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1. Introduction
Each phenomenon can be studied at different 

length scales, namely macro-scale, meso-scale 
and micro-scale. Consider the plastic deformation 
of crystalline material. This phenomenon can 
be macro-modeled with the simple form of the 
following criterion: f(σij)=Y, which means that the 
plastic deformation occurs as a combination of 
stresses acting on a point reaches a specific value 
such as Y. The problem now is to find the best f that 
fits the experimental data. On the other hand, the 
phenomenon of plastic deformation can be micro-
modeled by considering the dislocations, the 

interactions of the dislocations with each other, the 
crystal defects, etc. This type of modeling requires 
sophisticated mathematical models and numerical 
procedures.

Despite their simplicity, some phenomena 
cannot be captured by macro-scale models, such 
as the size effect phenomenon. As the size of the 
regions in material, where the local mechanical 
behavior is different from the overall mechanical 
behavior, increases and becomes comparable with 
the dimensions of the specimen, classical plasticity 
rules cannot be used to analyze the process. In this 
case, analyzing the deformation of the material 
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requires models studying the plasticity of a grain 
aggregate in more detail. The meso-scale models 
are relatively simpler tools than micro-scale 
models, where they are able to explain some range 
of phenomena such as the size effect. Traces of the 
meso-scale modeling of the plasticity of crystalline 
materials can be found in the works of Schmid & 
Boas [1], Sachs [2], Cox & Sopwith [3], Taylor [4,5], 
Taylor & Elam [6], and Bishop & Hill [7]. Schmid 
proposed that the deformation in crystals would 
occur by the relative motion of certain crystal 
planes in specific directions (slip). According to 
Schmid, when stress is imposed on a single crystal, 
the first combination of the plane and direction 
on that plane, the resolved shear stress on which 
is reached to the critical value of CRSSτ  would be 
responsible for the plastic deformation. Sachs, and 
Cox & Sopwith applied the Schmid law to the plastic 
deformation of a crystal aggregate and assumed 
that each grain in a crystal aggregate would deform 
by the slip on a slip system with the highest shear 
stress acting on that. Later, Taylor’s studies showed 
that slip in a crystal aggregate differs from the 
slip in single crystals concerning the degree of 
freedom. Once a single crystal is stressed, only one 
strain component is predetermined; the strain in 
the applied stress direction. The rest of the strain 
components would be determined based on the 
activated slip system(s). On the other hand, as the 
crystal aggregate is stressed, all strain components 
are predetermined. Hence, at least five slip systems 
in a crystal must be activated for a crystal aggregate 
to undergo an arbitrary shape change in such 
circumstances.

Size effect may be approached by several 
strategies concerning meso-scale models of 
plasticity such as strain gradient plasticity [8-10], 
mixture models [11-14], statistical-based models 
[15-17]. The present study aims to develop a 
simple framework to simulate the deformation of 
grains in an aggregate and study the plasticity of 
miniature specimens, which have a long history 
in the literature [18-25]. The developed model is 
operable in many commercial finite element codes, 
without the requirement of any further coding. In 
this study, first, a model for the plastic behavior 
of grains in a crystal aggregate is achieved by 
combining the crystal plasticity notions developed 
by Taylor and the mathematical form of Hill’s 
yield criterion. Hill’s yield criterion was previously 
employed to study the near crack tip plasticity 
of superalloy single-crystals applied in turbine 

blades [26], where the coefficients of Hill’s yield 
criterion were obtained by the Schmid factor. 
Here, as a result of the difference between plastic 
deformation of a single crystal alone with grain in 
an aggregate, coefficients of Hill’s yield criterion are 
related to Taylor factors for different states of strain. 
This developed model is then studied to meet the 
criterion of being convex. Using this model, the 
microforging of miniature rods into prismatic 
pieces with equilateral triangle cross-sections for 
an isotropic specimen, a specimen composed of 50 
grains and a specimen composed of 200 grains, are 
simulated. To evaluate the validity of the model, the 
extreme bounds of the force-displacement curve for 
the prescribed microforging process are obtained 
and compared with the experimental tests.

2. Materials and Methods
2.1. Combined Hill-Taylor Model

Taylor factor is defined as [27]:

CRSSMσ τ=  (1)

Where CRSSMσ τ= is the effective stress, M is the Taylor 
factor, and CRSSτ  is the critical resolved shear stress. 
The value of M depends on the orientation of the 
grain and the global state of strain. For example, 
consider a grain oriented with Euler angles 
( ) ( )1 2, , 54 ,71.4 ,186.7ϕ ϕ ° ° °Φ =  with respect to the 
global frame xyz. If the specimen is stressed along 
the x-axis, the imposed strain condition would be 
[ ] [ ]1, 0.5, 0.5E diag= − − , then the Taylor factor for 
that grain would be 3.1373, and based on Eq. (1), 
the strength of that grain would be 3.137 CRSSσ τ=  
(procedure of calculation of Taylor factor is 
described in appendix A.1). Now, if the specimen 
is stressed along the y-axis, the state of strain would 
be [ ] [ ]0.5,1, 0.5E diag= − − . In this situation, the 
Taylor factor of that grain would be 2.5442, and 
based on Eq. (1), the strength of that grain would 
be 2.5442 CRSSσ τ= . This example demonstrates that 
the well-known anisotropic mechanical behavior 
of the grains in an aggregate can be explained by 
the Taylor factor. This is used in [28-30] to justify 
loading direction dependency and orientation 
dependency of mechanical behavior of materials.

