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Abstract 

In this study, for the first time the forced vibration of a viscoelastic microplate in incompressible still 
fluid is investigated, simultaneously. The consistent couple stress theory which newly developed on the 

basis of the original couple stress theory is used in this study. The microplate is supposed simply 

supported in stationary fluid and made of viscoelastic material that follow the Leaderman viscoelastic 

model. The fluid inertial effects as well as fluid damping on microplate vibration are also studied by 
applying three dimensional aerodynamic theories. The added mass values are obtained for various aspect 

ratios of the microplate and compared with available models. The non-classic stress and couple-stress 

tensors are calculated based on consistent couple stress theory and Leaderman integral. The resultant 
virtual works inserted in Hamilton’s principle and the governing equations of motion are derived. The 

results show that considering the added mass effects reduces the microsystem nonlinearity. 
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Introduction  
Micro/nano-electro-mechanical systems (MEMS/NEMS) due to less energy consumption and 

low cost are extensively used in sensors and actuators [1], micro-pumps [2-4] and micro-

densitometers [5]. In this application, it is very important to study the vibration behavior of 

these micro and nano structure [6-9]. For example, Nejad et al. [10] and Hadi et al. [11]studied 

the free vibration behavior of two and three directional functionally graded elastic nano-beam 

by applying the nonlocal elasticity and strain gradient theories. Adeli et al.[12] the torsional 

vibration of a nano-sized elastic cone with nonlinear cross section in transverse direction. 

Moreover, She G.L. [13] investigated the force vibration and resonance of a curved elastic 

microbeam that made of nanoplates with incorporating the modified strain gradient theory. 

However, in these applications as biosensors and chemical sensors these systems act inside the 

fluid environment. It should be noted that the system natural frequencies decrease when 

submerged in fluid media [14]. Therefore, understanding the fluid effects on microsystems 

dynamics is a crucial issue for their design. Generally, fluid surrounding has a damping effect 

due to its viscosity [15, 16], stiffness effects, and inertial effects [17, 18] on vibration and 

dynamic characteristics of the micro/nanostructure. The fluid inertial effect can be 

demonstrated as added mass which is characteristic of the fluid loading [19].  There are several 

researches that investigated the fluid effects on free vibration and dynamic of the macro and 

microstructures. For example, the added mass value for cantilever and simply supported plate 
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presented by Yadykin [17]. Rezazadeh et al. [20] studied the fluid inertial effects on the 

dynamic response of an electrostatically actuated microbeam. In this study, the effect of the 

fluid loading was modeled as added mass on cantilever and double clamped microbeam. Sinha 

et al. [21] derived the added mass values for a plate vibrating in fluid media. Amiri et al. [22] 

studied the natural frequencies of a plate shape micro-pump made with magneto-electro-elastic 

materials. Jabbari et al. [23] investigated the nonlinear force and frequency responses of electro 

actuated plate shape micro-resonator that submerged in fluid based on modified couple stress. 

Besides the fluid surrounding effects which are investigated in MEMS structures. Besides fluid 

effects MEMS/NEMS structures, some researches results have shown that viscoelastic 

properties widely exist in MEMS materials such as silicon [24] and polysilicon [25]. In some 

researches, the viscoelasticity effects on the vibration behavior of the micro/nanoplates have 

been investigated. For example, Liu and Zhang [26] derived an analytical solution for vibration 

of double layer viscoelastic nanoplates with in-plane loads. The vibration frequency of a 

viscoelastic nanoplate including the viscoelastic foundation effects studied by Pouresmaeeli et 

al. [27]. Their investigation shows that nanoplate frequencies decrease as the viscoelastic 

coefficient increases. The size-dependent free vibration of viscoelastic multiple nanoplate 

structure embedded in viscoelastic surrounding studied by Karlicic et al.[28]. In this work the 

exact analytical solution was obtained for simply supported nanoplates natural frequencies. 

Moreover, Farokhi and Ghayesh [29] considered viscoelasticity effects on force and frequency 

response of a shear-deformable microbeam by employing the modified couple stress theory 

(MCST). Their study showed that  

Recently, Ajri et al.[30-32] studied the free vibration and resonance analyses of a viscoelastic 

nanoplates based on MCST and strain gradient theory (MSGT) at different length-scale values, 

respectively. These studies showed that the viscoelastic model energy dissipation was 

amplitude dependent which results in more accurate outcomes compared to an elastic one. In 

this paper, for the first time the fluid inertial and damping effects on a microplate dynamic 

behavior that made of viscoelastic material is studied simultaneously.  

