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ABSTRACT

Level set method (LSM) is a mathematical approach for obtaining structures with specified characterization
by moving the interface boundaries between material domain and void domain. This paper used LSM for
topology optimization (TO) of a statically loaded structures and also auxetic meta-materials. It is shown
that different groups of auxetic structures as very useful materials in many areas, such as the piezoresistive
sensor field could be obtained by using level set method. Different groups of auxetic structures obtained
by LSM are re-entrant, chiral and some novel auxetic structures that have not been reported before were
designed by changing initial design and volume fraction. The scale of production of auxetic structures is in
the range of 0.1nm to 10 m and these structures are used in the field of piezoresistive sensors by coating
them with ultrafine particles such as nanocarbons. Furthermore, our study revealed that the performance
of the code retains the number and direction of symmetries of initial design for final structure. So, auxetic
structures with desired symmetries could be designed by using the same symmetries for initial designs.

Keywords: Level set method (LSM); Auxetic structure; Strain energy based method; Boundary conditions; Shape

sensitivity analysis

1. Introduction

Topology optimization (TO) is a powerful tool
which recast the problem as a distribution problem
of optimized material in which the system will
find the optimized structure in order to satisfy
the necessities of goal and constraint functions
in an optimization scheme[1l]. Approaches based
on mathematical algorithms consist of inverse
homogenization[2-5], Solid Isotropic Material
with Penalization (SIMP)[6-8], Bi-directional
Evolutionary structural optimization (BESO)
[9, 10] and level set method (LSM)[1, 11-13].
Sigmund[2], who used inverse homogenization
theory, firstly represented the application of TO in
design of periodic microstructures with prescribed

properties. From that time on, some researchers
studied TO method. Sigmund et.al[14] developed
a composite materials which have zero or negative
thermal expansion coefficient. Sigmund et.al[15]
maximized material properties which subject to
volume constraint. Torquato et.al[14] represented
the design of piezo-composites using TO method.
Among the mentioned TO methods, LSM provides
great topological flexibility, high shape fidelity,
crisp interfaces and smooth boundaries.

LSM][1, 11-13, 16, 17] firstly proposed by Sethian
and Osher[18] in 1988 as a method which implicitly
represent the evolution of interfaces. In these kind
of analysis, the evolution of boundary of interfaces
is tracked by solving a so-called Hamilton-jacobi
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equation using an appropriate velocity which is
normal to the boundary interfaces. In level set
approaches, structure boundary is represented
by a zero iso-surface of the level set function
(LSF) and the value of LSF for points that are in
the material domain, void domain and boundary
are positive, negative and zero respectively.
Sethian Wiegmann[19] used LSM with immersed
interface to design structural boundary. Osher and
Santosa[11] presented a shape sensitivity analysis
using gradient method in order to obtain a velocity
field. Allair et.al[20] presented a method in which
shape sensitivity analysis is obtained using adjoint
variable method. Wang et.al [21] constructed the
relation between general structural optimization
and LSM through design of calculated velocity field
using material derivative in continuum mechanics.
Belytschko et.al[22] introduced a method with
implicit function and regularization which able to
evaluate sensitivity. Wang et.al[23] proposed Radial
Bases Functions (RBFs) in order to parameterize
LSF and convert the Hamilton-Jacobi equation into
a system of ordinary differential equations which
not only increased the LSM efficiency but also
improved robustness in using multiple constraints.

Auxetic structures are identified by an important
property called Poisson’s ratio in which Poisson’s
ratio of these structures are negative [24-28]. In
1987, Lakes[29] produced negative Poisson’s ratio
Polyurethane foam for the firsttime and from thattime
on, researchers[30-38] have interested to study this
field more. Auxetic structures have great mechanical
properties including shear modulus, fracture
toughness, acoustic and vibration absorption. This
counterintuitive property caused many applications
in different parts of the industry including defense
industry, automobile manufacturing, biomedical