Hill’s yield criterion [31] with the form of Eq. 
(2) is capable of describing anisotropic mechanical 
behavior. However, it is better to carefully be 
stated that only the mathematical form of Hill’s 
yield criterion would be used in this investigation. 
Despite von Mises yield criterion, which may be 

CRSSτ
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employed in any arbitrary coordinate system, Hill’s 
yield criterion is only applicable in the system in 
which material has threefold symmetry about that. 
However, only the mathematical form of Hill’s yield 
criterion is used here, and the coordinate system is 
taken to be the same for all grains coincident with 
the global xyz frame; therefore, this is no limitation 
in this study (see the notes in the last lines of 
Appendix A.3).

( ) ( ) ( )2 22 2 2 2 12 2 2yy zz zz xx xx yy yz xz xyF G H L M Nσ σ σ σ σ σ τ τ τ− + − + − + + =+

( ) ( ) ( )2 22 2 2 2 12 2 2yy zz zz xx xx yy yz xz xyF G H L M Nσ σ σ σ σ σ τ τ τ− + − + − + + =+  (2)

F, G, H,…, N in Eq. (2) are constants that depend 
on the material’s normal and shear strength. Eq. (3) 
to Eq. (8) are relations [32] describing constants of 
Eq. (2) in terms of 
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𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑖𝑖𝑖𝑖

𝑦𝑦

 or 

1 
 

CRSSM 

 CRSS

   1 2, , 54 ,71.4 ,186.7     

   1, 0.5, 0.5E diag  

3.137 CRSS 

   0.5,1, 0.5E diag  

2.5442 CRSS 

     2 22 2 2 2 12 2 2yy zz zz xx xx yy yz xz xyF G H L M N               

𝜎𝜎𝑖𝑖𝑖𝑖
𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑖𝑖𝑖𝑖

𝑦𝑦

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜎𝜎𝑖𝑖𝑖𝑖
𝑦𝑦 𝑜𝑜𝑜𝑜 𝑘𝑘𝑖𝑖𝑖𝑖

𝑦𝑦

 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝜏𝜏𝑖𝑖𝑖𝑖.
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Thus far, it is shown that it would be possible 
to calculate the strength of grain with the 
defined orientation using the Taylor factor. In 
order to evaluate 
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CRSSM 

 CRSS

   1 2, , 54 ,71.4 ,186.7     

   1, 0.5, 0.5E diag  

3.137 CRSS 

   0.5,1, 0.5E diag  

2.5442 CRSS 
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𝜎𝜎𝑖𝑖𝑖𝑖
𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑖𝑖𝑖𝑖
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜎𝜎𝑖𝑖𝑖𝑖
𝑦𝑦 𝑜𝑜𝑜𝑜 𝑘𝑘𝑖𝑖𝑖𝑖

𝑦𝑦

 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝜏𝜏𝑖𝑖𝑖𝑖.
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 and 
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CRSSM 

 CRSS

   1 2, , 54 ,71.4 ,186.7     

   1, 0.5, 0.5E diag  

3.137 CRSS 

   0.5,1, 0.5E diag  

2.5442 CRSS 
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𝑦𝑦 𝑜𝑜𝑜𝑜 𝑘𝑘𝑖𝑖𝑖𝑖

𝑦𝑦

 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝜏𝜏𝑖𝑖𝑖𝑖.
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 for each grain, six 
different Taylor factors corresponding to six 
different global strain tensors (i.e. [E]) must be 
calculated. For example, in order to calculate 

the yield strength of grain in the  x-direction
(
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 E
𝑡𝑡ℎ𝑒𝑒 𝑥𝑥 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜎𝜎𝑥𝑥𝑥𝑥

