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A B S T R A C T 

 

Lack of the existence of known mineral prospects in the preliminary stages of mineral exploration is the main problem of data-driven mineral 
potential modeling methods. On the other hand, applying the expert’s knowledge and judgment in different stages of mineral potential 
modeling is the main difficulty of knowledge-driven mineral potential modeling methods. In addition, other difficulties in these methods can 
be mentioned such as determination of important variables, weighting to various classes of maps or information layers, and so on. Hence, the 
accuracy of the results of the knowledge-driven modeling methods is highly dependent on the amount of knowledge and experience of the 
expert. In this study, the principal component analysis (PCA) has been introduced as a knowledge-driven method with the least reliance on 
the expert’s knowledge for mineral potential modeling. In this method, the expert’s knowledge is only used in the interpretation of the results 
obtained from the modeling and is not considered in the first stages of mineral potential modeling and the definition of the conceptual model. 
In the introduced method, the interpretation of the results is conducted based on the positive and negative coefficients of variables in the 
eigenvalues table. Using these coefficients, it is determined that each principal component (PC) is associated with what type of mineralization. 
An advantage of this introduced method is to identify various types of mineralization in the area of interest using just one modeling effort. In 
order to evaluate the efficiency of this method, a region including two geological maps of Kadkan and Shamkan in the south of Neyshabur, 
northeast of Iran was selected. Two mineralization types including podiform chromite and epithermal gold-antimony mineralization types 
have been identified using the proposed method that presents more precise results than those of conventional univariate and multivariate 
geochemical studies. 

Keywords: Mineral potential modeling, Principal component analysis, Podiform chromite deposit, Epithermal gold deposit, Kadkan, and 
Shamkan area 

 

1. Introduction 

The principal component analysis (PCA) is a classic analytical 
method that converts multivariate observations into several 
nondependent components to be ranked based on their variances [1]. In 
this process, every new component continually estimates the maximum 
possible value of the total variance. Therefore, the new computed 
components possess the total variance of the original data [2]. This 
method has been successfully applied almost in all different branches of 
mineral exploration. Many researchers have used the PCA method in 
exploration studies, including examination of geological units [3, 4], 
geochemical data processing [1, 5, 6, 7], geophysical data processing [8, 
9, 10, 11], and remote sensing processes [12, 13]. Also in some 
exploration studies, PCA has been used to reduce the dimensions of the 
data. For example, in a study conducted in the same area [14], 28 
geochemical variables have been initially reduced using PCA, and then 
the fuzzy logic method has been used to model the epithermal gold-
antimony deposits. In addition, the PCA method has been rarely used in 
the integration of various exploration data. In a few studies on the 
volcanic belt of Central Iran [15, 16, 17], the PCA method has been used 
as a data-driven approach to integrating the exploration data. In these 
studies, the PCA method is first applied to the data of known 
mineralized targets in the study region, and then, the results are used to 
determine the factors of integration formula and to detect the altered 

and mineralized zones in the region. 
In this study, the PCA method has been introduced as a knowledge-

driven method for mineral potential modeling. Because, in the primary 
stages of an exploration project, there are not usually a lot of known 
mineral prospects to use in the data-driven approaches. Besides, 
excessive use of knowledge and experience of the expert is one of the 
problems of knowledge-driven methods of mineral potential modeling, 
which makes the results non-unique and error-prone. In the proposed 
method, it has been tried to use the knowledge and experience of the 
expert only in the stage of interpreting the obtained results. Also, in all 
common methods of mineral potential modeling, the conceptual model 
prepares based on the type of mineralization sought. As a result, the type 
of mineralization must first be determined. But, in the proposed method 
there is no need to prepare a conceptual model. As a result, there is no 
need to know basic information about the type and characteristics of the 
mineralization in the region. Finally, in all the conventional mineral 
potential modeling methods, each modeling process results in 
identifying one specific mineralization in the area of interest. But one of 
the aims of the proposed method is to identify all types of mineralization 
in the region by carrying out just once the modeling process. 

To introduce this method, all exploration data available in the Kadkan 
and Shamkan prospecting areas in the northeast of Iran, including 
geological, remote sensing, and stream geochemical data have been 
used. For this purpose, after performing the necessary preprocessing, the 
PCA technique was directly applied to the data. Then, the obtained 
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results were interpreted according to the positive and negative 
coefficients of variables in the eigenvalues table. Using these 
coefficients, it was determined whether each output component from 
the PCA indicates mineralization or not, and the type of mineralization 
was also determined. Finally, the location of known mineral prospects 
in the region was used to compare the results of the proposed method 
with those of conventional univariate and multivariate geochemical 
studies. 

2. Location and geology of the study region 

The study region is located in the south of Neyshabur, northeast of 
Iran. The region can be seen in two 1:100,000 geological maps of Kadkan 
and Shamkan areas with a total surface area of 4800 km2, situated 
between longitudes of 58˚ to 59˚ E and latitudes of 35˚30′ to 36˚ N. From 
a tectonic point of view, the region is located in the southern part of the 
fractured Sabzevar Zone between the Lut Block in the south and the 
Binalood Zone (eastern Alborz) in the north. The southern border of 
the region is the Darouneh Fault. The region is arid to semiarid and is 
formed of small hills and low mountains in the north and flat plains to 
hills in the middle and high mountains of elevation around 3000 m in 
south [18]. 