Mousavi Khoram et al. [33] reviewed the recent works that studied the nanoplates mechanical 

behavior. The researchers used the MSGT, nonlocal elasticity and surface theory with 

incorporating Hamilton’s principle to derive the governing equation. Recently, Ajri et al. [34] 

studied the viscoelastic damping effects on the frequency and force response of a nanoplate in 

the frame work of the consistent couple stress theory (CCST). It is worth to mention that, the 

CCST is developed on the basis of the original couple stress theory using the true continuum 

kinematical displacement and rotation [35-37]. In this theory the skew-symmetric couple-stress 

and curvature tensors are coupled to each other in the virtual work relation [35]. This theory 

was also used to study the buckling and free vibration of elastic nanobeams by some authors 

[38, 39]. 

However current study, for the first time the authors investigate the nonlinear dynamics of a 

viscoelastic microplate in incompressible still viscous fluid, including the frequency and force 

responses. The microplate is simply supported and follows the Leaderman viscoelastic model. 

The fluid loading and damping are applied as added mass and added damping to governing 

equation of motion. The non-classic stress and couple-stress tensors are calculated based on 

CCST and Kirchhoff plate theory with nonlinear von Karman strains. The harmonic balance 

analytical method (HBM) is used to obtain analytical solution for frequency and force 

responses. A parametric study has been done to investigate the effect of the fluid inertial load 

and viscous damping on frequency and force responses. 

 

 

Problem Formulation  
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This section includes the formulation required to obtain and solve the governing equations of 

the viscoelastic microplate that vibrate in fluid surroundings.  

 

Viscoelastic microplate governing equation based on CCST 

The Hamilton’s principle is employed to derive the governing equation 

 
2

1

0

t

t

K U W dt      (1) 

where δ, K, U, and W are the first variation operator, the kinetic energy, strain energy elastic 

portion, and external loads works, respectively. The microplate is excited by the out of plane 

loads in this study. In viscoelastic structures the work of the viscous dissipation forces is added 

to the work of the external forces [34].   

Based on the CCST in elastic structures, the strain energy can be expressed as [35-37] 

 

( . . )e e

ij ij ij ijU dV      (2) 

Where e

ij and e

ij  are the elastic force-stress and elastic couple-stress tensors, respectively. 

Moreover, ij and ij are the strain second order tensor and the rotation vector rotations. 

Similarly, the viscous loads works can be written as following form 

( . . )v v

vis vis ij ij ij ijW U dV       (3) 

Where v

ij and v

ij  are the viscous force-stress and viscous couple-stress tensors, respectively. 

By applying the Leaderman viscoelastic relation to the CCST the viscoelastic stress and couple-

stress second order tensors can be obtained as [34].  

𝜎𝑖𝑗 = 𝜎𝑖𝑗
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𝑣 = [𝜆0𝛿𝑖𝑗𝜀𝑝𝑝 + 2𝜇0𝜀𝑖𝑗(𝑡)]

+ ∫ [𝜆̇(𝑡 − 𝜏)𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇̇(𝑡 − 𝜏)𝜀𝑖𝑗(𝜏)]
𝑡
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where λ0 and μ0 are the initial Lame’s constants. Additionally, l is the material length-scale parameter. 

The over dot (·) denotes the first derivation with respect to the time. 

The skew-symmetric curvature tensor ij  relates to the rotation tensor ij  as [35] 

, ,

1

2
ij i j j i       

(6) 

where ij can be written as 

, ,

1

2
ij i j j iu u      

(7) 

where ,j iu is the gradient of the displacement field. 

The displacement field assumed as below relation [40] 
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𝑢𝑥 = 𝑢 − 𝑧
𝜕𝑤

𝜕𝑥
    𝑣𝑦 = 𝑣 − 𝑧

𝜕𝑤

𝜕𝑦
    𝑤𝑧 = 𝑤  (8) 

where u,v,and w represent the time-dependent displacements of a point on the mid-plane along the (x,y,z) 

coordinate. The nonlinear von-Karman strain components can be written as [41]. 
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The microsystem kinetic energy is expressed as 

 2 2 21

2
x y zK u v w dV    

 (10) 

where ρ is mass density of the microplate. 

The work done by the external forces on the microplate can be calculated as [42] 

ext zW f wdA 


    (11) 

where fz is the resultant force in z direction. The external load is assumed to be harmonic with 

amplitude f and frequency Ω. Additionally, the fluid damping force effects on the microplate 

can be written as [43, 44]. 

fluid

w
f c

t


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
 

 (12) 

In which c is a viscous damping coefficient.  