𝑦𝑦  E    1, 0.5, 0.5E diag  
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𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑥𝑥𝑥𝑥
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𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑀𝑀𝑦𝑦𝑦𝑦 𝑀𝑀𝑧𝑧𝑧𝑧 𝑀𝑀𝑥𝑥𝑥𝑥 𝑀𝑀𝑦𝑦𝑦𝑦
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), [E] must be placed as [ ] [ ]1, 0.5, 0.5E diag= − −
, the resulting value of the Taylor factor would be 
Mxx so the strength of that grain in x-direction 
would be y

xx xx CRSSMσ τ= . In order to calculate the 
shear yield strength of that grain in xy-plane (
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, the resulting value of the Taylor factor would be 
Mxy, and based on Eq. (1), the effective stress due 
to shear stress at the onset of yielding would be 
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. Therefore, the shear strength of 
that grain in xy-plane would be
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Proceeding the same routine and calculating other 
terms (Myy, Mzz, Mxz and Myz), one may use Hill’s 
yield criterion for grain in aggregate with the 
following coefficients:
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2.2. Experimental Study
The experimental procedure of this study consists 

of 1) the production of fine and coarse-grained 
copper miniature rods and 2) the microforging of 
these miniature rods.
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2.2.1. Development and characterization of fine 
and coarse-grained rods

Two copper rods with 10mm in diameter 
underwent the circular simple shear extrusion 
(CSSE) [33-35] process for eight passes to produce 
ultrafine-grained rods. Based on our previously 
published investigations [36], the grain size 
was expected to scale down to 1μm. To produce 
coarse-grained rods, one of the SPDed copper 
rods, annealed at 950 ⁰C for 24hrs, resulted 
in a grain size of about 70μm. To obtain the 
mechanical properties of these rods, a cylinder 
with the dimensions of 6mm in diameter and 
9mm in length was machined out of each rod, and 
the compression test with Teflon as a lubricant 
was performed. To establish CRSSτ γ−  curve, the 
following fact was considered: the average Taylor 
factor for a material with fcc crystal structure 
made of numerous randomly oriented grains is 
about 3.067, so based on Eq. (1), if the values of 
the stress are divided by 3.067 and the values of the 
strain are multiplied by 3.067, the dependence of 

CRSSτ γ− on γ would be obtained, where γ is the total 
shear strain on active slip systems [37].

2.2.2. Microforging of the miniature rods
Miniature rods 1mm in diameter and nearly 

5mm in length were cut out of both annealed 
and SPDed rods by wire-cut. These rods are then 
microforged into equilateral triangular prismatic 
pieces by means of the die set shown in Fig. 1. 
The insert is plugged at the bottom of the die hole, 
then a miniature rod is placed above the insert 
and compressed by the punch to fill the die cavity. 
After that, the insert is unplugged, and the formed 
specimen is taken out. 

2.3. Finite Element Simulation
2.3.1. Simulation of microforging of SPDed 
miniature rods

Based on the work of Bagherpour et al. 
[30], processing of material with SSE results 
in developing a multi-component simple 
shear texture that partially recovers due to the 
phenomenon of strain reversal [38]. However, the 
presence of such a weak, multi-components texture 
would not be expected to affect the successful 
microforging of specimens, and due to the presence 
of numerous ultrafine grains in each cross-section 

Fig. 1- Microforging die set a) CAD sketch and b) real parts.
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of the material, the behavior of material would be 
expected to be repeatable without any traces of 
the size effect. Besides, it is well-known that the 
texture has primary importance in the sheet metal 
forming processes and less affects the bulk metal 
forming processes (such as microforging in this 
study). Based on these logics, it is assumed that the 
weak, multi-component texture does not affect the 
forming loads under the multiaxial state of stress 
that prevails in the closed-die forging. Hence, for 
the sake of simplicity, the microforging process is 
simulated by conventional routine, which means 
assigning von Mises flow potential to the material 
and assuming the material to be isotropic without 
partitioning the specimen.    

2.3.2. Upper and lower bounds of load-normalized 
displacement curves of microforging of annealed 
specimens

Precise examination of the proposed model 
requires sophisticated experimental and 
computational tools. It is required that the 
microstructure of a specimen is fully reconstructed 
in the FE software, and the load-displacement and 
strain distribution predicted by FE analysis be 
compared with the experimental results. However, 
in order to evaluate the proposed model to some 

degree, initially, the stiffest and the most compliant 
orientations for this particular forming process are 
determined (Table 1 and Fig. 2.b) (the procedure 
is discussed in the appendix, section A.2). Then 
the values of Mij s corresponding to the stiffest 
orientation are used to calculate F, G, …, N. The 
simulation in this condition gives the upper limit of 
the force-displacement curve; similarly, the lower 
bound of force-displacement could be obtained. 
Since the phenomenon of size effect becomes 
bold as the grain size increases, different force-
displacement curves are expected from different 
annealed specimens. If the experimental results 
were enveloped by these bounds, the model’s 
validity could be roughly ensured.

The assigned CRSSτ γ−  curve corresponds to the 
annealed material obtained from the compression 
test, as discussed in section 2.2.1. It is necessary to 
state that in this model, the effect of grain size on 
the flow stress of the material is considered through 
the proper definition of CRSSτ γ− .  Keeping the 
same CRSSτ γ−  as the input to the FE code, creating 
grain boundaries by partitioning the specimen only 
divides the material into segments which without 
assigning different orientations to these segments, 
flow stress of the material would not be affected. 
Therefore, as in these simulations, the goal is to 

Fig. 2- (a) specimens composed of 50 and 200 grains in their cross-section, (b) representation of stiffest and the most compliant 
orientations in the unit triangle, and (c) color coded orientation map of specimens.