The oldest geological units in the region are sedimentary, pyroclastic, 
volcanic, plutonic, and ophiolitic rocks of the Upper Cretaceous age that 
become thick in the Cenozoic. The most important lithologies involved 
in the mineralization are intrusive and ophiolitic rocks [19, 20].  

The intrusive rocks of the region have been formed within the 
Pyrenean orogeny. This event in the early Oligocene is formed of the 
granitoid intrusive rocks after the Eocene volcanism. These suites are 
the main agent of metallic mineralization and hydrothermal alteration 
in the region. The felsic intrusive rocks include acidic to alkaline rocks 
of granitic, granodioritic, and dioritic types that have extended in the 
north and southwest of the region. The intrusion process has affected 
the host rocks through thermal alteration and has produced contact 
metamorphism [19, 20]. 

The ophiolitic facies are formed before the Upper Cretaceous age in 
a narrow ocean between the sub-continent in the east of Central Iran 
and parts of it obducted on the continental crust through the rotation 
of the sub-continent during the Laramide orogeny. Overall, these 
ophiolitic rocks extended from southeast to northwest and are mostly 
extended in the east and southwest of the region [19, 20]. The map of 
the main geological units in the study region is shown in Fig. 1. 

 

Fig. 1. The geological map of the main units and faults of the study region 
(modified from [19, 20]). 

3. Dataset 

Since the purpose of this study was to investigate the possibility of 
using the PCA for the integration of exploration data and mineral 
potential modeling, all available exploration data in the study region 
have been used for this purpose. These data sets include geological, 
remote sensing, and stream sediment geochemical data. 

 

3.1. Geological data 

The data, used to study the geological conditions of the region, were 
extracted from the Kadkan and Shamkan 1:100,000 geological maps 
published by the Geological Survey of Iran in 1998. In order to extract 
the lithological units from these maps, first, the geological maps were 
digitized, and then, the digitized units were divided into five main units 
including Quaternary plains, sedimentary rocks, volcanic rocks, 
ophiolite units, and intrusive suites. 

Since the information in the geological maps is qualitative, it should 
be converted into quantitative data to be used in statistical analyses. Two 
different methods have been used to achieve this purpose. In the first 
method, the geological units are scored as 1 or 0 based on their presence 
or absence in a specific cell. This method is the common approach of 
preparing the binary evidential maps [21]. In the second method, map 
cells are scored based on the distance between each cell and a certain 
geological unit. In this approach, the geological data is no longer discrete 
(0 and 1), and in addition, the statistical distribution of the data changes 
from the Bernoulli distribution to the Gaussian distribution, which is 
one of the requirements for most statistical analyses [22]. In this study, 
the inverse distance weighting method was used to score each cell based 
on the distance from the desired geological unit. In this method, the 
score of each cell is calculated from the following equation [21]: 

𝑆𝑖 =
1

𝑑𝑖
 (1) 

Where di is the distance of the central point of the cell from the 
desired geological unit. Using this method, the geological qualitative 
data is converted into quantitative data that could be used in statistical 
analysis. Fig. 2a shows the map of intrusive suites in the region. Fig. 2b 
also shows the scoring based on the distance from the intrusions. 

 
Fig. 2. (a) The map of the intrusive suites in the study region, (b) scoring based 

on the distance from the intrusive rocks. 

3.2. Remote sensing data processing 

Considering the fact that most of the ore bodies are surrounded by 
alteration zones, the presence of altered rocks is a valuable index for 
exploring the ore deposits [23]. Multispectral images can be used to 
detect the altered rocks in the regions that have outcropped lithologies 
because the spectral reflection of these rocks differs from that of 
unaltered rocks [23]. Hydroxyl-bearing minerals, such as kaolinite, 
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montmorillonite, illite, and other clay minerals, as well as iron-oxide 
minerals including hematite, limonite, and goethite, are predominant 
alteration products in various alteration zones [24]. Detecting these 
minerals using satellite images can lead to discrimination of altered 
zones and exploration of new mineral prospects.  

In this study, the Landsat 7 ETM+ images (Acquisition date: May 22, 
2001) were used. These ETM+ images were processed using the band 
ratio method by the ENVI 5.1 software to detect the altered zones. In 
order to process the ETM+ images, two-band ratios of 3/1 and 5/7 are 
usually used to discriminate the hydroxyl and ferric iron oxide minerals, 
respectively [25, 26].  

