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1. INTRODUCTION
ZnO is a II-VI semiconductor with hexagonal 

wurtzite structure that has wide band gap (3.37 
eV) and large exciton binding energy(60 meV)
[1, 2]. Doping of ZnO with metal elements leads 
to many attractive properties [3, 4]. Therefore, 
ZnO is suitable for many applications such 
as dye sensitized solar cells [5], electro optic 
applications [6], UV lasers [7], field effect 
transistors [8], UV detectors [9], gas sensor [10], 
surface enhanced Raman spectroscopy[11] and 
photocatalysts [12]. The shape, size, impurities, 
doping level and type, and present phases are the 
key factors affecting on the properties of ZnO.

The photocatalysts have been applied and 
developed for the removal of dyes from industrial 
effluents[13, 14]. ZnO and TiO2 are two of the 
most important of environmental photocatalysts 
with semiconducting properties [15]. Even though 
photocorrosion often occurs with the lighting of 
UV light in the case of ZnO in aqueous solution 
that reduces photocatalytic activity[16, 17], some 
studies have approved that ZnO even in aqueous 
solution, has a good photocatalytic activity for 
some dyes [18, 19]. Due to large exciton binding 
energy, superior physical, non-toxicity, low cost 
and chemical stability[20, 21], attention to this 
nanostructure has increased in the recent years and 

Nanostructured ZnO thin films with two different dopants namely Pb and Co were prepared by a sol–gel 
method. The thin films have been prepared from zinc acetate, monoethanolamine and iso-propanol and 
then they were deposited on glass substrate by using a dip coating method. The structural, morphological, 
photocatalytic activity and optical absorbance of thin films were investigated by X-ray diffraction (XRD), 
scanning electron microscopy (SEM), ultraviolet-visible spectrophotometer and degradation of methylene 
blue dye (MB). The all thin films exhibited a polycrystalline hexagonal wurtzite structure that revealed 
by XRD. Due to doping, the average grain size of ZnO thin film increased. All films showed a wrinkle 
morphology. Photocatalytic activity of thin films was evaluated in aqueous solutions of Methylene Blue 
(MB) under UV-light illumination. The results indicated that the photocatalytic activity of ZnO thin films 
increased by Pb doping, conversely Co doping reduced the photocatalytic activity in comparison with the 
pure ZnO films. Hence speed of degradation of methylene blue by Pb doped ZnO is higher than that of pure 
and Co doped ZnO. 
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many researchers have focused on the synthesis 
of doped and undoped nanostructures that 
zinc oxide is one of the most important of them 
[22]. Doped ZnO nanostructures has applied in 
optoelectronics[23], spin valves, spin light emitting 
diodes, magnetic sensors, non–volatile memory 
devices[24, 25] and photocatalysis[26]. 

So far, zinc oxide thin films have been applied by 
various methods such as sputtering[27], chemical 
vapor deposition[28], sol-gel[29], pulsed laser 
deposition[30] and others. Among these methods, 
sol gel method is common and popular method 
due to its simplicity, low synthesis temperature 
and high purity of the resultant products [31]. In 
this work, Pb- and Co-doped ZnO thin films were 
coated on glass substrates by sol gel method for first 
time and the influence of doping on microstructure, 
morphology, optical properties and photocatalytic 
activity was investigated.

2. EXPERIMENTAL 
2.1. Synthesis

Zinc oxide thin films doped with Pb and Co, 
were deposited on the glass slides by a sol-gel 
dip coating method. The solution was prepared 
by dissolving 0.3M zinc acetate dehydrate 
(Zn(CH3COO)2.2H2O) in 10 ml iso-propanol 
(CH3C2H5OH) containing monoethanolamin (as 
a stabilizer) in which mole ratio of Zn2+ to MEA 
was kept to 1:1. The required amounts of lead 
acetate trihydrate (Pb(CH3COO)2.3H2O) and 
cobalt acetate tetrahydrate (Co(CH3COO)2.4H2O) 
were separately dissolved in two above solution to 
obtain solution of Pb- and Co- doped ZnO (mole 
ratio of Pb2+ and Co2+ to Zn2+=0.1). The obtained 
solutions were stirred at 70oC for 1 h. Then, a clear 
and homogeneous solutions was obtained and after 
aging for 1 day it was used as the coating solution by 
the sol-gel dip coating. Final thin films (Pb doped 
ZnO and Co doped ZnO) were deposited on glass 
substrates (10 mm × 15 mm ×1.5 mm) at room 
temperature. The glass substrates were dipped in 
the precursor solutions for 2 min. The layers were 
deposited for 10 times coating and dried in an oven 
at 80°C after each successive coating to remove the 
solvent. The gel films were annealed at 400°C for 
1 h and then, the thin films were cooled to room 
temperature to obtain the pure, Pb and Co-doped 
ZnO thin films.