Table 1- Introduction of the stiffest and the most compliant orientations
Table 1 Introduction of the stiffest and the most compliant orientations 
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simulate a situation where all grains are oriented 
in the stiffest or the most compliant orientations; 
the designed specimen is not partitioned into 
cells. Instead, the Rijs correspond to the stiffest 
or the most compliant orientation are assigned 
to the whole cylindrical specimen with the same 
geometry as the experimental micro-rods.

2.3.3. Simulation of the microforging of specimens 
composed of 50 and 200 grains in the cross-section

As stated above, the proposed model makes it 
possible to investigate the effect of grain size on the 
statistical representation of the specimen without 
interfering effects of grain size on the flow stress 
and work hardening exponent. This is beneficial 
since the variation in the work hardening 
exponent may alter the strain distribution as well.

Here, this ability is used to study the co-effect 
of grain size and the requirement of preserving 
continuity on the distribution of plastic strain 
in the specimen. In order to execute these 
simulations, first, the cross-section of the designed 
rods is partitioned into 50 and 200 Voronoi cells, 
as shown in Fig. 2.a. Then, a random orientation 
is assigned to each grain where the corresponding 
color coded orientation maps are shown in 
Fig. 2.c. The six Taylor factors for each grain 
are calculated using the numerical procedure 
explained in appendix A.1, and the constants of 
Hill’s yield criterion are then calculated using Eq. 
(9-14). The material axis required to implement 
Hill’s yield criterion was chosen to be the same for 
all grains, coincident with the global xyz frame. 
In order to eliminate the effect of the work-
hardening exponent on the distribution of strain, 
a constant value of CRSSτ γ− without dependency on 

CRSSτ γ−  (perfect plastic) is assigned to the material for 
simulation.

2.4. Validation of convexity
It has been shown by Bishop and Hill [39] that 

each proposed yield criterion for a material that 
deforms plastically by the slip must be convex. 
Investigating the convexity of a multivariable 
function is usually done by the Hessian matrix. 

3. Results and Discussion
3.1. Concavity of the Combined Hill-Taylor 
model

The Hessian matrix of the combined Hill-Taylor 
model is as shown in Eq. (15), factoring the term 
1/(τ2

CRSS) that is independent of Mijs.                                                               
(15)
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The corresponding eigenvalues of this matrix 
are shown in Eq. (16), where λis correspond to 
eigenvalues. It can be seen that all components 
are non-negative in all ranges of Mijs except for 
λ5. In Fig. 3, color filled contours of the variations 
of  λ5 with Mxx and Myy are plotted for three values 
of Mzz, which are Mzz|min=2.3, Mzz|max=3.674 and
Mzz|mean=[ Mzz|max+ Mzz|min]/2=2.987. As it can 
be seen, neither of those values would result 
in λ5 to have a negative value in the range of 
{ }2.3 , 3.674xx yyM M≤ ≤ . Therefore, it can be 
concluded that in the physically meaningful range 
of the variations of Mxx, Myy and Mzz all eigenvalues 
of the Hessian matrix of the proposed model are 
non-negative. Hence, the Hessian matrix is positive 
semi-definite and based on the work of Tong [40], 
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the proposed model is convex.                                                                     
In another study, Pankaj et al. [44] established a 

condition for convexity of Hill’s yield criterion with 
a different methodology. Their inequality that is 
shown by Eq. (17) is obtained based on Hill’s yield 
criterion to be an ellipse in the deviatoric plane. 

0FG GH HF+ + >  (17)

Using Eq. (9) to Eq. (11), factoring the term
1/(τ2

CRSS) that is independent of Mijs and making 
some simplifications, Eq. (17) reduces to:                     (18)
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On the other hand, as it can be seen in Eq. (16), 
the necessary condition for λ5 to be positive is as 
Eq. (19).                                                                             

Raise the power of both sides by 2 and performing 
some simplifications, it can be seen that both of 
these conditions are the same. This conformity 
proves that the mathematical procedure adopted in 
this work to study the convexity of the proposed 

model is valid.
The problem of identifying the model constants 

preserving the convexity is challenging, and much 
effort has been focused on that, for example, 
works of Tong [41] and Uppaluri and Helm [42]. 
However, while Hill’s yield criterion constants are 
calculated for individual grains in this scheme, the 
idea can be employed to determine the constants 
of other models such as Gotoh [43]. This could be 
established by calculating average Taylor factors, 
provided that the material’s texture is identified or 
a random texture is assigned to the material.

