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Abstract 

The clustering of cryptocurrencies as an emerging field in investment management is the main topic of 

this research. Applying the information-based distance matrices, we clustered the 30 most valuable 

cryptocurrencies. Then, we identified the most influential clustering by the concept of Minimum 

Spanning Tree (MST) and the centrality measures of graph theory. A second-order clustering, which is 

defined as the clustering of hierarchical clusterings, was applied to cluster 56 dendrograms. Using the 

most influential clustering, we identified the main clusters of cryptocurrencies and sub-clusters. The 

results showed that the clustering composition of cryptocurrencies changed at the period I (before 

COVID-19) and II (pandemic time). 
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1. Introduction 

 

I submit that the cybernetics of observed systems we may consider to be first-order 

cybernetics; while second-order cybernetics is the cybernetics of observing systems (Von 

Foerster, 2002).  

Inspired by the cybernetics of cybernetics of Von Foerster (2002), we introduce the 

dendrogram of dendrograms and organize its building blocks in the framework of this 

research. Therefore, this study discusses at least four different issues: Essentially, 

cryptocurrencies as an emerging subject in the financial world form the central topic of this 

paper, while from the viewpoint of methodology, hierarchical clustering is the primary 

method of this research. In hierarchical clustering, the techniques of computing the distance 

between entities are of particular importance. Therefore, the information-based method of 

distance measurement is another question that this research addresses. The fourth issue is the 

application of Minimum Spanning Tree to identify the most influential clustering. The 

methodological innovation of this paper is proposing the concept of second-order hierarchical 

clustering, which we have defined as the clustering of clusterings. 

 

1.1. Cryptocurrencies 

 

Cryptocurrencies, one of the applications of blockchain technology, have shifted the paradigm 

of finance, business, and social contracts. They have actualized Blockchain technology 

potentials so dramatically that Tapscott and Tapscott (2016) have called it the Blockchain 

revolution. Some financial studies have focused on the technical features of this phenomenon. 

However, some researches discussed the price and return of digital currencies and their 
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modeling (Bouri et al., 2019). The trading volume of these financial assets is increasing 

steadily, and there is a tendency among investors and financial analysts to consider the risk-

return trade-off of cryptocurrencies as a proper instrument of finance and investment. Some 

studies have applied machine learning techniques to predict the price or return of these assets 

(Mallqui & Fernandes, 2019). Other financial studies have examined the interaction of 

cryptocurrencies with other economic variables, including traditional currencies (Andrada-

Félix et al., 2020), precious metal commodities (Rehman & Vinh Vo, 2020), crude oil prices 

(Okorie & Lin, 2020), and equity funds (Kristjanpoller et al., 2020). Following this body of 

knowledge, this study focuses on the hierarchical clustering of selected cryptocurrencies to 

improve financial decisions such as portfolio selection, risk hedging, and pairs trading. 

Creating a portfolio that includes cryptocurrencies is important to some investors because 

of their risk characteristics and returns. Hence, the formation of such portfolios has been 

studied by different methods. In one study, the classical method of portfolio formation was 

applied based on Markowitz’s approach to 500 cryptocurrencies (Brauneis & Mestel, 2019). 

The Black and Litterman model (Black & Litterman, 1992)  has also been used as a method of 

portfolio diversification in the study of cryptocurrency risk (Platanakis & Urquhart, 2019). In 

another study, the top ten cryptocurrencies were used to form the basis of the portfolio (Liu et 

al., 2019). One of the methods that shows the structural relationships of cryptocurrencies with 

each other and with other economic variables is the Copula functions (Boako et al., 2019; 

Tiwari et al., 2019). However, it appears that probably the most important challenge in 

studying cryptocurrencies is how to calculate and estimate their risk. Various methods of risk 

estimation including conditional risk criteria and tail study of statistical distributions have 

been used in studying cryptocurrencies (Bouri et al., 2020; Liu et al., 2020; Xu et al., 2021; 

Zhang et al., 2021). 

 

1.2. Hierarchical Clustering 

 

As a classical method of machine learning, hierarchical clustering has a wide variety of 

applications. Financial decision-makers also utilize this method in their analysis (Khedmati & 

Azin, 2020). However, this method, as a method of knowledge discovery, has its own 

strengths and weaknesses (Cai et al., 2014). The end product of hierarchical clustering is the 

various dendrograms that show the metric position of the clustered entities. Two essential 

issues mutually generate various clusters (and dendrograms): the clustering method and the 

method of measuring the distance between entities. Therefore, if there are n clustering 

methods and m distance measurement methods, the desired entities can be clustered into n ∗ 

m different clusterings. The critical question is, “Which of all these hierarchical clusterings 

should we take as the basis for our decision?” In the clustering literature, there are methods 

such as tanglegram to calculate the degree of convergence and divergence of hierarchical 

clusters (Scornavacca et al., 2011). However, the superiority of a dendrogram to others is still 

a controversial argument. Applying the Minimum Spanning Tree of graph theory, this 

research could support the decision-makers to identify the most suitable clustering. 