Therefore, the equation of motion can be written as [34].   
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(13-c) 

In the above equations  is the passion ratio and h is the microplate thickness. 

 

Fluid-solid interaction 

As discussed, in order to take into account, the fluid inertial effect on the microstructure that 

submerged in fluid the added mass concept is extensively used. In this section the added mass 

value will be obtained for vibration microplate and added to microplate mass, h , in governing 

equation of motion. 

The rate of the change in kinetic energy at any portion of the incompressible still fluid is equal 

to work done by the pressures on its surface [45]. 
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(14) 

where kE , zV  and S are kinetic energy of the fluid, fluid particle vertical velocity, and the surface 

of the fluid-solid interaction, respectively. Furthermore, P  is the pressure applied from 

outside an element dS of the boundary and is doing work.   

In  the current study, the microplate is assumed to be the fluid-solid interface [46]. So Eq. (14) 

can be written as 
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 is the transverse velocity of the microplate. 

According to Minami study [47]  the rate of change in the kinetic energy of the vibrating 

microplate having a mass M per unit area equivalent to the added mass, is written as:  
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So the added mass value can be found as 
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According to three dimensional aerodynamic theory proposed by Lucy and Carpenter [48] P  

can be expressed as 
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where   and   are dummy parameters. Moreover, x , y and   are non-dimensional 

parameters and defined as 
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where a and b are the microplate length and width, respectively. In addition, F  is the fluid 

density. The non-dimensional form of the added mass is equal to dimnon

F

M
M

a




  

Solution procedure 

The relaxation function of young's modulus is defined as Eq. (21) for the viscoelastic structure. 

𝐸(𝑡) = 𝐶 + 𝐷𝑒−𝛾𝑡 (21) 

where γ is the relaxation coefficient.  
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With introducing the following non-dimensional parameters, Eq. (21) can be rewritten as Eq. 

(23) 
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The Galerkin method is employed to convert the partial differential equation of motion to an 

ordinary differential equation. The simply supported rectangular microplates displacement field 

based on this theory can be obtained as [49],:   
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where α=mπ and β=nπ. 

By using the Galerkin approach the transverse motion equation with fluid interaction is given 

as: 
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(26) 

 

 

The fourth order Runge-Kutta is used to solve this equation. In order to inspect the primary 

resonance of the microsystem, the harmonic balance method is used to solve this equation[50]. 

Taking into account the periodic solution first-order approximation, cos( )X t    , and 

replacing it in Eq. (26) gets. 
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(27) 

where 
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(28) 

 

Neglecting the  terms with higher frequency, 3Ω, and considering the the steady-state phase: 
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(30) 

The force and frequency response of the viscoelastic microplate that vibrates in fluid with 

considering fluid inertial and damping effects can be predicted by solving the Eq. (29) 

 

Dynamic response analysis  
 

In order to demonstrate the analytical solution achieved in the previous section, a viscoelastic 

microplate with simply supported properties is considered with the following properties: 

𝑎 = 400 𝜇𝑚  𝑏 = 200 𝜇𝑚  ℎ = 35.2 𝜇𝑚  𝑙0 =  17.6 𝜇𝑚  𝐸 = 1.44 𝐺𝑃𝑎  𝜌 = 1220
𝑘𝑔

𝑚3
  

𝜐 = 0.38    𝐶 = 0.7 𝐷 = 0.3  𝛾 = 1  𝑐 = 0.5  
It is supposed that the microplate vibrates in fluid and vacuum media at first natural mode. In 

this section at first step, the added mass values are calculated. Next, the microsystem frequency 

response predicted by analytical method is validated with numerical results. Then the effects of 

fluid media, which take into account with added mass and added damping, on frequency and 

force responses are studied.  

The non-dimensional added mass values,  for various aspect ratio, dimnonM , of the simply 

supported microplate are calculated based on Lucy and Carpenter [48] and Wu [51] models are 

plotted in Fig.1. As seen, the Wu model predicts linear approximation unlike the Lucy and 

Carpenter model. It can be seen that as the aspect ratio of the microplate increases, the added 

mass values increase for both models. For example, in a square microplate the added mass value 

is equal to 2.6 and in microplate with the aspect ratio of 0.5 is equal to 1.66. 
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Figure 1. The non-dimensional added mass versus the microplate aspect ratio. 

Lucy and Carpenter: continues line,Wu: dotted symbol  

For verification of our results, the frequency responses of the viscoelastic microplate that 

vibrates in water with 𝜌𝑓 = 1000 𝐾𝑔/𝑚3 predicted by the analytical method and Rung-Kutta 

technique are compared to each other in Fig.2. It is shown that the numerical and analytical 

results are close to each other. 