2.2. Characterization
The crystal structure of the un-doped, Pb 

and Co-doped ZnO thin films was identified by 
an X-ray diffractometer (XRD, D-8 Advanced). 
Surface morphology of the thin films were imaged 
by scanning electron microscopy (SEM, S-360 
Cambridge), acted at 20 kV acceleration voltage. 
UV-Vis absorbance spectra of thin films were 
obtained by Ultraviolet-visible spectrophotometer 
(UV-4802UNCO) at room temperature.

2.3. Photocatalytic degradation
The photocatalytic activities of thin films 

were evaluated by means of the degradation of 
methylene blue (MB) in an aqueous solution 
under the UV light irradiation. The degradation 
reaction was performed in a glass container 
containing MB solution at an initial concentration 
of 10 mg/lit (10 ppm). Then, the thin films were 
immersed in the glass container containing 20 mL 
of MB solution and the thin films were irradiated 
with two parallel UV lamps in a dark space (two 
8-watt mercury lamps made by Philips). The 
lamps were fixed at a distance of approximately 
10 cm from the prepared solution. To investigate 
the possible reaction between the photocatalyst 
and methylene blue, the samples were first placed 
in a darkness for 45 minutes. The concentration 
of residual MB after irradiating for 0.5, 1, 1.5, 2, 
2.5 and 3 h, was determined by the same UV-Vis 
spectrophotometer used for measurement of the 
optical transmission spectra of the thin films. The 
degradation efficiency was determined from the 
following equation [32]:
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Where D is degradation efficiency, C0 and C are 
initial concentration of dye and concentration of 
dye after irradiation, respectively.

3. RESULTS AND DISCUSSION
3.1. XRD analysis

The XRD patterns of the undoped ZnO, Pb 
doped ZnO and Co doped ZnO thin films are 
shown in Fig. 1(a-c), respectively. The XRD peaks 
for (100), (200) and (101) planes indicate that all 
the films have a polycrystalline hexagonal wurtzite 
structure (JCPDS card no. 36-1451). The diffraction 
peaks of lead oxide (PbO) and cobalt oxide (Co3O4) 
were identified in the XRD patterns of Pb doped 
ZnO and Co doped ZnO thin films. The doped Pb 
and Co in ZnO is more than the solubility limit of 
Pb and Co in ZnO matrix. It can increase effectively 
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the possibility of secondary impurity. Pb and Co 
doping shifted the XRD peaks to higher angles. The 
same results were also report by Ahmad et.al for Pb 
doping[33] and Nair et.al for Co doping[34].

The average crystallite size was estimated by 
using of Scherrer`s equation[35]:
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Where k is a constant (0.9) and d, λ, θ are the 
average crystallite size (nm), wavelength of 
X-ray radiation (0.15406 nm) and Bragg`s angle 
of diffraction respectively and β is full-width 
at half maximum intensity of the most intense 
peak. Pb and Co doping increased the average 
crystallite size from 21.245 nm to 27.86 nm and 
34 nm, respectively. Therefore, it can be concluded 

Fig. 1- XRD patterns of (a) ZnO (b) Pb-doped ZnO and (c) Co-doped ZnO thin films.
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that all thin films are nanocrystalline in nature. 
Using the Williamson-Hall method, the micro-

strain on the thin film nanostructures was analyzed. 
The Williamson-Hall equation can be shown as 
follows [36]:

1 
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Where Ө is the diffraction angle, β is full-width at 
half maximum intensity of the peaks, λ is wavelength 
of X-ray radiation (0.15406 nm), Dhkl is crystallite 
size and εhkl is micro-strain. The micro-strain 
obtained for the samples was obtained as -0.000291 
and -0.00146 for Pb doped and Co-doped samples, 
respectively. Negative values indicate compressive 
strain in ZnO lattice.