 

1.2.1. The Problem of Hierarchical Clustering 

 

More specifically, in any clustering, there are several methods for calculating the distance 

between entities and creating clusters. Therefore, with the same data, multiple clusters are 

obtained. By limiting the subject to entities that are of the time series type and by limiting the 

method to hierarchical clustering, this problem is formulated as follows: which method of 

calculating time series from each other and which method of creating hierarchical clusters 
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does it take precedence over others? While methods have been proposed for comparing 

clusters, the novelty of this paper is that it compares clusters with each other and creates a 

hierarchy of clusters. In this hierarchy, the position of the clusters is measured from each 

other and we can find out which clusters are similar. But there are also several methods for 

clustering hierarchies whose entities are clustered. This leads into a vicious circle. To get out 

of this vicious circle, we have used the concepts of graph theory. If we consider each of the 

resulting clusters as vertices of a graph, then we can analyze the resulting graph in different 

ways. One of these methods is to calculate the criteria for the centrality of graph vertices. A 

range of centrality measures allows us to identify the most significant clustering.  

1.2.2. Comparison of Clusterings 
 

Different algorithms and methods create clusters that are not necessarily the same. By 

comparing 22 similarity indices, a study set out to compare clusterings (Albatineh et al., 2006). 

These indicators compared different clustering methods and showed the degree of similarity or 

dissimilarity with a quantity between 0 and 1. Another study examined the relationship between 

some of these indicators (Warrens, 2019). However, Van der Hoef and Warrens (2019) focused 

on similarity indicators based on information theory. On the other hand, some software 

packages have made it possible to measure these indicators in applied studies. The CluSim 

package (Gates et al., 2019) in Python and the dendextend package (Galili, 2015) in R allow the 

calculation of several similarity criteria. In this study, we used the dendextend package. 

However, these indicators compare clusters in pairs and measure their similarity. In this 

research, we go one step further and use a graphic design which is headed by clusters. In this 

graph, in addition to representing the interrelationships of clusters, the importance of each 

clustering is calculated based on the criteria of centrality. 

 

1.2.3. Clustering of Time Series 

 

In some fields of study, such as finance and economics, time series are the basis of much 

research. In addition to classic econometric methods, various machine learning methods, 

especially time series clustering, can provide useful information to decision makers. In one 

study (Warren Liao, 2005), the time series clustering literature was examined in detail. The 

author, while reviewing previous research in terms of algorithms and performance criteria for 

clustering and the basis for defining the similarity of time series, divided them into three 

groups, depending on whether they work directly with raw data in the time or frequency 

domain, indirectly with features extracted from raw data, or indirectly with the models on raw 

data. In another study (Aghabozorgi et al., 2015), research over a decade in various fields, 

from finance to biology, based on time series clustering, was reviewed. The authors of this 

paper referred to different types of classical clustering methods and newer methods such as 

fuzzy clustering methods. The study revealed that one of the most important decisions in time 

series clustering is to choose the clustering method. 

 

1.2.4. Hierarchical Structure of Cryptocurrencies 

 

The study of hierarchical structures in financial markets began with the important article of 

Mantegna (1999). In this article, the author discusses the concept of hierarchical structure in 

stock markets, according to which, the relationships between the shares of a market can be 

understood in the form of an overview. According to the Web of Science website, this article 

has been cited 1065 times so far, of which 873 have been research articles. 
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The analysis of bibliographic information of these 873 research articles using the 

bibliometrix R package (Aria & Cuccurullo, 2017) shows that the most cited articles  

these 873 have dealt with the application of hierarchical clustering in financial markets 

(Bonanno et al., 2004; Mantegna, 1999).  
On the other hand, we see the most important concepts that have been studied in articles 

in Figure 1. 

 
Figure 1.The Main Concepts of Hierarchical Structure of Financial Markets 

Some recent studies have focused on the hierarchical structure of the cryptocurrency 

market. The hierarchical structures of the cryptocurrency market show that Bitcoin and 

Etherium have a well-established leadership in this market. On the other hand, using the cross 

correlation of prices and the related Minimum Spanning Tree, a number of homogeneous 

clusters have been reached (Song et al., 2019). In another study, using the same hierarchical 

method, the centrality of Bitcoin in the cryptocurrency market was investigated. The 

formation of the Minimum Spanning Tree in this study is the shock transmission of the 

Bitcoin price and its effect on other cryptocurrencies that were measured with vector 

autoregressions (Zięba et al., 2019). In another study, cryptocurrencies were analyzed using a 

hierarchical structure based on their price correlation, and the results were reviewed using a 

Random Matrix (eigenvalues analysis) method (Stosic et al., 2018). The structure of 

communities and the dynamics of price correlation in the cryptocurrency market were studied 

in another study. In this study, the collective behavior of 119 cryptocurrencies in 2017 and 

2018 was analyzed (Chaudhari & Crane, 2020).  

In the most of these studies, the distance between cryptocurrencies has been calculated 

based on price correlation. Due to the fact that information-based distances may lead to 

different results, this study, in addition to generalizing the previous studies (to the two periods 

before and after the COVID-19), methodologically relies on information-based distances. 

 

1.3. Information-Based Distance 

 

The calculation of the distance matrix is an essential step in hierarchical clustering. Distance 

computation depends on the nature of the objects and their characteristics (Deza & Deza, 

2013). In the hierarchical clustering of cryptocurrencies, the objects are time series of prices 

and returns. Despite all the challenges, the correlation coefficient is still the dominant method 

for calculating the distance of time series objects. Some studies have proposed alternative 
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algorithms like dynamic time warping (DTW) that do not rely on the correlation coefficient 

(Giorgino, 2009). 