 

Figure 2. The frequency responses predicted by numerical and analytical methods. 

The transverse and in-plane motions time history are plotted in Fig. 3 for the viscoelastic 

microsystem that oscillates in water. The initial conditions are set as (0) 1 (0) 0    . This 

figure shows the microsystem oscillation frequency decreases by considering the added mass 

effect. This is an important issue in designing the microsystem that vibrates in fluid 

surroundings.  
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(a) (b) (c) 

Figure 3. Time history: (a) transverse displacement at mid-plane (b), (c) in-plane displacements at 

x=300, y=150. 

The effect of the fluid density on the microsystem natural frequency is plotted in Fig.4. The 

dotted symbol is predicted for the model without added mass effects. The fluid density is 

considered between 556 (butane) to 1584 kg/m3 (Carbon Tetrachloride). The figure shows that 

in fluid with higher densities the microsystem natural frequency is decreased. For example, the 

microsystem frequency is 0.45 MHz and 0.27 MHz for butane and Carbon Tetrachloride, 

respectively. 

 

Figure 4. The natural frequency vibration vs. surrounding fluid media density. 

The frequency responses of the microsystem in water and vacuum are shown in Fig.5. It can be 

seen that the fluid damping reduces the response amplitude with respect to the amplitude of the 

microsystem that oscillates in vacuum. In general, it can be expressed the fluid media reduces 

the nonlinearity and response amplitudes of the microsystem. In addition, it is shown that the 

resonance frequency in added mass model is smaller than the model without added mass effects. 

Furthermore, the bending of the response curves to right decreased in added mass model and 

hence the predicted nonlinearity becomes weaker with respect to the model without added mass 

effects. 
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(a) (b) (c) 

Figure 5. Frequency response, dashed line unstable solution solid line stable solution: (a) transverse 

motion amplitude at mid-plane (b), (c) in-plane motion amplitudes at x=300, y=150. 

The effect of fluid density on the frequency responses at three different fluids, acetone, water, 

and Carbon tetrachloride with density equal to 785, 1000, and 1590 kg/m3 are shown in Fig. 6. 

It is shown that the resonance frequency and bifurcation points shift to higher frequency at the 

fluid with lower density.  

 

Figure 6. Frequency response of transverse motion at different fluid densities. 

The force responses of the viscoelastic microsystem in water and vacuum at Ω=6.45 MHz are 

plotted in Fig.7. This figure shows that there are jumps and instabilities at response for both 

surroundings. Also it can be seen that the first and second instabilities shift to greater forcing 

amplitude in water media for all transverse and in-plane motions. Additionally, the response 

amplitudes at fluid are smaller than vacuum.   
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(a) (b) (c) 

Figure 7. Force response, dashed line unstable solution solid line stable solution: (a) transverse motion 

amplitude at mid-plane  

(b), (c) in-plane motion amplitudes at x=300, y=150. 

Conclusion 
In this paper, the nonlinear dynamics of a viscoelastic microplate was studied in incompressible 

still viscous fluid by using added mass and added damping to governing equation of motion. 

The non-classic stress and couple-stress tensors were calculated based on CCST and Kirchhoff 

plate theory with nonlinear von Karman strains. A parametric study had been done and the 

following results were obtained: 

The fluid surroundings reduce the microsystem natural frequencies. In addition, as the fluid 

density increases the microsystem natural and resonance frequencies reduce to smaller values. 

It was observed that the nonlinearly of the microsystem is reduced in the fluid with considering 

the added mass effects. Also the resonance frequency shifts to smaller values in the added mass 

model. Moreover, in force response the occurrence instabilities are shifted to higher forcing 

amplified in fluid with added mass effects. 

        

Nomenclature 

 

a,b Plate length and width E  Relaxation function c Viscous damping 

coefficient 

f Body force G Modulus of rigidity h Plate thickness 

K  Kinetic energy t Time U Elastic strain energy 

V Volume W  Non-conseravtive forces 

virtual work 

  

Greek symbols 

ij  Force stress tensors 𝜀ij Strain tensor l  length-scale parameter 

ij  Couple-stress tensors 𝜅ij Curvature tensor  λ  Lame constants 

  Lame constants 𝛾 Relaxation coefficient l0 Length-scale ratio 

  Poisson ratio Ω External load frequency   

𝜌 Microplate Density 𝜌F Fluid Density   

Subscript 
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E Elastic V Plastic vis Viscous forces 

ext External forces     
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