3.2. Compression test
In Fig. 4, the true stress-strain curves of both 

SPDed and annealed specimens are shown. It can be 
seen that after eight passes of CSSE, the processed 
material is saturated with cold working in a way 
that the flow stress is about 350 MPa without any 
further hardening. This is in complete accordance 
with studies on other SPD techniques (e.g., Pardis 
et al. [45]). Annealing the deformed specimens 
resulted in the flow stress to decrease and the 
recovery of the work hardening. For each case, the 

Fig. 3- Color filled contours of variation of λ5 with Mxx and Myy for three values of Mzz.

Fig. 4- True stress-strain for a) annealed copper and b) SPDed copper.
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values of stress are divided by 3.067, and the values 
of strain are multiplied by 3.067 to obtain CRSSτ γ−
, which is used further as the mechanical behavior 
of the material in simulation.

3.3. Microforging of SPDed miniature rods: 
experimental and FE results

In Fig. 5, the load-normalized displacement 
curves for the microforging of SPDed miniature 
rods are shown. To calculate normalized 
displacement, the current values of displacement 
are divided by the final value of displacement for 
which the forging process is completed. It can be 
seen that the results of the simulation are in good 
agreement with the experimental results.

3.4. Microforging of annealed miniature rods: 
experimental and FE results

Fig. 6 shows the load-normalized displacement 
of the microforging of annealed miniature rods. 
It can be seen that the load-displacement curves 
corresponding to the stiffest and most compliant 
situations well envelope the experimental data in 
a wide range of processes. However, the curves 
collided at the end of the process. The main reason 
is that as large strains are imposed on the material, 
the proposed combined Hill-Taylor model would 
not be valid. Since in this model, the lattice 
rotation phenomenon did not take into account, 
and the orientation of an individual grain is far 
different from its original orientation. Therefore, 
the calculated Mijs, which were based on the initial 
orientation of the grain, are no longer applicable.

The difference between the load-displacement 
curves of the two experimentally microforged 
specimens in Fig. 6 is due to the size effect. The 
average grain size of the annealed grains was 

measured to be about 70μm. This means that in 
each cross-section of the annealed miniature rods, 
approximately 200 grains were present. Based on 
the work of Henning & Vehoff [15], if the number of 
grains in each cross-section is fewer than 100~200, 
the size effect reveals. The following case was laid 
on the edge of this threshold, and therefore, the 
difference between the load-displacement curves 
of the two specimens was not as much as expected.

3.5. Microforging of specimens with a different 
number of grains in their cross-section: FE 
results

Fig. 7 shows the results of the simulation of 
specimens with 50 and 200 grains in their cross-
section. The final cross-section of the specimens 
and distribution of equivalent plastic strain in the 
cross-section of these two specimens are shown. It 
can be seen that the proposed model successfully 
captures the fact that due to the difference in the 
mechanical behavior of the grains, the distribution 
of the equivalent plastic strain abruptly varies from 
one grain to another. Similar behavior is observed 
by the digital image correlation (DIC) technique for 
plane strain compression of pure Al in the work of 
Raabe et al. [46] and through the simulations with 
different methodology in the works of Knezevic et 
al. and Vidyasagar et al. [47,48].

Based on the literature, one aspect of the size effect 
is the statistical representation of the specimen, 
which is emphasized in the works of Henning & 
Vehoff and Chan et al. [15,17]. In the circumstances 
where the number of grains in the cross-section 
is relatively low, the individual behavior of each 
grain determines the flow behavior of the material 
at regions with length scales comparable to the 
specimen size. Therefore, an overall inhomogeneity 

Fig. 5- Load-normalized displacement curves for the 
microforging of the SPDed specimens obtained by simulation 
and experiment.

Fig. 6- Load-normalized displacement curves of the 
microforging of the annealed specimens obtained by simulation 
and experiments.
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is predominant in the specimen at large length 
scales. As the number of grains in the cross-section 
of the specimen increases, this length scale is 
shortened to the point that the individual behaviors 
of grains do not determine the flow of material at 
length scales comparable to the specimen size. In 
this circumstance, an overall homogeneity would 
be established.

On the other hand, from the geometrical point 
of view, the grains that are oriented in a manner 
compliant with the deformation of material are 
required to compensate for the deformation of the 
grains oriented in an incompliant manner, hence 
experiencing larger strains to maintain continuity. 
It can be concluded from the work of Ashby [8] 
that preserving such compatibility is harder to 

Fig. 7- Distribution of equivalent plastic strain on final cross-section (a) isotropic specimen, (b) specimen with 50 grains in the cross-
section, and (c) specimen with 200 grains in the cross-section.

accomplish between larger grains. Hence, it is 
expected that by increasing the number of grains 
in the cross-section, the equivalent plastic strain in 
each location shifts toward the one for the isotropic 
case both in the viewpoint of statistics and geometry.