One way to define the distance of time series objects is to calculate the distance matrix based 

on the concepts of information theory (Kraskov & Grassberger, 2009). The mutual information 

of the two variables originates from the concept of entropy and shows a kind of similarity 

between the two variables. An appropriate transformation can turn this similarity criterion into a 

distance measure (Hu et al., 2017). In most financial clusterings, the basis for measuring 

distance has been the correlation coefficient. However, this study uses methods based on 

information theory as a complementary method and compares the results. Nonetheless, the 

calculation of distance matrices for the time series of cryptocurrencies by all distance methods 

and their comprehensive comparison with each other requires independent research. 

The use of information-based distances in financial clustering has been discussed in some 

studies, but in the study by Guo et al. (2018), different methods for calculating these distances 

are examined. 

 

1.4. Minimum Spanning Tree 

 

The Minimum Spanning Tree (MST) is a classical concept of graph theory to filter the large 

graphs and remove extra edges. Therefore, some financial studies have applied MST to 

recognize central stocks of large stock networks (Coletti, 2016). A stock network is a case of 

financial network that represents the relationship of financial objects such as financial assets, 

stocks, currencies, and stock indexes. Applying the algorithms of Minimum Spanning Tree 

and other filtering techniques of large financial networks, we can calculate the centrality 

measures to identify the most influential nodes in the filtered financial networks (Jang et al., 

2011; Jo et al., 2018; Tabak et al., 2010). In this study, we generated a graph whose vertices 

were hierarchical clusterings constructed with several techniques. Then, we filtered this 

network of clusterings with Prim’s algorithm to make their Minimum Spanning Tree. After 

calculation of the centrality measures of this MST, we identified the most influential 

clustering to make a more reliable financial decision. We investigated the first-order (or raw) 

hierarchical clusterings by the concepts of graph theory in addition to the hierarchical 

clustering theory. This process is a second-order hierarchical clustering to determine the 

superior clustering. MST is one way to filter complete graphs. In addition to this method, 

other methods such as Planar Maximally Filtered Graph have been used in some studies as a basis 

for filtering complex financial networks (Tumminello et al., 2005; Tumminello et al., 2007). 

 

2. Data and Methodology 

 

2.1. Time Series of Cryptocurrencies 

 

Bitcoin has a high reputation as the most well-known cryptocurrency and has been the subject 

of numerous studies (Aggarwal, 2019). The popularity of bitcoin has led to misconceptions 

that concepts such as blockchain and cryptocurrencies are the same as bitcoin (Merediz-Sola 

& Bariviera, 2019). There are hundreds of cryptocurrencies generated by blockchain 

technology. Therefore, to narrow the scope of research, we have selected the top 30 

cryptocurrencies and their daily price data according to their market shares and trading 

volumes. We downloaded it from Yahoo!Finance and calculated their daily logarithmic 

returns using Equation 1. 

   1ln ln  t t tr p p  (1) 
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The quantmod package of R, developed for quantitative financial analytics and Quants, 

provides us to retrieve data from Yahoo!Finance (Ryan & Ulrich, 2020). Some research has 

shown that the COVID-19 pandemic has had a significant impact on financial markets, 

including cryptocurrencies and investor behavior (Corbet et al., 2020; Ortmann et al., 2020; 

Umar & Gubareva, 2020). Some studies have examined the efficiency and stability of the 

cryptocurrency market before and after the COVID-19 pandemic. They show that these 

markets have been less stable after this event (Lahmiri & Bekiros, 2020; Mnif et al., 2020). 

Accordingly, given the occurrence of the COVID-19 outbreak, we divided the research into 

two time periods of the last six months of 2019 (period I) and the first six months of 2020 

(period II), and repeated the research steps for both periods. According to the descriptive 

statistics of observations (daily returns of selected cryptocurrencies), the average daily returns 

of cryptocurrencies in the period II compared to the period I has increased. 

 

2.2. Calculation of Distance Matrices 

 

After calculating the returns, the distance matrix was compiled based on them. In the 

computation of the distance between cryptocurrencies, we used two approaches of 

correlation-based and information-based distances. In information-based distances, the 

concept of entropy plays a critical role. The entropy of the random variable X was determined 

as follows by Equation 2 (Hu et al., 2017): 

     2

Ω

log


 
x

X p x p xH  (2) 

In the Rényi method for calculating entropy, there is also the parameter α. By setting this 

parameter, we can manipulate the weight of extreme observations. The Extreme value theory 

approach to risk measurement focuses on the observations at the tail of the statistical 

distribution (Rasmussen, 2014). If we set the parameter α equal to one, the Rényi’s entropy 

and Shannon’s entropy are equivalent. In other words, Rényi’s entropy is a generalized form 

of Shannon’s entropy (Amigó et al., 2018).  How to calculate the Rényi’s entropy for variable 

X is as in Equation 3 (for a detailed exploration of the features and applications of Rényi’s 

entropy, see Principe, 2010). 

   α 2

Ω

1
log

1 α 





x

X   p xH  (3) 

For the time being, in this study, we ignored the effect of α and its different values on the 

entropy value. After measuring the entropy of the variables, we calculated the mutual 

information of the two variables. 