 
3.2.1. Band ratios 5/7 and 3/1 for the ETM+ sensor 
The highest spectral reflection of the hydroxyl-bearing minerals 

belongs to the wavelength of band 5 of the ETM+ sensor. On the other 
hand, these minerals have a low spectral reflection in the wavelength of 
band 7 [23]. In order to create the band ratio of 5/7, first, the 
atmospheric correction was applied to the images by the FLAASH (Fast 
Line-of-sight Atmospheric Analysis of Spectral Hypercubes) method 
[27] in ENVI 5.1 software. Then, the digital number of each pixel in band 
5 was divided into the digital number of that exact pixel in band 7. The 
spectral reflection of unaltered rocks in band 7 is identical to that of 
band 5. Therefore, the band ratio 5/7 for these rocks is approximately 
equal to unity (1.00). However, altered rocks have low reflections in 
band 7, and therefore, the band ratio of 5/7 for the altered rocks is much 
more than unity. Hence, altered and unaltered rocks can be 
discriminated against based on the difference in their band ratio values 
[23]. Fig. 3a shows the density sliced band ratio of the 5/7 image in the 
study region, in which the high values of the band ratio 5/7 are shown 
in red. 

The ferric-iron-oxide minerals also have their lowest reflection in 
band 1 and their highest reflection in band 3. Therefore, the altered rocks 
that bear these minerals will show the maximum value for band ratio 3/1 
[23]. Fig. 3b shows the density sliced band ratio 3/1 image in the study 
region, in which the high values of the band ratio 3/1 are shown in red. 

 
3.2.2. Removal of the effects of vegetation and limestone rocks 
The vegetation and limestone rocks possess the same spectra that 

interfere with the images that show clay minerals (images of band ratio 
5/7) and create errors in the results. In this study, the normalized 
difference vegetation index (NDVI) was used to remove the vegetation 
effect. The value of the NDVI is calculated from equation (2) [28]: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (2) 

where NIR and Red are pixel values from the near-infrared and red 
(visible) bands, respectively. This method first measures the NDVI value 
for the area of interest, and then, subtracts it from the values of band 
ratio 5/7 for each pixel. In order to remove the effect of limestone rocks, 
the area of these rocks was extracted from the geological map, and their 
pixel values were substituted by the mean value of their surrounding 
pixels.  

 
3.2.3. Resizing the satellite data cells 
The pixel size in ETM+ satellite images is 30×30 m, which does not 

match the cell size of other data (e.g., the cell size of geochemical data is 
about 1.5×1.5 km). Therefore, in order to transfer the remote sensing data 
into the PCA analysis, the cell size should be extended to match the 
geochemical cells. 

This task was conducted by the ENVI 5.1 software by averaging the 
digital numbers of the existing satellite pixels within each geochemical 
cell (Fig. 4). Afterward, the data of each cell as well as its geographic 
coordinates were extracted to be used in the PCA analysis. 

 
3.2.4. Calculation of the photolineament factor 
The patterns of local and regional fractures, as the controllers of ore 

bodies, are very important. The comparison between the lineation 
pattern and mineralization events has proved that the ore bodies tend 

to occur along the lineaments and to focus at the intersections [23]. In 
this study, the photolineament factor was used to determine the fracture 
pattern in the region (Fig. 3c). The value of the photolineament factor is 
calculated from equation (3) [29]: 

𝑃𝐹 =
𝑎

𝐴
+

𝑏

𝐵
+

𝑐

𝐶
 (3) 

where PF is the photolineament factor, a is the total length of 
lineation per cell, b is the number of intersections per cell, c is the 
number of lineations per cell, and the capital letters represent the mean 
values of the same parameters in all of the cells. 

 
Fig. 3. (a) The density sliced band ratio 5/7 image, (b) the density sliced band 
ratio 3/1 image (the high values of the band ratios are shown in red), and  (c) 

photolineament factor map of the study region. 

  
Fig. 4. The band ratio of 5/7 in the study region after resizing the pixels. 
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3.3. Stream sediment geochemical data 

The geochemical data, used in this study, were obtained from the 
geochemical studies of the Kadkan and Shamkan geological maps. These 
studies were carried out by Jiangxi, a Chinese company [18, 30]. A 
systematic sampling grid with an approximate spacing of 1.5×1.5 km2 was 
applied to the areas having outcrops. Afterward, in each cell 2, 3, or 4 
sub-samples from first- and second-order streams were taken, and a 
composite sample, obtained from the combination of these sub-samples, 
was assigned to the sampled cell. The samples were chemically analyzed 
for 28 elements including Ag, As, Au, B, Ba, Be, Bi, Co, Cr, Cs, Cu, F, Hg, 
Li, Mo, Nb, Ni, P, Pb, Rb, Sb, Sn, Sr, Th, U, V, W, and Zn. In order to get 
the best results, different analytical methods have been used for 
different elements. The concentrations of Sb, As and Hg have been 
detected by the atomic fluorescence spectrometry (AFS) method. Also, 
the concentration of Au, B, Cr, and Mo have been determined using 
electrospray ionization (ESI), atomic emission spectroscopy (AES), X-
ray fluorescence (XRF), and catalytic polarography (POL) methods, 
respectively. Ultimately, the concentration of Cu, Co, and other 
elements have been detected by the inductively coupled plasma atomic 
emission spectroscopy (ICP) method. [18, 30] 

