sciatic nerve-ligated male rat.
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