Based on the above discussion, the ratio of 
the equivalent plastic strain in the specimens 
composed of a different number of grains in their 
cross-section (ϵ) to the equivalent plastic strain 
for the case of the isotropic specimen (ϵisotropic) is 
calculated point-by-point for each specimen. In 
Fig. 8, based on the magnitude of ϵ/ϵisotropic, two type 
of points can be distinguished: 
a) Yellow squares: where the difference between the 
equivalent plastic strain at a particular point bounds 
between 0.95 to 1.05 of equivalent plastic strain 

Fig. 8- Illustration of the points in material with ϵ/ϵisotropic between 0.95 and 1.05 (yellow squares) and points for which ϵ/ϵisotropic is over 
1.05 or below 0.95 (black circles) for a) specimen with 50 grains in its cross-section and b) specimen with 200 grains in its cross-section.
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at the same point if the material were isotropic 
(consisted of a virtually infinite number of grains).
b) Black circles: where this ratio is below 0.95 or 
above 1.05. 

It can be seen that increasing the number of grains 
in the cross-section led to more points having the 
ratio in the range of 0.95 to 1.05 (near unity), which 
means more points experience plastic equivalent 
strains similar to the case of the isotropic specimen. 
This is in accordance with the expectations and 
emphasizes that the proposed model well conforms 
with the statistical and geometrical features of the 
phenomenon of size effect.

From a practical point of view, inhomogeneity 
in the large-grained specimens may cause 
deficiencies such as cracks and flaws. Hence, it 
can be concluded that the successful production 
of microparts requires that the raw material be a 
product of processes resulting in grain refinement, 
such as SPD techniques [49,50]. Fig. 9 shows the 
successful microforging of SPDed miniature rod to 
the desired final shape.

4. Conclusion
In this paper, by combining the crystal plasticity 

notions developed by Taylor and the mathematical 
form of Hill’s yield criterion, a model was developed 
that can be used to describe the plasticity of grains. 
The main benefit of this model is that it can be 
operated in many commercial FE codes without 
further coding. The main findings include:
• It is shown that the proposed Hill-Taylor model 
fulfills the condition of convexity.
• The upper and lower bounds for the load-
displacement of the microforging of annealed 
miniature copper rods are established by the FE 
simulation. It was observed that the experimental 
data lay between these bounds to a vast extent; 
therefore, the validity of the model can roughly be 

ensured. 
• The simulation of microforging of specimens with 
a different number of grains in the cross-section (50 
and 200) showed that the proposed model validly 
captures the fact that by increasing the number of 
grains in the cross-section, plastic equivalent strain 
tends toward that for the case of isotropic material.
• Based on the results, it can be concluded that the 
successful production of microparts by forming 
processes requires that the microstructure of the 
raw material be refined by proper methods such as 
the SPD techniques.
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Appendix
A. 1. Calculation of Taylor factor

Suppose a crystal in a crystal aggregate oriented by Euler angels of ( 1 2, ,ϕ ϕΦ ) to any fixed global coordinate 
system, xyz. If the crystal aggregate is stressed, according to Taylor’s hypothesis, one must do the following 
procedure to calculate the strength of that individual grain:

1- Formation of the global strain as: 

[ ] .
. .

xx xy xz

yy yz

zz

de de de
E sym de de

sym sym de

 
 =  
  

                                                                                                                                                                                                                                                                                                                    (A. 1)

Where [ ] .
. .

xx xy xz

yy yz

zz

de de de
E sym de de
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 
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 represents global strain tensor.

2- Transformation of the global strain tensor into crystal coordinate system by using rotation tensor with 
the form of [51]:
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(A. 3)

Where [ ]R  represents rotation matrix and [ ]ε  represents strain tensor in crystal coordinate system.

3- There are 12 distinguishable slip systems in the FCC structure. These are introduced in table A.1, where 
the hypothetical magnitude of shear strain on each slip system is denoted by 1a , 2a , …, 3d .  It would 
be possible to establish a correlation between the magnitude of shear strain on each slip system and the 
components of strain tensor in crystal coordinate. This is done by Eq. (A.4) through Eq. (A.9) [52]. 