 
3.3.1. Removal of the lithologic effect from geochemical data 
The concentration of geochemical samples, taken from different 

rocks or materials, is influenced by the syngenetic component (element 
background in source rock) of those specimens. In mineral exploration, 
one generally aims to identify the epigenetic component associated with 
the mineralization, but sometimes the lithologic effect is so high that it 
completely covers the epigenetic component [31]. Hence, before 
analyzing the geochemical data, the lithologic effect should be 
eliminated. Since the stream sedimentary samples of this study were 
taken from the tributaries and the results of their chemical analyses were 
assigned to their systematic sampling cells, the removal of the lithologic 
effect based on the rocks in each cell was conducted. Considering the 
existence of six main geological units in the study region and based on 
the presence of different rock units in the sampling cells, the samples 
were categorized into 42 different categories. Eventually, the lithological 
effect was eliminated in all cells by dividing each data by the median 
value of the category and calculating the enrichment factor in each 
category. Equation (4) shows how to calculate the enrichment factor 
[31]: 

𝐸𝐹𝑖 =
𝐶𝑖

𝐶𝑚
 (4) 

where EF is the enrichment factor, Ci is the concentration of the 
element in ith sample and Cm is the median value of each element in each 
category. 

 
3.3.2. Geochemical data selection 
An effective factor, which reduces the accuracy of the PCA results, is 

the multiplicity of the variables. Furthermore, the large number of 
variables can increase the number of PCs and makes it harder to 
interpret the data. Therefore, eliminating low-impact variables before 
conducting the PCA would increase the accuracy of the analysis and 
would provide better results. Since there are many elements in the 
stream sediment geochemical data, the low-impact variables were 
identified using the maximum enrichment factor method and were 
eliminated from the model. The value of this factor can be calculated 
from equation (5) for each element. 

𝐸𝐹𝑀 =
𝐶𝑀𝐴𝑋

𝐶𝑚
 (5) 

where EFM is the maximum enrichment factor, CMAX is the maximum 
concentration of the element in the study region, and Cm is the median 
value of the concentration of that element. This factor can show the 
element enrichment intensity compared to the central statistic 
parameter. Statistical parameters of 28 studied geochemical elements, 
and their maximum enrichment factors, are shown in Table 1. 

 
 
 

Table 1. Statistical parameters and maximum enrichment factors of the stream 
sediment geochemical data. 

Variable Count Mean Minimum Maximum EFM 

Zn 1721 59.48 34.78 245.06 4.12 
Pb 1721 12.26 1.70 37.30 3.04 
Ag 1721 0.06 0.03 0.17 2.64 
Cr 1721 1110.24 37.80 18437.20 16.61 
Ni 1721 196.08 18.78 1193.00 6.08 
Bi 1721 0.13 0.07 0.32 2.40 
Cu 1721 42.37 14.73 248.08 5.85 
As 1721 9.21 2.10 482.00 52.35 
Sb 1721 0.39 0.10 12.10 30.76 
Co 1721 24.54 8.22 123.89 5.05 
Sn 1721 1.36 0.77 3.00 2.20 
Ba 1721 261.26 77.04 699.82 2.68 
V 1721 163.48 38.76 940.03 5.75 
Sr 1721 383.00 68.28 1970.00 5.14 
Hg 1721 0.01 0.00 0.31 29.34 
W 1721 0.60 0.17 11.10 18.44 
B 1721 37.00 7.16 216.20 5.84 
Be 1721 1.39 0.62 3.13 2.26 
Mo 1721 0.69 0.20 4.00 5.77 
Li 1721 24.50 8.17 77.11 3.15 
Au 1721 1.16 0.30 18.54 16.01 
Rb 1721 35.04 3.30 95.00 2.71 
P 1721 0.05 0.02 0.16 2.91 

Cs 1721 4.44 2.26 11.01 2.48 
Nb 1721 7.76 3.30 19.90 2.56 
Th 1721 5.70 1.00 13.30 2.33 
U 1721 1.25 0.27 5.52 4.42 
F 1721 302.38 100.00 853.00 2.82 

In order to reduce the number of variables and to eliminate the low-
impact geochemical variables, only those elements were used in the PCA 
that their maximum enrichment factors were above 5.  

3.4. Preprocessing and data correction 

The PCA method is sensitive to outlier values and without 
eliminating these values, the results are incorrect [32]. Therefore, before 
performing the main processing, the outlier values were identified for 
all variables by the boxplot method [33] and were replaced by the 
maximum values of those variables. For example, the Tukey boxplots of 
Cr, Ni, Cu, Sb, and Au are shown in Fig. 5.  

 
Fig. 5. Tukey boxplots of Cr, Ni, Cu, Sb, and Au after transforming by a 

logarithmic function. 

Furthermore, the Gaussian distribution of the input data is one of the 
main requirements that should be considered for most multivariate 
statistical methods [22]. However, the distribution for most of the 
geochemical data, used in this study, was close to lognormal. Therefore, 
in order to minimize the skewness effect of the distribution and to 
transform the data into a normal distribution, the raw data were 
transformed through a logarithmic function.  