Mutual information, as a measure for estimating the statistical dependence of variables, 

shows the amount of common information within the two variables X and Y (Bossomaier et 

al., 2016). Therefore, mutual information indicates the similarity of variables and 

consequently, it has the same application as correlation coefficient in clustering and 

classification. If we convert this similarity measure into a distance metric with an appropriate 

transformation, the obtained distance matrix can be an alternative of the correlation-based 

distance matrices applied in the clustering process. In this study, we examined several 

methods for converting mutual information into a distance metric and demonstrated the 

application of such information-based distance criteria in cryptocurrencies analysis. 

Mutual information represents a relationship between the variables that conduces to the 

correlation coefficient in certain circumstances (Song et al., 2012). If knowing one variable 

reduces the entropy of the other variable, there is common information between them. The 



Iranian Journal of Management Studies (IJMS) 2022, 15(3): 569-593 575 

independence of those two variables occurs when knowing one of them tells us no truth about 

the other. That means the mutual information of the two variables in the case of independence 

is zero. On the other hand, this definition shows that mutual information describes a 

symmetrical and non-directional relationship (Batina et al., 2011). 

         : | |   X Y X X Y   Y   Y XI  H  H H H  (4) 

In other words, mutual information equals the sum of entropies minus the common entropy 

and expresses a particular instance of Kullback–Leibler divergence. It is always a nonnegative 

number (Cover & Thomas, 2006). 

       : ,  X Y X   Y   X YI H H H  (5) 

Equation 6 shows the probabilistic form proposed to calculate the mutual information 

(Steuer et al., 2005). 

   
 
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2

Ω , Ω

,
: , log

 

 
x yx y

p x y
X Y p x y

p x p y
I  (6) 

After the definition of mutual information as a criterion of similarity between the two 

variables, it is essential to define distance measurement criteria. The easiest way to convert 

mutual information into a distance metric is to use the complementary method. 

Complementary information is called “Variation of Information” (or Sum Distance), which is 

defined as in Equation 7 (Meila, 2003). 

     , | | sumd X Y X Y Y XH H  (7) 

The normalized form of the sum distance is called “Shared Information Distance” (Li, 2006). 

 
   

 

| |
,

,


shared

X Y Y X
d X Y   

X Y

H H

H
 (8) 

Another method is to use the maximum operator. In this method, unlike the shared 

information distance, we decompose the variation of information into its components and then 

consider their maximum as a distance metric (Ming et al., 2004). 

      , max | , |maxd X Y X Y Y XH H  (9) 

The normalized form of max distance is defined as in Equation 10 (Ming et al., 2004). 

 
    

    

max | , |
,

max ,
nmax

X Y Y X
d X Y

X Y

H H

H H
 (10) 

To calculate the entropy and mutual information of variables and distances based on 

information, we used the infotheo R package and its functions. To calculate the variable entropy, 

first the data discretization process is performed to determine their statistical distribution. In this 

study, we used an experimental method for data discretization (Meyer, 2014).  

In the infotheo R package, discretization methods are programmed based the equal 

frequencies or equal width binning algorithm. In this study, the input of the function was set 

to the discretization method based on equal frequency and the number of bins was equal to 

one third of the number of observations (as the default value of the function). Checking the 

effect of the number of bins on estimating the distribution of observations can be considered 

as a separate issue. For comparison, we also calculated correlation-based distances using 

Pearson, Spearman, and Kendall methods of correlation. In converting correlations to distance 

metrics, we used the following conversion of Equation 11. 
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   ,, 2 1 ρ cor X Yd X Y *  (11) 

2.3. Different Methods of Hierarchical Clustering 

 

After computation of the distance matrices by the mentioned methods, we had to select the 

clustering algorithm. There are two main approaches proposed to find the hierarchy of 

clusters in our observations: The bottom-up strategies and vice versa. 

The bottom-up strategies (also called agglomerative algorithms) start discovering clusters 

from the bottom of the observations. They integrate the selected groups of observations into a 

new cluster recursively at the next level. This process develops a cluster at the next level with 

one less cluster because of integrating lower-level clusters (Dubitzky et al., 2013). 

When deciding to merge two clusters from one level to the next, calculating the distance of 

the clusters from each other is a crucial step. There are several ways to measure the distance 

of clusters, the most famous of which are Single linkage, Complete linkage, Group average, 

Mcquitty method, Median method, Centroid method, Ward.D and Ward.D2 methods. The 

number of dendrograms was determined by multiplying the number of methods (7 methods) 

we used to calculate the distance matrix by the number of clustering methods (8 methods). 

Therefore, there were 56 hierarchical clusterings to analyze in the next step. 

 

2.4. A Minimum Spanning Tree of Dendrograms 

 

Dendrograms are the end product of hierarchical clustering, and by comparing them in pairs, 

we determine the degree of their convergence or divergence. In comparing dendrograms, we 

can use the tanglegram method and their degree of entanglement, as well as the correlation 

between dendrograms. These methods are coded using the dendextend package in R. There 

are several methods to calculate the correlation (or the similarity) of hierarchical clustering 

trees such as the Cophenetic method (Sokal & Rohlf, 1962), FM index, and Baker’s Gamma 

correlation coefficient. 