The elasticity theory is scale-independent
and thus the auxetic structure that is deforming
unconventionally might be ata macro scale or micro
scale level, or even at the meso scale and molecular
levels. As a result, a diversity of negative Poisson’s
ratio (NPR) structures and materials have been
identified, manufactured, or synthesized within the
previous years or so, ranging from the macro scale
down to molecular levels [39]. Fig.1 shows several
number of the artificial and natural NPR materials
and structures that now available in the previous
studies. Fig.l also illustrates that composites,
polymers, metals and ceramics now exist in NPR
form and so we see that NPR structures span all
the major types of materials. As we can see, this
kind of material and scale range, combined with
the new NPR material effect itself and attendant
developments in other materials behaviors, means
that NPR materials have great capability in a large
number of fields, leading to increasing interest of
scientists and researchers. One of this fields that
auxetic structures made a large improvement in
the performance is sensor field. According to Li
et al.[40], auxetic sensors with a Poisson’s ratio
of -0.5 shows a 300% enhancement in sensing
performance and the gauge factor boost as much
as 500%. To build an auxetic sensor, an auxetic
structure, as substrate, is coated with ultrafine
materials including nanocarbons, nanotubes and
graphene as sensing element.

In this paper, statically loaded structures were
designed with maximum stiffness and also 2D
NPR (negative Poisson’s ratio) structures were
obtained by using level-set based TO method. We
used strain energy based method to predict the
elastic properties of structures (section2). Section3
was about the problem setting for the structure

engineering and sports [34]. designing.  Section4-1 presented illustrative
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Fig. 1- Length scale of the auxetic structures [39].
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Fig. 2- Schematic view of the level set method for designing load-carrying and NPR structures.

examples including bridge, cantilever and auxetic
structures including re-entrant, chiral and some
novel auxetic structures. Section4-2 investigated
the effects of initial design and volume fraction on
final structure. Section4-3 investigated the relation
of symmetries between the initial design and final
structure and finally Conclusion was provided
in section5. Fig.2 shows the level set method for
obtaining static load bearing structures and auxetic
structures, as well as the relationship between the
various parts of this method in the form of the
Schematic view. The contents of this figure will be
explained in the following sections.

2. Using strain energy method for predicting the
elastic properties of the structure unit cell

In this section, the strain energy method was
used to determine homogenized elastic tensor [4,
41-44] .In the elastic regime, the relation between
effective stress tensor G; and effective strain
tensor g, of anisotropic material unit cell over a
homogenized medium was characterized by the
following equation:
=Cl &,

(_jij ijkl *ij (1)
In which Cj, is called the effective or homogenized
elastic tensor which depends upon the volume
fraction and the unit cell micro-structure.

In 2D plane stress and for the orthotropic
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material, the Eq.1 can be rewritten as follows:

oy C:{m Cf{m 0
Gy |= C;{IZZ Clz{zzz 0 ()
G, 0 0 Cglz

The effective elastic tensor can be obtained with
periodicity and boundary condition according
to Fig.3 and tab.l. Fig.3 shows the different



Taherkhani B, J Ultrafine Grained Nanostruct Mater, 54(2), 2021, 163-172

Table 1- Strain energy method used to evaluate the efficient elastic tensor for 2D state

case  Strain state Boundary Strain energy Terms of C,‘,ikl
— 1
condition (E€e5¢) (from eq.2) :
1 Horizontal strain u=1,u,=0 i& g :iE m Cle =2F"
(g (1):15 (l}zg (1):0) o en PRt
11 s &2 12 v,=v,=0
1Yy
2 Vertical strain u,=u,=0 ls oz @_ 13 @ C?zzz =2E?
@2 =1,5,% =¢,% =0) 272 g
2 —ho To T V2=1 V4=0
3 Shear strain v,=u,=1/4 1512(3)512(3) - 1312(3) an =2EV
(& (3):15(3)25(3):0) 2 2
12 (!l 22 v3:u4:-1/4
4 Biaxial strain u]:] , u3:0 l(anmgllm +5,Y8,") C:{m =EY-EY-E®
(E (4)205(4)=E<4)=1) 2
12 > O 22 Vz:1 V4:()

1
— =@ = &
= 5(511 +6, )

boundary conditions used to obtain Cjj, and Tab.1

introduces strain energy method to evaluate the
terms of efficient elastic tensor. As an illustration,
For Fig.3-a, the prescribed horizontal unit strain
and displacement boundary conditions are as
follows:

(511(]) =1, 522(1) = 512(1) =0) (3)
u,=1, u,=0,v,=v,=0 (4)
The strain energy is:

EO = 56“”)511(” _ %611“) (5)

The superscript (1) denotes to the case of loading
(Fig.3-a). From Eq.1, we have
C:-lm = 611(1) /511(1) =2E" (6)

The calculation for other cases is similar to this
case.