Moreover, the PCA method is sensitive to the scale of initial variables 
by which they have been measured. Even if the measurements of 
variables have been conducted based on one unit, but the range of a 
variable is much bigger than the others, the first PC is affected by the 
variable of question. A practical solution for this issue is data 
standardization. This helps all initial variables to have the same value in 
the analysis [34]. In this study, data standardization was conducted 
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based on their statistical properties using equation (6) [34, 35]:  
𝑦𝑖𝑗 =

𝑥𝑖𝑗−𝜇𝑖

𝜎𝑖
 (6) 

where µi is the mean value of the ith variable and σi is the variance of 
that variable. The main feature of this method is that each variable 
would have a mean of zero and a variance of one after the 
transformation.  

4. Mineral potential modeling using the PCA method 

After selecting the variables and performing the required 
preprocessing, for mineral potential modeling in the study region, the 
PCA technique was applied to the data using the IBM SPSS Statistics 22 
software package. Afterward, the results were plotted using ArcMap 10.3 
software and were exported as maps. In order to model the mineral 
potential in the study region, 18 variables including geological, remote 
sensing, and geochemical variables were used. These variables have been 
listed in Table 2. 

Because mineralization-related data (e.g., geochemical anomalies) 
accounts for a small proportion of the total variance of all input data, 
they may not be among the first components obtained from PCA. 
Therefore, the elimination of the last output components may lead to 
the loss of information on some mineralization in the area. Hence, the 
number of output components in this study was equal to the number of 
input variables, and useful components were selected in the results 
interpretation stage. 

Table 2. The variables used in mineral potential modeling of the study region. 

No. Type Variable 

1 Geological Data Intrusive Rocks 
2 Ophiolitic Rocks 
3 

Remote Sensing 
Data 

Photolineament Factor (PF) 

4 Hydroxyl  Bearing Minerals 
(ETM+ 5/7 Band Ratio) 

5 Ferric Iron (ETM+ 3/1 Band Ratio) 
6 

Geochemical 
Data 

Cr 
7 Ni 
8 Co 
9 V 
10 Cu 
11 Mo 
12 W 
13 Au 
14 Sb 
15 As 
16 Sr 
17 Hg 
18 B 

 

In Table 3, the eigenvalues obtained from the PCA method are shown. 
Furthermore, a 100% stacked column chart of different analyzed PCs is 
demonstrated in Fig. 6. As shown in Fig. 6, the share of different variables 
in all PCs is balanced. This indicates that the PCs are not affected by a 
specific variable, and there are a number of variables that affect each PC. 

Table 3. Eigenvalues of the variables in principal components analysis of the study region. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 

Cr 0.75 0.03 0.35 0.06 0.46 0.01 0.04 -0.03 0.06 0.19 0.05 0.01 0.05 0.11 0.06 0.09 0.19 -0.07 
Ni 0.77 -0.02 0.06 0.43 0.21 0.21 0.14 0.06 -0.08 0.14 -0.05 0.04 0.22 -0.09 0.02 0.02 -0.02 0.12 
Cu 0.23 0.48 0.52 -0.23 -0.38 0.09 -0.20 0.28 -0.07 -0.21 -0.14 0.04 0.10 -0.19 0.03 0.05 0.10 -0.02 
As -0.63 0.54 0.07 0.14 0.25 -0.17 -0.01 -0.08 0.01 -0.01 0.20 0.24 -0.01 -0.11 0.25 -0.07 -0.02 0.00 
Sb -0.63 0.55 0.11 0.01 0.34 -0.07 0.00 -0.14 -0.10 -0.05 0.09 0.14 0.08 -0.03 -0.30 0.08 0.01 0.00 
Co 0.81 0.16 0.36 0.22 0.10 0.20 0.04 0.08 -0.13 -0.03 0.07 0.02 0.02 0.00 -0.03 -0.08 -0.21 -0.09 
V 0.32 0.31 0.72 -0.39 0.06 -0.07 -0.15 0.06 0.02 -0.04 0.09 0.00 -0.20 0.21 0.00 -0.02 -0.03 0.09 
Sr -0.62 -0.18 0.16 -0.50 -0.07 0.11 0.15 0.21 0.24 0.10 -0.01 0.15 0.31 0.15 0.02 -0.02 -0.06 -0.01 
Hg 0.05 0.43 -0.17 0.55 0.18 -0.31 -0.02 0.38 0.42 -0.10 -0.07 -0.11 -0.03 0.02 -0.04 0.01 -0.03 0.00 
W -0.62 0.47 -0.01 0.07 0.29 0.17 -0.10 -0.14 -0.18 -0.14 -0.25 -0.29 0.14 0.14 0.10 -0.04 -0.01 0.00 
B -0.53 -0.20 -0.11 0.47 0.06 0.39 -0.02 0.35 -0.20 -0.04 -0.11 0.26 -0.16 0.13 0.00 0.02 0.05 0.00 

Mo -0.68 0.02 0.14 -0.18 0.16 0.37 0.11 0.30 -0.02 0.20 0.25 -0.30 -0.09 -0.13 -0.01 0.01 0.01 0.00 
Au -0.15 0.28 0.09 0.42 -0.35 0.47 -0.43 -0.28 0.27 0.18 0.07 0.01 0.01 0.03 -0.02 0.01 0.00 0.00 