Table A.1 Introduction of the slip systems in the FCC crystal [39] 
Plane  (111)   (1̅1̅1)   (1̅11)   (11̅1)  
Dir. 011̅ 1̅01 11̅0 01̅1̅ 101 1̅10 011̅ 101 011̅ 110 1̅01 01̅1̅ 
Mag. of shear a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 

 

 

Table A. 1- Introduction of the slip systems in the FCC crystal [52]
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2 3 2 3 2 3 2 36 xxd a a b b c c d dε = − + − + − + − +                                                                                               (A. 4)

1 3 1 3 1 3 1 36 yyd a a b b c c d dε = + − + − − + + −                                                                                         (A. 5)

1 2 1 2 1 2 1 26 zzd a a b b c c d dε = − + − + − + − +                                                                                                  (A. 6)

1 2 1 2 1 2 1 22 6 xyd a a b b c c d dε = + − + − − + − +                                                                                                  (A. 7)

1 3 1 3 1 3 1 32 6 xzd a a b b c c d dε = − + + − + − − +                                                                                                   (A. 8)

2 3 2 3 2 3 2 32 6 yzd a a b b c c d dε = + − − − + − − +                                                                                                 (A. 9)

4- For a known global state of strain and orientation of an individual grain, the left-hand sides of the set 
of equations A.4 to A.9 are known from step 2 (i.e. , , ...xx yyd dε ε ). Yet, it can be seen that the number 
of unknowns (i.e. 1a , 2a , …, 3d ) is more than the number of equations; moreover, not all the equations are 
linearly independent. Due to the fact that 6 6 6 0xx yy zzd d dε ε ε+ + = from the first three equations (Eq. 
(A.4), Eq. (A.5), and Eq. (A.6)) only two of them are linearly independent. Therefore, for any arbitrary state 
of strain consisting of 5 independent strain components, at least 5 slip systems must be active for this set of 
equations (Eq. (A.4) to Eq. (A.9)) to have a unique answer. There are 12

5 792C =  choices of 5 slip systems from 
12, and it may seem that there are 792 solutions for this system of equations, yet not all of the combinations 
could lead to an arbitrary shape change. This is because that the determinant of the coefficient matrix of 
some of these combinations is zero. For instance, consider the combination: 1 2 1 2 1, , , , a a b b c . If one intends to 
calculate the magnitude of shear strains on these slip systems, one must solve the following system of linear 
equations written in the matrix form:

1

2

1

2

1

60 1 0 1 0
61 0 1 0 1

1 1 1 1 1 2 6
1 0 1 0 1 2 6

0 1 0 1 0 2 6

xx

yy

xy

xz

yz

da
da

b d
b d
c d

ε

ε

ε

ε

ε

 − −         −        =− − −      −       −       

                                                                                                        (A. 10)

Where ijd ε s are not necessarily zero. It can easily be shown that the determinant of the matrix of coefficients 
is zero. Therefore, this combination would not result in a unique solution, and it can be interpreted that this 
combination of slip systems could not physically lead to an arbitrary shape change. It is shown by Taylor [4] 
that among 792 possible combinations, it is enough to consider only 96 of them. The general form of the 
system of linear equations that must be solved is:

 i iA aεΓ =
 



          (1 96i≤ ≤ )                                                                                                                                       (A. 11)

In this notation iA


 is the matrix of coefficients corresponding to ith choice. iΓ


 is an unknown vector 
containing 5 components of the shear strain on the chosen slip systems. aε



 is the vectorized strain tensor 
where its components consist of the values of strain multiplied by 6  (for normal strains) or 2 6  (for shear 
strains).

5- After solving 96 systems of linear equations, there are 96 vectors of iΓ


s, each corresponding to a different 
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choice of slip systems that would result in the prescribed shape change. Now the problem is to choose the 
correct answer. Based on the energy principle, among all possible actions in a system, the one that requires 
the least amount of energy would take place. The dissipated energy on each slip system is CRSSγτ  where 

CRSSτ  is the critical shear stress necessary to activate that system and γ  is the magnitude of the shear strain 
on that particular system. Taking CRSSτ   to be the same for all slip systems, the total required energy for 
each combination would be 

1

i
CRSSτΓ



where 
1

iΓ


is the first norm of the vector iΓ


. Therefore, among all 96 
solutions, the correct answer is the one with the least  

1

iΓ


 , which from now on is called *Γ


.

6- Finally, for that individual grain in a specimen exposed to the strain state of [ ]E , the Taylor factor would 
be:

* *

1 1

CRSS

M
E

σ
ε τ

Γ Γ
= = =

 

                                                                                                                                           (A. 12)

Where E  is the effective strain obtained from the global strain tensor,ε is the effective strain obtained from 
strain tensor in crystal coordinate system, and σ  is the effective stress. Another matter is that although 
combinations of more than 5 slip systems could also result in an arbitrary shape change, it is shown by 
Taylor [6] that any choice of combinations of more than 5 slip systems would lead to the same or more 
dissipated energy. As the Taylor factor of an individual grain is determined, the strength of that particular 
grain under the prescribed strain condition could also be determined since CRSSτ  is a material property and 
could be readily obtained by the compression test.