3. TO method algorithm
3.1. Level set method (LSM)

In mathematics, zero level set of a function is
a set in which the function takes on the value of
zero. LSM, proposed by Sethian and Osher[18], is
a computational framework for using level sets as
a tool to analysis surfaces and shapes numerically.
Following shapes which change topology is easy by
using this method. LSF has one more dimension
in comparison with level set (iso-surface) and
structure boundary is represented implicitly in the
zero level set of the LSE
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Fig. 4- Iso-surface of a LSF used as an initial design. The domain
inside (outside) the hole has negative (positive) value of LSF.
The domain on the boundary has zero value of LSF.

Fig.4 demonstrates the LSF ¢ and its intersection
with plane xy which creates the structure boundary.
Fig4 illustrates that the domain is divided into
three parts in terms of the sign of the LSF:

#(x,t)>0 material (Q)
#(x,1)=0 boundary (I') (7)
#(x,1) <0 void (0Q))

By taking derivative on ¢ in terms of pesedo
time t in Eq.7, Hamilton-Jacobi PDE equation can
be obtained as follows:

—6¢é’:’t ) LV g(x, )V (x) =0

Which V(x)=dx/dt. For normal motion

(8)

V:Vnn:VnV—¢
Vel

the following equation is obtained from Eq.8:

and VgV =|Vg|’
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Table 2- Definition of the parameters of the level set-based TO method

Parameter Definition
C Compliance
X Vector of elements
U Displacement vector
K Stiffness matrix
N Number of elements
X Equal 0 and 1 for void and material elements respectively
e
Stiffness matrix for material elements
1
V(X) Volume of the structure
Volume fraction constraint
Vv
req
F Force vector
0P(x,1)
or +7, |V¢(xa l)l =0 9) Initial level set function

Where V is velocity field obtaining from shape
sensitivity analysis (section3-2).Therefore, the
optimization problem is to find a steady-state
solution of Eq.9.

3.2. Problem settings
3.2.1. Simple structures

TO problem is the minimization of the mean
compliance equation with a single volume
constraint as follows[17]:

e “ee

N N
H}in: C(X)=U"KU = ZuTk u, = erufklue
e=1 e=1
Subject to: V' (X) =7V, (10)
KU =F
:x,=0orx,=1,Ve=L..,N

Tab2. Shows parameters definition of Eq.10.
Lagrange method was used to combine the
volume constraint and the objective function. In
order to obtain the parameter of normal velocity
(V), shape sensitivity analysis was done as
follows:

req

C(X)M"(V(X)—Vw)+5(V(X)—V 2
VAN

A :/1"+%(V(X)—qu) A =aat (11)
A and A are Lagrange multiplier and k is the
iteration number. A and A are updated in each
iteration.

According to Allair et.al [18] and Wang et.al [12,
13] the parameter V, for statically loaded structure
is calculated as follows:

5_C = _ueTkeue
X

e

J

Converged

No\|{

Calculation of the displacement of elements
nodes by using the finite element method

Shape sensitivity analysis to obtain
velocity field

v

Update the level set function by solving the
Hamilton-Jacobin equation

!

4—

Fig. 5- Design flowchart of load-bearing structures by using
level set method.
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=1 (12)
)

_ _ T
=——| =u, ku

eTe
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S|
F —ﬂA—F(V(X)—V )

The flowchart of the level set method for the
design of load-bearing structures as shown in
Fig.5, in which the displacement of the nodes
is calculated by the finite element method.
The parameter v is calculated by having the
displacements and the Hamilton-Jacobin equation
is solved by having v, and this procedure continues
to satisfy the conditions defined in the constraints
and the objective function. In this method, at each
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Fig. 6- Meta-materials are created by the juxtaposition of the corresponding unit cells.

iteration, the structure matrix must be converted to
a level set function.