ETM+ 5/7 BR  0.54 0.37 -0.45 -0.35 0.15 0.34 0.10 0.00 0.11 -0.10 0.01 0.06 -0.03 -0.02 -0.07 -0.26 0.10 0.01 
ETM+ 3/1 BR 0.38 0.30 -0.50 -0.50 0.21 0.33 0.02 -0.04 0.13 -0.09 -0.07 0.06 -0.10 -0.02 0.07 0.23 -0.09 0.00 

PF -0.24 0.09 0.47 0.27 -0.21 0.21 0.66 -0.22 0.16 -0.20 -0.03 -0.02 -0.08 0.00 0.01 0.03 0.03 0.00 
Intrusive Rocks 0.00 0.73 -0.09 -0.10 -0.27 -0.17 0.24 0.03 -0.10 0.46 -0.24 0.03 -0.10 0.01 -0.01 -0.02 -0.02 -0.01 

Ophiolitic Rocks 0.32 0.49 -0.47 0.14 -0.42 -0.04 0.13 0.10 -0.18 -0.09 0.33 -0.06 0.12 0.17 0.03 0.06 0.03 0.00 

 
Fig. 6. 100% stacked column chart indicates the share of the variables in different 

PCs. 

4.1. Interpretation of the results 

After modeling, the results are interpreted based on the eigenvalues 
obtained from the PCA method. The eigenvalues obtained for each PC 
are equivalent to the loading values of different variables and indicate 
the effect of each variable on that PC. As a result, using these values, it 

can be determined that each PC indicates a geological event or ore-
forming process. 

In the study region, first, the results of the modeling were interpreted 
based on the eigenvalues (Table 3) obtained from the PCA method. 
Afterward, in each case, the results were validated using the known 
mineral prospects in the study region. These known mineral prospects 
include the active mines or the outcropped mineralized locations and 
were extracted from the mineral prospecting studies [36, 37] and the 
active mines report [38] prepared by the Geological Survey of Iran. 

Finally, the results of the modeling were compared with those of the 
studies that were conducted only on the stream sediment geochemical 
data, to determine the effect of using multiple data. 

4.2. Chromium and associated elements mineralization  

As shown in Table 3, Co, Ni, Cr, alterations (hydroxyl-bearing 
minerals and ferric iron oxides), V, and ophiolitic rocks have the highest 
weights in PC1, respectively. The weights of geochemical elements Co, 
Ni, Cr, and V in PC1 are 0.81, 0.77, 0.75, and 0.33, respectively. These 
elements are associated with podiform chromite deposits [39, 40]. It 
should be noted that almost all Iranian chromite deposits are podiform 
[41]. 

Also, podiform chromite deposits are always found in dunite, 
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serpentinite, or peridotite rocks in ophiolitic sequences [39, 42], which 
is indicative of the high weight of the ophiolitic rocks (0.32) in PC1.  

Furthermore, the ETM+ band ratios of 5/7 and 3/1 (representing 
hydroxyl-bearing minerals and ferric iron oxides) have weights of 0.54 
and 0.38, respectively. Therefore, there are two effective variables in PC1. 
This can be explained by the presence of serpentinites and serpentine 
alterations in the ophiolitic rock sequence. Although the spectral curve 
of serpentinite is relatively flat, there is a small spectral absorption at 
about 0.45 μm (ETM+ band 1) due to the presence of ferric iron, and a 
relatively more apparent spectral absorption at about 2.3 μm (ETM+ 
band 7) due to the presence of OH [43]. Therefore, serpentinite has 
relatively high values in the ETM+ band ratios 5/7 and 3/1. On the other 
hand, as mentioned before, chromite deposits are always hosted by 
dunite, serpentine, or peridotite. Hence, the presence of serpentine 
alteration can be a signature of the presence of these deposits [44].  

According to the above discussion, PC1 can be considered as the 
representative of the chromium mineralization in the performed 
modeling on the study region. In Fig. 7, the results of PC1 are compared 
with those of univariate and multivariate stream sediment geochemical 
studies of the region. It should be noted that in each map, the range of 
the class is �̅� + 1𝑆, �̅� + 2𝑆 and �̅� + 3𝑆, where �̅� is mean and S is the 
standard deviation of the variable.  

 

 
Fig. 7. (a) Map of PC1 scores (the present study), (b) map of Cr concentration 
values [18, 30], and (c) map of PC2 scores from the PCA on only the stream 

sediment geochemical data [45]. 

Fig. 7a shows the known Cr prospects. These known mineral 
prospects include active chromite mines and the outcropped 
mineralized zones. As shown in Fig. 7a, the locations of known Cr 
prospects in the study region, completely agree with the modeling 
performed by the PCA method. Accordingly, in other areas where PC1 
shows anomalies, even if there are no known Cr prospects, it can be 
considered as the presence of Cr deposits. Therefore, these areas can be 
studied for further mineral prospecting. In Fig. 7a, the areas Cr-An-1 to 
Cr-An-4 were identified as the zones having Cr-mineralization potential 
in the study region.  

To compare the results obtained from the mineral potential modeling 
using the PCA method with the results of univariate stream sediment 
geochemical studies, the map of Cr concentration values [18, 30] was 
used, which is shown in Fig. 7b. As shown in Fig. 7b, there are no 
anomalous Cr zones in Cr-An-1 and Cr-An-3 areas, and there are only 
small anomalies within the Cr-An-2 area. 