One approach to identify the most influential dendrograms is to apply graph theory. A 

graph is a set of vertices and edges that show the relationship between those vertices. Thus, in 

our graph, the vertices were 56 dendrograms (hierarchical clustering trees) and the edges 

represented the distance of those dendrograms, which were calculated based on the cophenetic 

correlation coefficient. The cophenetic correlation coefficient as a measure of similarity 

between two dendrograms is a number between −1 to 1. Sokal and Rohlf (1962) defined this 

method, and there is a function in the dendextend R package that calculates it, which can be 

used to obtain the dendrogram correlation matrix. 

We again used Equation 11 to convert the correlation (similarity) matrix of the 

dendrograms to their distance matrix. Using this matrix as an adjacency matrix of a graph, we 

arrived at a complete graph of order 56, each edge of which showed the distance from one 

dendrogram to others, for a total of 1540 edges. 

 1 56 55
1540

2 2


 

N N *
 

Next, we filtered this relatively large graph via the MST algorithm. As a method of 

filtering the edges of a connected, weighted undirected graph, a Minimum Spanning Tree 

(MST) is a subset of the edges that connects all the nodes of that network. It has the minimum 

possible total edge weight without any cycles. 

There is a function in the igraph R package (Csardi & Nepusz, 2006) that computes the 

minimum spanning tree of a graph based on the Prim’s algorithm. Then, using the centrality 
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measures proposed in graph theory, we identified the most influential dendrograms in this 

MST or network of hierarchical clustering. 

There are numerous studies about centrality metrics in the graph theory literature, and 

every day, graph theory researchers introduce new criteria. This study focused on the three 

most well-known measures of centrality and identified the most influential dendrogram in 

order of priority. These criteria are delineated by Golbeck (2013) as follows. 

(1) Degree: The degree of a vertex in a graph (a node in a network) is its most essential 

structural property. It is simply defined as the number of its adjacent edges. How many 

vertices are connected to that vertex? The edges of a graph represent these connections. 

(2) Closeness: This measure indicates how far, on average, one vertex is from the other 

vertices of the graph. And how many steps must be taken to reach those vertices? The fewer 

these steps, the greater the value of this measure of centrality. 

(3) Betweenness: This centrality criterion indicates how many times a vertex is located 

between other vertices. In finding the shortest path between two vertices, we cross the other 

vertices. The more a vertex is present in the shortest paths, the more remarkable that vertex is. 

That is, it represents a powerful intermediary or bridge between other vertices. 

 

3. Results 

 

Downloading the relevant data of the selected cryptocurrencies from Yahoo! Finance, we 

calculated the time series of their returns. 

 

3.1. A Dendrogram of Dendrograms 

 

Following the calculation of the distance matrix, we made 56 dendrograms of 

Cryptocurrencies. A methodological problem in applying these dendrograms for financial 

decisions is their divergence. In other words, each of these dendrograms gives a distinctive 

result, and none of them are the same. 

For example, Figures 2 and 3 show the circular dendrograms obtained from two different 

methods: Method A and Method B. As shown in Method A, the observations are grouped into 

two clusters: the first cluster contains only one cryptocurrency and the second cluster includes 

other cryptocurrencies. Such clustering does not provide financial analysts with useful 

information for decision-making.  

 
Figure 2. The First Dendrogram: Pearson-based Distance and Ward.D Method 
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However, in Method B, we are faced with two relatively balanced clusters. Therefore, 

there were no similarities between the dendrograms. 

The degree of similarity or distance of these dendrograms can be determined by the 

methods mentioned in Section one. 

Figure 4 and Figure 5 show the dendrogram of dendrograms for the period I and II. First, 

the correlation of the clusters was calculated based on the cophenetic correlation, and after 

converting it into a distance criterion, we achieved a hierarchical clustering of hierarchical 

clustering. This achievement was a second-order hierarchical clustering. 

As shown in Figure 4 and Figure 5, to prioritize a method, we needed to do more analysis 

on this dendrogram. At the same time, a vicious circle appeared: because these clusterings 

could also be re-clustered in several ways, the process of clustering could be repeated 

infinitely. 

 

3.2. A Minimum Spanning Tree of Dendrograms 

 

To get out of this vicious circle, one can look at the issue from outside the theory of 

clustering. The proposed approach is to correct this dilemma using graph theory. Graph 

theory, as part of discrete mathematics, has the potential to play a complementary and 

promotional role in many clustering problems. Figure 6 shows such a complete graph of 

dendrograms. A complete graph with 56 vertices and its dense edges does not seem suitable 

for analysis and visualization. 

 
Figure 3. The Second Dendrogram: Shared Information Distance and Average Method 

Considering the centrality measures, we could not distinguish dendrograms from each 

other. The degrees of vertices in graphs close to the complete graph were almost equal, and 

other criteria of centrality were not applicable to select the superior clustering. 