3.2. SEM analysis
The surface morphology of pure ZnO, and 

doped thin films are shown in Figure 2. It was 
observed that the pure ZnO thin film had a wrinkle 
morphology with an approximate width of 0.5-2 
µm (Figure 2, a). Although Pb-and Co-doped ZnO 
thin films had the wrinkle morphology but doping 
has changed the shape and size of wrinkles (Figure 
2, b and c). The width of wrinkles decreased to 
0.8-1.2 µm and 0.4-0.8 µm for Pb-and Co doped 
thin films, respectively. The size of wrinkles in Co 
doped ZnO thin film were smaller than Pb doped 
ZnO thin film. The morphology of ZnO thin film 

was not homogenous, while the morphology of 
Pb and Co doped thin films was homogenous.

3.3. Optical analysis
The optical absorbance spectra of pure, Pb 

and Co doped ZnO thin films deposited on glass 
substrates shown in Figure 3. The position of 
absorption spectra of ZnO thin films has been 
moved toward longer wavelength by Co doping 
and to lower wavelength by Pb doping. It occurs 
due to increase in the band gap with doping. 
Burstein-Moss effect can be explained the increase 
in the bang gap or blue shift[37]. The Fermi 
level combine in to the conduction band in this 

Fig. 2- SEM micrographs of (a) ZnO thin film, (b) Pb-doped ZnO thin film and (c) Co-doped ZnO.

Fig. 3- UV-Vis absorbance spectra of undoped, Pb and Co 
doped ZnO thin films.
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phenomenon[38]. Co doping has greater influence 
on band gap.

3.4. Photocatalytic activity
The photocatalytic activity of pure, Pb-and 

Co-doped ZnO thin films were investigated by 
degradation of methylene blue dye (MB) in an 
aqueous solution. The photocatalytic activity of 
ZnO thin films can be shown according to the 
following reactions[39]:

ZnO  e-
cb + h+

vb                                                                                                                                         (4)
e-

cb+ O2 
.O-

2                                                                                                                                            (5)
h+

vb +OH- .OH                                                                                                                                         (6)
.O-

2 + H2O  HO2
. + OH-                                                                                                  (7)

HO2
. + H2O  H2O2 + .OH                                                                                          (8)

H2O2  2.OH                                                                                                                                             (9)
.OH + organic compound  CO2 + H2O                         (10)

Where h+
vb is the electron vacancy and e-

cb is the 
electron in conduction band. This mechanism is 
summarized in Figure 4.

Figure 5 shows the degradation curves of 
methylene blue (%) versus time for pure, Pb-and 
Co-doped ZnO. It is observed from this figure 
that Pb-doping has increased the photocatalytic 
activity. Because of the increase in band gap energy 
of Pb-doped ZnO, stability of excitons increase, 
therefore photocatalytic activity of ZnO thin 
films were increased. Co-doping decreased the 
photocatalytic activity of ZnO thin film. In fact, 
Co doped ZnO cannot significantly degrade MB 

due to the formation of a new phase. Moreover, 
agglomeration of Co on the surface of Co-doped 
ZnO thin films decreases the effective surface 
active sites and accordingly photocatalytic activity 
decreased [40]. In fact, it can be said that in the 
same time, dopped thin film with Pb decomposes 
more methylene blue.

4. CONCLUSIONS
Pure ZnO as well as Pb-and Co-doped ZnO 

thin films were prepared by a sol-gel method. The 
structure, morphology, optical and photocatalytic 
properties of ZnO, Pb and Co doped ZnO 
nanostructures were investigated. The results 
showed that thin films had nanostructure nature 
with hexagonal wurtzite structure. It was observed 
that absorbance edge of ZnO thin film was shifted 
to higher and lower wavelengths by Co-doping and 
Pb-doping, respectively. The photocatalytic activity 
of thin films was investigated by decomposition of 
MP under UV light illumination. Photocatalytic 
activity of ZnO thin films was increased and 
decreased by Pb-doping and Co-doping, 
respectively. Therefore, Pb doping can improve the 
photocatalytic activity in UV range and Co-doping 
ZnO thin film can be used as photocatalyst in 
visible light wavelength range.
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