Fig. 7c shows the map of PC2 scores obtained from the PCA 
performed only on the stream sediment geochemical data of the region 
[45]. As the map shows, performing the PCA only on the geochemical 
data cannot identify the anomalies in the Cr-An-2 and Cr-An-3 areas. In 
addition, in Cr-An-1, the identified anomaly is not very strong. Besides, 
as a result of applying the PCA method only on the geochemical data, 
many zones in the central parts of the region are considered anomalies, 
while these anomalies do not match with known mineral prospects in 
the region. 

As a result, according to the known mineral prospects in the region, 
it can be stated that the modeling conducted by the PCA of all the 
available data (geological, stream sediment geochemical, and remote 
sensing data) leads to more accurate results in identifying the promising 
mineral zones of chromium and associated elements, compared to 
univariate and multivariate geochemical studies. 

4.3. Au-Sb Mineralization 

According to Table 3, in PC2 of the mineral potential modeling of the 
study region, the variables of distance from Intrusive Rocks, Sb, As, 
ophiolitic rocks, Cu, W, Hg, hydroxyl-bearing minerals, V, ferric iron 
oxides, and Au have the highest weights, respectively. The existing 
geochemical elements in the eigenvalues of PC2include Sb, As, Cu, W, 
Hg, V, and Au, which are 0.55, 0.54, 0.48, 0.47, 0.43, 0.31 and 0.28, 
respectively. Almost all of these elements are associated with epithermal 
gold deposits [46]. 

Epithermal deposits are generally formed in shallow parts of 
hydrothermal systems (depths less than 1.5 km and temperatures below 
300 °C). Hydrothermal fluids, mainly through replacing or filling the 
veins and cavities [47], affect the calc-alkaline to alkaline rocks of the 
volcanic arc on the convergent margins [48] and form the epithermal 
ore deposits. 

Among the mentioned chemical elements, the study of the 
geochemical halos of Sb, As, Cu, and Hg as pathfinder elements of 
epithermal mineralization are common [46, 48]. Au, Sb, As, and Cu may 
also be found as epithermal ore deposits [47]. 

Although epithermal ore deposits are generally associated with 
volcanic calc-alkaline rocks in subduction-derived magmatic arcs [49, 
50], they are also considered as the distal part of high-temperature 
hydrothermal systems [47]. As a result, these deposits could be spatially 
related to the intrusive rocks that form hydrothermal systems [51, 52]. 
Therefore, in the conducted modeling, the high weight of intrusive 
bodies in PC2 can be justified. In the table of PC2 eigenvalues, the 
intrusive bodies have the highest value, namely 0.73, showing a high 
correlation of intrusive rocks with epithermal gold and antimony 
mineralization. On the other hand, the presence of ophiolitic units with 
a weight of 0.49 among the important variables needs to be explained. 
Since this variable is not correlated with epithermal deposits, it seems 
that the spatial correlation of ophiolitic units with upward movement of 
the continental crust, which is the center of the formation of an 
epithermal deposit, is the reason for their weight. 

Other effective variables on PC2 are the variables that show the 
alterations (hydroxyl-bearing and ferric iron oxide minerals). In the 



 Gh.A. Parsapour et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 55-2 (2021) 161-170 167 

 

eigenvalues table of this PC, the 5/7 band ratio of the ETM+ sensor 
(detecting the hydroxyl-bearing minerals) weights 0.37, and the 3/1 band 
ratio of the ETM+ sensor (detecting the ferric iron oxide minerals) 
weights 0.30.  

It can be stated that the presence of hydrothermal alteration minerals 
is the key and discriminating feature of epithermal deposits, and usually, 
these minerals present distinct zoning around the epithermal deposits 
[48]. The alterations around these deposits include propylitic, argillic, 
and advanced argillic [47]. These alterations extensively bear hydroxyl 
minerals including kaolinite, illite, and alunite [47]. The presence of 
these minerals can justify the high value of the 5/7 band ratio of the 
ETM+ sensor in PC2.  

Moreover, iron oxide minerals are present in the alteration zones 
around the epithermal deposits. These minerals form through 
supergene weathering and the oxidation of highly sulfidic rocks in 
advanced argillic zones and include jarosite and oxide-hydroxide iron 
minerals [47]. In some epithermal mineral deposits, part of the ore body 
is likely to be exposed to deep supergene oxidation (deeper than 300m). 
This process replaces the sulfide content with iron oxide minerals [53]. 
Accordingly, the high weight of the 3/1 band ratio of the ETM+ sensor 
in PC2 is explained through the presence of these minerals. Based on 
the above discussion and the modeling carried out in this study, it can 
be said that PC2 represents promising or prospect locations for 
epithermal gold and antimony mineralization in the study region. Fig. 8 
compares the results of PC2 with those stream sediment geochemical 
univariate and multivariate analyses.  