A. 2. Determination of the most compliant and stiff orientations
The following procedure is adopted to examine what orientation would require the least stress (most 

compliant orientations) and what orientation require the most stress to deform plastically (stiffest 
orientations). As it can be concluded from the explanations given on the strength of grain under different 
yielding conditions in section 2.1, the most compliant orientation would be the one for which the xxM , yyM
, …, xyM  have their minimum values. Similarly, the stiffest orientation would be the one for which the xxM
, yyM , …, xyM  have their maximum value. It may be seen in Fig. A.1 that high values of xx yy zzM M M+ +  
correspond to low values of xy xz yzM M M+ +  , and vice versa; therefore, it is not physically possible that an 
individual orientation has the maximum normal and the shear strength simultaneously.
This behavior makes the problem of choosing the most compliant and stiffest orientations to the multi-

Fig. A. 1- Variation of xy xz yzM M M+ +  against xx yy zzM M M+ +  for 5000 
random orientations (each circle corresponds to one random orientation).
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objective optimization (MOO) problem with a non-dominated solution. It has been shown by Zadeh [53] 
and Goicoechea [54] that the minimum or maximum of goal function with the form of Eq. A.13 has the 
condition of Pareto optimality.

1 2 3 4 5 6xx yy zz xy xz yzw M w M w M w M w M w Mχ = + + + + +   where  1 , 0i iw w∑ = ≥                                      (A. 13)

proper choice of wis  depends on the dominant mode of deformation in the studied forming process. 
For example, if large amounts of shear strain (say γxy) are imposed on the material in a particular process 
while other components of strain are equal to zero, the proper choice of wis would be w6=1 with all other 
wis zero. The strain state in the microforging of miniature rods into triangular prismatic pieces is quite 
complicated, and the dominant strain state would probably vary as microforging proceeds. Yet some 
assumptions could be made: since the friction between the die walls and material are considered to be zero, 

0yxz z uuu u
x z y z

∂∂∂ ∂= = = =∂ ∂ ∂ ∂  which means γxz= γyz=0. In this situation, the proper choice of wis would be such 
that G* to adopt the form of Eq. (A.14).

( )* 1
4 XX Y Y ZZ XYG M M M M= + + +                                                                                                                     (A. 14)

Mathematically, optimizing G* is analogous to optimizing G with the form of Eq. (A.15).

xx yy zz xyG M M M M= + + +                                                                                                                                 (A. 15)

However, as Mxx, Myy, Mzz and Mxy are intricate functions of the orientation (which may be represented by 
1 2, ,ϕ ϕΦ ), the analytical optimization of G is almost an impossible task to do. In such circumstances, some 

numerical methods might be helpful:
Assume G to be bounded between gmin and gmax, then consider χn = {g1 . g2 … . gn} to be a set consisting of the 
calculated values of G for n random orientations. If the maximum of χn is called max(χn) and e is defined as 
e=gmax-max(χn), the probability of 0 ≤ e ≤ δ would be: 

( ) 1 1 1
n n

max min

max min

g gP e
g g R

δ δδ
 − −  ≤ = − = − −   −   

                                                                                              (A. 16)

Where R=gmax-gmin. 
Taking 0.001R

δ = , by calculating 5000 random values for G, P(e ≤ δ)=99.33% which means one may take 
max(χn) as gmax with the maximum error of 0.001R and 99.33% certainty, the discussion is the same for gmin.
In Fig. A.2, the values of G are shown for 5000 random orientations. The circles cut by upper and lower 

Fig. A.2 Values of xx yy zz xyG M M M M= + + +  for 5000 random orientations 
(each circle corresponds to one random orientation)
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limits are possible choices for the stiffest and the most compliant orientations. 

A. 3. The implication of combined Hill-Taylor theory in ABAQUS
To implement Hill’s yield criterion in ABAQUS software, according to the ABAQUS user’s manual, six 

parameters must be defined:

33 13 2311 22 12
0 0 0 0 0 011 22 33 12 13 23, , , , , ,R R R R R Rσ σ σσ σ σ

σ σ σ τ τ τ= = = = = =

Where, for example, 

4 
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 is the normal stress  in 1-direction that causes yielding if only the force is applied 
in the sense of 1- direction, and 
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 is the shear stress that causes yielding if only the force is applied to the 
plane perpendicular to the 2- direction in the sense of 3- direction; 
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 are also reference 
normal and shear strength that the user enters as material property. Based on the combined Hill-Taylor 
model, one may express the normal strength of grain in 1-direction as 
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, therefore, if one 
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 ; therefore, R23 can be taken to be equal to 
M23. Based on the foregoing discussion, to execute the combined Hill-Taylor model, τCRSS and its dependence 
on γ must be entered as the plastic properties of the material, and Mijs must be entered as Rijs. In order to 
implement Hill’s plasticity model in Abaqus, it is necessary to define a coordinate system named material 
orientation. Based on the procedure adopted to calculate ijM s and by looking at Eq. (A.12), it can be seen that 

ijM s inherently correlate the material coordinate system to the global coordinate system. Therefore, during 
the implementation of this model in Abaqus, it is not necessary to define a specific material orientation for 
each grain, and it can be taken as the global coordinate system for all grains.
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