3.2.2. Auxetic meta-materials

Metamaterials obtain terrific effective behaviors
from rationally designed artificial structures rather
than their composition, and so the architecture of
the microstructure has an important effect on their
behavior as shown in Fig.6. It means that their
effective elastic properties depend directly on its
microstructure. In this paper, designing mechanical
metamaterials with negative Poisson’s ratio (NPR),
called auxetic structures, is focused. When an
auxetic structure is strengthen in the longitudinal
direction, it will compact in the transverse direction
and vice versa. This contradictory behavior can be
used to improve mechanical behavior for the end
of increasing the crack resistance, improving the
fracture toughness and providing higher sound
absorption ability.

In order to design 2D auxetic structures with
prescribed effective properties [1, 11, 12, 19], the
function J in which the difference between the
homogenized material properties Cj, and the
prescribed one Cj,, must be minimized.

1 d *
I= E z Vvijkl (Cil;k] _Cijk] )2

ijkl=1

(13)

Where W, is the weighting factor which is
dependent on corresponding elasticity tensor and d
is related to the design dimension. So, d is 2 for our
two dimensional study. There are two constraints
consisting of the elasticity equilibrium and volume
fraction equations:

a(u,v)=1(v),vv e U(Y) (14)

V(Q)=V' (15)

[ Initial level set function ]

7

Converged

No\l{

[ Calculation of equilibrium equations in ]

order to obtain the strain energy field

J

. NP . ~H
[ Calculation of effective elastic tensorC ikt

v

[ Shape sensitivity analysis to obtain velocity field ]

—[ \

Update the level set function by solving the ]

Hamilton-Jacobin equation

Fig. 7- Flowchart design for repetitive structures by using level
set method.

where a(u,v) and 1(v) are the bilinear energy form
and the linear load form respectively as follows:

a(u,v):jDs}j(u)cijklgk1 (V)H(¢)dQ (16)
(V)= £iC e (H(HIQ (17)
V(Q)= H(g)HQ (18)

Which H(¢) is the Heaviside function. In order
to minimize the Eq.10, LSF is a regularized sign
distance function to prevent too steep or too flat

168



Taherkhani B, J Ultrafine Grained Nanostruct Mater, 54(2), 2021, 163-172

LSFs. In addition, the Courant-Friedrichs-Lewy
(CFL) condition have to be satisfied in order to
have numerical stability in solving H-] PDE.

Also, by changing the boundary conditions to
periodic boundary conditions and using the strain
energy method to obtain an effective stiffness
matrix and also changing the objective function
and constraints based on part 3-2-1, the flowchart
design of structures with negative Poisson’s ratio
could be obtained according to Fig.7.

4. Results and discussion
4.1. Results
4.1.1. Statically loaded structures

In this part, the proposed optimizer was used
to obtain statically loaded structures with different
boundary conditions including cantilever and
bridge structures. Fig.8 (a) and (b) show the
boundary conditions for cantilever and bridge
structures, respectively. TO optimizer finds the
structure in which the mean compliance of the
obtained structures become minimum [8, 16, 17].
Fig.9 shows obtained structures (called cantilever
structures) in which their boundary conditions
are according to Fig.8 (a). Fig.10 shows obtained
structures (called bridge structures) in which their
boundary conditions are according to Fig.8 (b).

4.1.2. Grouping of obtained Auxetic structures

In the next section, it will show that different
structures could be obtained by changing initial
designs and volume fractions. Different group
of auxetic structures including re-entrant, chiral
and some novel auxetic structures which have
not reported in previous works were obtained
by changing these two parameters. In this work,
we categorized different auxetic structures
were obtained by LSM. Fig.11 shows re-entrant
auxetic structures [33, 45, 46] that a majority of
researchers investigated different aspects of these
meta-materials. Fig.12 shows three family of chiral
auxetic structures including structures with two

(a) (b

F Boundary (I) F Boundary (I)

Fig. 8- Boundary condition, force and material domain for (a)
cantilever and (b) bridge structures. The optimizer remove
some elements of the material domain to obtain the optimized
structures.

Volume Initial design Final structure
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Volume Initial design
fraction (%)

Final structure

N
-

YV vy

40

40

AN
A
AN
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Fig. 9-Volume fraction, initial design and obtained structures
for cantilever structures. Different cantilever structures were
obtained by using different initial designs and volume fractions.