Fig. 8a shows the PC2 score map and the known mineral prospects of 
Au and Sb in the study region. The prospects of these ores include the 
active gold and antimony mines and the outcropped mineralized zones. 
As can be seen from Fig. 8a, the known Au and Sb prospects completely 
conform to the PCA modeling, which proves the correctness of the 
modeling. Therefore, it is possible to explore Au and Sb deposits in other 
areas that have anomalous PC2 values. Considering Fig. 8a, four areas, 
Au-An-1 to Au-An-4, were introduced as the likely mineralized Au and 
Sb areas. 

To compare the results of the PCA mineral potential modeling with 
those of stream sediment geochemical univariate analyses, the maps of 
Au and Sb concentration values [18, 30] were used, which are shown in 
Fig. 8b and 8c respectively. As shown in Fig. 8b, Au is not anomalous in 
Au-An-3 and has a small anomalous area in Au-An-1. Moreover, Au 
values over the sedimentary units in central parts of the region are not 
correlated with the known outcropped mineralized locations, which can 
be due to the pollution or the usual errors of gold sampling. Besides, the 
map of Sb values (Fig. 8c) does not show any anomalous area in Au-An-
1 and has a small anomalous area in Au-An-3.  

Fig. 8d shows the PC3 score map of the PCA, which was conducted 
on the stream sediment geochemical data [45]. As it shows, the PCA 
modeling of only the stream sediment geochemical data does not detect 
any anomalies in the Au-An-1 zone, and the anomaly in Au-An-3 is also 
very weak. Moreover, the anomalous location in the southeast part of 
the region resulted from applying the PCA method on the geochemical 
data does not agree with the known mineral prospects.  

Based on the above discussion and the investigation of the known 
mineral prospects, it can be concluded that the modeling conducted by 
the PCA method on all the existing datasets in the study region (stream 
sediment geochemical data, as well as the geological and remote sensing 
data) provides better results than those obtained from the univariate 
and multivariate geochemical studies. 

5. Conclusion 

After applying necessary preprocessing and basic processing analyses 
on the available exploration data from the study region, the mineral 
potential modeling by the PCA method was conducted using 18 
variables from geological, remote sensing, and stream sediment 
geochemical investigations (Table 2). The results of mineral potential 
modeling by the PCA method (Table 3) were interpreted based on the 

eigenvalues of initial variables in each PC. Finally, the results of the 
conducted mineral potential modeling were validated using the known 
mineralized outcrops, and also, these results were compared with 
conventional univariate and multivariate geochemical studies. 
Consequently, more precise results were obtained using the proposed 
method in comparison with univariate and multivariate geochemical 
studies. 

 

 
Fig. 8. (a) Map of PC2 scores (the present study), (b) map of Au concentration 

values [18, 30], (c) map of Sb concentration values [18, 30], and (d) map of PC3 
scores from the PCA on only the stream sediment geochemical data [45]. 
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 Considering the known mineral prospects of the study region (Fig. 
7a and 8a), the PCA was proved to be an effective method for mineral 
potential modeling in the early exploration stages. The proposed 
method does not suffer from the common problems of knowledge-
driven and data-driven methods of mineral potential modeling, because 
it does not use the expert knowledge and experience as well as the 
known mineralized zones. Applying the expert knowledge and 
experience in knowledge-driven methods provides non-unique and 
erroneous results. Besides, the necessity of using the known mineralized 
outcrops in the data-driven methods makes their application difficult. It 
should be noted that information on the mineral prospects is not 
accessible in the primary stages of mineral exploration in an area.  

Comparing the results of the PCA method with those of univariate 
and multivariate geochemical data (Fig. 7b, 7c, 8b, 8c, and 8d) showed 
that the PCA results were more correlated with the known mineralized 
zones and can be more effective in the exploration of promising mineral 
deposits. Considering the lithological and alteration information, which 
are spatially correlated to most mineral deposits, a general conclusion is 
that the proposed method increases the exploration chance in the 
promising areas.  

In the proposed method, there is no need for basic information on 
existing mineralization types in the study region that is a big advantage 
over the conventional methods of mineral potential modeling. In all 
common mineral potential modeling methods, first, the type of 
mineralization should be determined [21], and then, based on the 
mineralization features, the effective variables and their weights are 
determined. However, as it was shown in this study, the proposed 
method was successfully capable of determining the presence of two 
different mineralization models including a podiform chromite deposit 
and an epithermal gold-antimony deposit in the study region through 
finding the spatial relationship of variables without using the basic 
mineral information of the region.  

In conventional mineral potential modeling methods, each modeling 
process will result in one specific known mineralization in the area of 
interest [21]. In the proposed method, however, all mineralization types 
in the region are determined by carrying out modeling just once. 
Furthermore, applying the expert knowledge on the modeling process 
is significantly decreased in the proposed method, and the expert 
knowledge is only used in the interpretation stage. The interpretation of 
the results is also made considering the positive and negative 
correlations of variables in the eigenvalues table. These relationships 
show what type of mineralization each principal component (PC) 
represents. 

A large number of variables used in the PCA method increases the 
number of effective variables in the exported PCs and makes the 
interpretation process difficult. It is necessary to conduct further 
detailed investigations on detecting the less effective variables and 
optimizing the number of input variables in the analyses.  
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