Moreover, if the visualization of these graphs is critical to making better decisions, we 

need to filter them by the minimum spanning tree algorithm. Therefore, in the continuation of 

this study, using the distance matrix obtained for the dendrograms, we created a complete 

graph, and then using Prim’s algorithm, we compiled the minimum spanning tree of that 

graph. The minimum trees of the period I and II are shown in Figure 7 and Figure 8. As 

shown in Figure 7, if we consider the degree of the vertices as a decision criterion, the 
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dendrogram proposed by Pearson-based Distance and Complete method is given priority in 

the period I. On the other hand, according to Figure 8, the dendrogram of Normalized Max 

Information Distance and Ward.D method is the most influential clustering in the period II. In 

the period II, the same dendrogram has the best value of the closeness centrality and the 

highest value of the betweenness centrality. 

Figures 9 and 10 show the most influential dendrograms of the periods I and II. Various 

clusters of cryptocurrencies can be recognized precisely at the distances and orders that this 

hierarchy of clusters represents. The logic of clustering 

 
Figure 4. The Second-order Dendrogram of Hierarchical Clusterings - Period I 
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Figure 5. The Second-order Dendrogram of Hierarchical Clusterings - Period II 
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Figure 6. The Complete Graph of 56 Dendrograms 

 
Figure 7. The Minimum Spanning Trees of 56 Dendrograms - Period I 
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Figure 8. The Minimum Spanning Trees of 56 Dendrograms - Period II 

presents an informative guideline for financial decisions: the Cryptocurrencies that are in a 

cluster have the shortest distance from each other. Therefore, if one of them is not possible to 

trade, the traders can consider the other ones clustered in the same group. In other words, the 

cryptocurrencies that are in a cluster can be used as substitutes for each other in portfolio 

selection. The principle of diversification suggests that the investors should avoid choosing a 

portfolio that includes cryptocurrencies in a cluster before and after COVID-19 pandemic. 

Based on the hierarchical clustering of Figure 10, the identified clusters in the period II have 

the following characteristics: 

Two of the identified clusters have only one member. These cryptocurrencies have the 

greatest information distance from other cryptocurrencies. In other words, knowing 

information about KNC and USDT cryptocurrencies does not add to our knowledge of other 

cryptocurrencies. KNC is an Ethereum-based cryptocurrency for paying transaction costs on 

the Kyber Network. On the other hand, USDT (Tether) is a cryptocurrency invented to reflect 

the value of the U.S dollar. Tether as the digital U.S. dollar is significantly different from 

other cryptocurrencies. Thus, it is a unique cryptocurrency that does not fit in any cluster with 

any of the other cryptocurrencies. 

One of the clusters has two members and includes the cryptocurrencies DASH and ZEC. 

DASH is an open-source cryptocurrency that is derived from Litecoin, which itself is forked 

from Bitcoin. DASH and ZEC are located in a cluster and form a pair. Traders can use this 

fact in pair trading. In such transactions, finding a pair of financial assets is the main issue. On 

the other hand, ZEC (Zcash) as a cryptocurrency is developed on the Bitcoin codebase. In the 

other cluster, we see a combination of two subclusters. One of these subclusters includes 5 
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cryptocurrencies: MotaCoin (MOTA), New Economy Movement or NEM (XEM), Basic 

Attention Token (BAT), Chainlink (LINK), and DigiByte (DGB). And another subcluster 

includes 8 assets: Augur (REP), Decred (DCR), Ethereum Classic (ETC), Dogecoin (DOGE), 

0x (ZRX), ICON (ICX), VeChain (VET), and OMG Network (OMG). The last main cluster 

also consists of two subclusters. In one of these subclus-ters, 6 cryptocurrencies are located as 

follows: Cardano (ADA), Stellar (XLM), Ripple (XRP), TRON (TRX), Neo (NEO), and 

Qtum (QTUM). In the last and most important subcluster, the most prominent and oldest 

cryptocurrencies are placed next to each other: Bitcoin (BTC), Ethereum (ETH), Binance 

Coin (BNB), Litecoin (LTC), Monero (XMR), EOS (EOS), and Bitcoin Cash (BCH). 

In general, the most popular currencies are placed in a cluster or a sub-cluster. Therefore, 

because we have clustered the objects applying information-based distances, the interpretation 

of this finding is so fantastic: the popular cryptocurrencies have more mutual information. 

Similarly, Figure 9 shows the cryptocurrency clusters in the period I (the last six months of 

2019). What is the similarity of the hierarchical clustering of cryptocurrencies before and after 

COVID-19? As a comparison, in the last step of this research, we compared the best 

dendrograms of the periods I and II. From the representation of Figure 9, it is obvious that the 

best dendrogram of the period I has several inconsistencies with the best clustering of the 

period II. The composition, shape, and position of cryptocurrencies in this dendrogram are 

distinct from the previous dendrogram. 