Fig. 10- Volume fraction, initial design and obtained structures
for bridge structures. Different bridge structures were obtained
by using different initial designs and volume fractions.
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Volume fraction (%) Initial design Final structure Poisson’s ratio

20 -0.3512

-2.164
20

40 -1.9817

-1.8404

BEREN
ke 7T ) |

Fig. 11- Volume fraction, initial design, final structure and
Poisson’s ratio for auxetic structures obtained from LSM.
Different re-entrant auxetic structures with different values of
Poisson’s ratios were obtained by using different initial designs
and volume fractions.

parts, structures with four parts and rectangular
structures. A large number of researchers [5, 24,
30, 47-49] investigated mechanical behavior and
deformation pattern of these structures. Fig.13
shows some novel auxetic structures that have
not been reported before. These obtained auxetic
structures have different Poisson’s ratio. So, it
would be concluded that the final structure and
consequently their Poisson’s ratio will be changed
by changing the mentioned parameters.

4.2. Discussion
4.2.1. Effects of the initial design and the volume
fraction on the final structure

In this part the effect of the initial designs and
volume fractions on the final structures were
investigated. To this end, two different initial
designs and two different volume fractions were
considered according to Fig.9. In Fig.9, the initial
design in the first and second rows and also for
the third and fourth rows are the same and the
volume fractions are different and the optimizer
finds different final structures for the induced
conditions. Similarly, the volume fraction for
the rows 1 and 3 and also for the rows 2 and 4
are the same and the initial designs are different
and the optimizer finds different final structures
too. Therefore, there are two parameters affecting
final structures including volume fraction and
initial design and the code obtained different final
structures by changing each of the mentioned
parameters.

There are similar discussion for designing

170

Volume
fraction
20%

Structure

type
Two-parts

Unite cell 3*3structure Poisson’s ratio

0.5742

Two-parts

-0.4667

-1.2295

Four-parts

Four-parts -0.5466

Novel
group

-0.6360

Novel
group
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Fig. 12- Obtaining different families of chiral auxetic structures
including structures with two parts (rows of 1 and 2), structures
with four parts (rows of 3 and 4) and structures with rectangular
forms (rows of 5 and 6).

bridge structure. The final structures will be
changed by changing each of initial designs
(compare rows 1 and 3 and also rows 2 and
4) and volume fractions (compare rows 1 and
2 and also rows 3 and 4) according to Fig.10.
Similarly for bridge structures, the code obtained
different final structures by changing each of the
parameters initial designs and volume fractions.
It is noticeable that If the initial design is
symmetric (non-symmetric), the final structure
will be symmetric (non-symmetric) too for both
the cantilever and bridge structures as shown in
Fig.9 and Fig.10.This issue will be discussed more
in the next section.

4.2.2. Axes symmetries

In this section, it was shown that the code will
retain the number and direction of symmetry
axes of the initial designs in the final structure.
To this end, four initial designs with different
symmetry axes are solved by the code and the
results show that the final structures have the same
symmetries (Fig.14). The initial designs of rows
1-4 have 1, 2, 2 and 4 symmetry axes respectively
and the same symmetry axes are observable in
the final structures. The symmetry axes are shown
in red lines. So, auxetic structures with desired
symmetries would be obtained by using the same
symmetries for initial designs.
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Volume fraction Poisson’s ratio

(%)

Initial design Final structure

Number of
symmetry axis

Imitial design Final structure

7§31

40 r 0.647
L -
e 1—
wTorel.s
Iy
; ii E 0.512
40 ﬁ
40 . H E
50 -0.3471
s
emme

2

|
s
o

Fig. 13- Introducing some novel auxetic structures which
have not been reported before by using level set topology
optimization method.

5. Conclusion

In this paper, LSM for TO of statically loaded
structures, including cantilever and bridge
structures, and auxetic meta-materials were
implemented. Strain energy method was used to
obtain effective elasticity matrix in each iteration
of solving auxetic meta-material problem. The
results showed that final structures (both of
statically loaded and auxetic structures ) would
be different by changing initial design and volume
fraction .Furthermore, different categories of
auxetic structures including re-entrant, chiral and
some novel auxetic structures which have been
not reported in previous works were obtained by
changing the mentioned parameters. Finally, our
study showed that the solver retains the number
of axes of initial designs for final structures and it
would be possible to obtain final structures with
desired symmetries.
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