 
Figure 9. The Best Dendrogram - Period I: Pearson-Based Distance and Complete Method 
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Figure 10. The Best Dendrogram - Period II: Normalized Max Distance and Ward.D Method 

Tables 1 and 2 show some topological information about trees before and after COVID19. 
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Table 1. Centrality Measures of Dendrograms in the Complete Graph -Period I 

 
Degree Closeness Betweenness 

Ward.D VarInfo 55 0.01784401 0 

Single VarInfo 55 0.021449799 0 

Complete VarInfo 55 0.01784401 0 

Average VarInfo 55 0.01784401 0 

Mcquitty VarInfo 55 0.023096885 0 

Median VarInfo 55 0.01743054 0 

Centroid VarInfo 55 0.018245766 0 

Ward.D2 VarInfo 55 0.036186094 0 

Ward.D NormalizedVarInfo 55 0.036186094 0 

Single NormalizedVarInfo 55 0.036186094 0 

Complete NormalizedVarInfo 55 0.036186094 0 

Average NormalizedVarInfo 55 0.030691906 0 

Mcquitty NormalizedVarInfo 55 0.034679621 0 

Median NormalizedVarInfo 55 0.035807944 0 

Centroid NormalizedVarInfo 52 0.029035485 0 

Ward.D2 NormalizedVarInfo 52 0.029035485 0 

Ward.D Max 52 0.029035485 0 

Single Max 52 0.029035485 0 

Complete Max 55 0.028871751 6 

Average Max 55 0.022147709 0 

Mcquitty Max 55 0.029816715 0 

Median Max 53 0.038300229 0 

Centroid Max 55 0.038024155 3 

Ward.D2 Max 53 0.038300229 0 

Ward.D NormalizedMax 53 0.038300229 0 

Single NormalizedMax 55 0.031336635 0 

Complete NormalizedMax 55 0.037312802 0 

Average NormalizedMax 55 0.036410539 0 

Mcquitty NormalizedMax 52 0.035490959 0 

Median NormalizedMax 52 0.035490959 0 

Centroid NormalizedMax 52 0.035490959 0 

Ward.D2 NormalizedMax 52 0.035490959 0 

Ward.D Pearson 55 0.027138957 0 

Single Pearson 55 0.03563758 0 

Complete Pearson 55 0.036750103 6 

Average Pearson 53 0.033583857 0 

Mcquitty Pearson 55 0.033139404 3 

Median Pearson 53 0.033583857 0 

Centroid Pearson 53 0.033583857 0 

Ward.D2 Pearson 55 0.028288773 0 

Ward.D Spearman 55 0.033238554 0 

Single Spearman 55 0.03497448 0 

Complete Spearman 53 0.03134728 0 

Average Spearman 55 0.025401263 0 

Mcquitty Spearman 53 0.03134728 0 

Median Spearman 53 0.03134728 0 

Centroid Spearman 55 0.031521758 0 

Ward.D2 Spearman 55 0.037998902 0 

Ward.D Kendall 55 0.034842454 3 

Single Kendall 53 0.022380431 0 

Complete Kendall 55 0.021460333 3 

Average Kendall 53 0.022380431 0 

Mcquitty Kendall 53 0.022380431 0 

Median Kendall 55 0.026309186 0 

Centroid Kendall 55 0.019622355 0 

Ward.D2 Kendall 55 0.018096988 0 
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Table 2. Centrality Measures of Dendrograms in the Complete Graph -Period II 

 
Degree Closeness Betweenness 

Ward.D VarInfo 53 0.017362 0 

Single VarInfo 55 0.017075 0 

Complete VarInfo 53 0.017362 0 

Average VarInfo 53 0.017362 0 

Mcquitty VarInfo 55 0.017118 0 

Median VarInfo 55 0.016621 0 

Centroid VarInfo 55 0.016619 0 

Ward.D2 VarInfo 52 0.029889 0 

Ward.D NormalizedVarInfo 52 0.029889 0 

Single NormalizedVarInfo 52 0.029889 0 

Complete NormalizedVarInfo 52 0.029889 0 

Average NormalizedVarInfo 55 0.023965 0 

Mcquitty NormalizedVarInfo 55 0.030666 0 

Median NormalizedVarInfo 55 0.030115 0 

Centroid NormalizedVarInfo 52 0.025582 0 

Ward.D2 NormalizedVarInfo 52 0.025582 0 

Ward.D Max 52 0.025582 0 

Single Max 52 0.025582 0 

Complete Max 55 0.022257 0 

Average Max 55 0.023851 0 

Mcquitty Max 55 0.020194 0 

Median Max 52 0.030415 2.25 

Centroid Max 52 0.030415 2.25 

Ward.D2 Max 52 0.030415 2.25 

Ward.D NormalizedMax 52 0.030415 2.25 

Single NormalizedMax 55 0.02421 0 

Complete NormalizedMax 55 0.02935 0 

Average NormalizedMax 55 0.030558 6 

Mcquitty NormalizedMax 52 0.025355 0 

Median NormalizedMax 52 0.025355 0 

Centroid NormalizedMax 52 0.025355 0 

Ward.D2 NormalizedMax 52 0.025355 0 

Ward.D Pearson 55 0.022488 0 

Single Pearson 55 0.029665 0 

Complete Pearson 55 0.029726 6 

Average Pearson 53 0.025421 0 

Mcquitty Pearson 55 0.025184 3 

Median Pearson 53 0.025421 0 

Centroid Pearson 53 0.025421 0 

Ward.D2 Pearson 55 0.022595 0 

Ward.D Spearman 55 0.026503 0 

Single Spearman 55 0.025504 0 

Complete Spearman 53 0.025873 0 

Average Spearman 55 0.019348 0 

Mcquitty Spearman 53 0.025873 0 

Median Spearman 53 0.025873 0 

Centroid Spearman 55 0.023216 0 

Ward.D2 Spearman 55 0.029771 6 

Ward.D Kendall 55 0.028277 0 

Single Kendall 55 0.018288 0 

Complete Kendall 55 0.017318 3 

Average Kendall 55 0.018288 0 

Mcquitty Kendall 55 0.018288 0 

Median Kendall 55 0.01911 0 

Centroid Kendall 55 0.021268 0 

Ward.D2 Kendall 55 0.016594 0 
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3.3. A Tanglegram of Dendrograms 

 

A tanglegram is a pair of dendrograms on the same objects. It is developed to compare those 

two dendrograms. This method connects the studied cryptocurrencies from one dendrogram to 

another dendrogram. If the generated lines are all parallel, the dendrograms are the same, and 

if these lines intersect, it shows their divergence. The more parallel these lines are, the more 

similar the corresponding clusterings are, and the more intertwined these lines are, the less 

similar the dendrograms are to each other. As an illustration, Figure 11 shows a tanglegram to 

which the corresponding dendrograms are the same, and so all the lines connecting the entities 

are all parallel. Thus, what if we compare the best dendrogram of the period II (Normalized 

Max distance and Ward.D method) with the best dendrogram of the period I (Pearson’s 

distance and Complete method)? The tanglegram from this comparison is shown in Figure 12. 

Figure 12 shows that most of the connections between the two dendrograms are cut off 

instead of parallel. It represents the change in clusters between periods I and II. Given that the 

basis for dividing the research period into these two sub-periods was the COVID-19 

pandemic, it can be argued that the clustering structure changed before and after this event. 

Decision-makers are advised to update their financial clusters based on data following the 

COVID-19 pandemic. 

 
Figure 11. An Example of Tanglegram With Full Similarity 
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Figure 12. The Tanglegram of the Best Dendrograms: Periods I and II 

4. Conclusion 
 

This study showed in the first place that the structure of the cryptocurrency market differed 

before and after the COVID-19 pandemic. The reason for this and the explanation of how 

COVID-19 affects the structural relationships of cryptocurrencies require separate research. 

Some studies that have examined this issue have examined how COVID-19 affects factors 

such as market bubble (Montasser et al., 2021) , herd behaviors (Rubbaniy et al., 2021; 

Yarovaya et al., 2021), long-term market memory (Lahmiri & Bekiros, 2021), volatility, and 

liquidity (Corbet et al., 2021). 

In this research, we studied the clustering of cryptocurrencies. The scope of the study 

included 30 cryptocurrencies that were most popular in financial transactions and had the 

highest market values. Although several studies have been conducted on cryptocurrencies, the 

unique feature of this research was the application of the information-based distance matrices 

in financial clusterings. The methodical problem in hierarchical clustering analysis is the 
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diversity of distances as well as the existence of various methods of clustering for organizing 

clusters in a hierarchy. Each technique of distance computation of entities and each method 

for finding clusters leads to a distinct clustering (or dendrogram). In this study, we examined 

56 different dendrograms of the 30 cryptocurrencies of interest, some of which were proposed 

with information-based distances and others with correlation-based distances. To select the 

best hierarchical clustering, we introduced a method called second-order hierarchical 

clustering. 

In this method, we calculate the correlation of the dendrograms, obtain the distance of 

those dendrograms, and cluster them. The result is a dendrogram of dendrograms. However, 

this clustering can also be done in several ways, and thus, a vicious circle occurs. To stop this 

vicious circle, we used graph theory. In this theory, using the minimum spanning tree method, 

we filtered the complete graph obtained from the clusters and analyzed the resulting tree. For 

this purpose, we calculated the centrality indices for each vertex of this tree. Then, comparing 

the centrality measures of the nodes, we concluded that the most influential dendrogram 

corresponded to the hierarchical clustering with Normalized Max Information distance and 

the clustering method of Ward.D in the period II. Furthermore, the best clustering of the 

period I is the dendrogram obtained with Pearson’s distance and the complete method. 

Clusters from the most influential dendrograms showed that some clusters were single-

member, some two-member, and some multi-member. Single-member clusters indicated a 

considerable distance from other cryptocurrencies. This distance can have some reasons, 

which can be the subject of another study. In two-member clusters, there were two 

cryptocurrencies whose pairing was applicable in pair trading. In pair trading or statistical 

arbitrage, traders identify the pairs of assets that are closest to each other based on the criteria 

such as the correlation of return on assets or their price cointegration. They hedge their 

investment risk by trading these pairs in their portfolio. The hierarchical nature of this 

clustering allows researchers to identify sub-clusters in larger clusters. Larger clusters, 

however, can also be used as alternatives to an asset. For example, if a person intends to buy 

and sell bitcoin and for any reason is not able to trade it, he can use bitcoin alternatives. In the 

last step, we compared the top clusterings and showed the impact of COVID-19 on the 

structure of hierarchical clusterings. 

As stated in the research literature, a wide range of decision makers can use this research 

results. First of all, cryptocurrency traders looking to select a portfolio can use the 

combination of the proposed clusters for diversification. In addition, members in a cluster can 

be good candidates for pairs trading (statistical arbitrage). Systemic risk scholars can also 

examine the systemic effects of a representative of each cluster on economic variables using 

methods such as copula modeling. In fact, this study somehow sought to explore the structural 

relationships of cryptocurrencies with each other. For any financial study or economic 

decision in which such a structure is important, the results of our research can contain 

effective guidelines. 
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