

Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Pair difference cordial labeling of planar grid and mangolian tent

R. Ponraj^{*1}, A. Gayathri^{†2} and S. Somasundaram^{‡3}

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi–627 412, Tamil Nadu, India.

²Research Scholor, Reg.No:20124012092023, Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli–627 012, India.

³Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli–627 012, India.

ABSTRACT

ARTICLE INFO

Let G = (V, E) be a (p, q) graph.

Define

$$\rho = \begin{cases} \frac{p}{2}, & \text{if } p \text{ is even} \\ \frac{p-1}{2}, & \text{if } p \text{ is odd} \end{cases}$$

and $L = \{\pm 1, \pm 2, \pm 3, \cdots, \pm \rho\}$ called the set of labels. Consider a mapping $f: V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that $|\Delta_{f_1} - \Delta_{f_1^c}| \leq 1$,

Article history:
Received 19 September 2021
Received in revised form 11
November 2021
Accepted 28 November 2021
Available online 30 December 2021

Keyword: Path, Laddar, Planar grid, Mangolian tent.

AMS subject Classification: 05C78.

^{*}Corresponding author: R. Ponraj. Email: ponrajmath @gmail.com

[†]gayugayathria555 @gmail.com

[‡]somutvl@gmail.com

1 Abstract continued

where Δ_{f_1} and $\Delta_{f_1^c}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1.A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behaviour of planar grid and mangolian tent graphs.

2 Introduction

In this paper we consider only finite, undirected and simple graphs. The concept of graceful labeling was introduced by Rosa in [11] and harmonious labeling by Graham and Sloane [3]. Similar line Cachit introduced the weaker version of graceful and harmonious labeling called cordial labeling in [1]. Motivated by these labeling technique, the pair difference cordial labeling of a graph was introduced in [5]. Also pair difference cordial labeling behavior of several graphs like path, cycle, star,ladder,wheel,helm,web,fan, umberalla,(n,t)-kite, mobius ladder, slanting ladder,triangular ladder have been investigated in [5,6,7,8,9,10]. In this paper we investigate the pair difference cordial labeling behaviour of planar grid and mangolian tent graphs.

3 Preliminaries

Definition 1. [4]. For any graph $G_1 = G_1(V_1, E_1)$ and $G_2 = G_2(V_2, E_2)$ their product $G_1 * G_2$ is defined as the graph with vertex set $V_1 \times V_2$ and two vertices (u_1, v_1) and (u_2, v_2) in $G_1 \times G_2$ are adjacent if $u_1 = u_2$ and v_1 is adjacent to v_2 (or) if $v_1 = v_2$ and v_1 is adjacent to v_2 .

Definition 2. [2]. The graph $P_n \times P_m$, $m, n \ge 2$ is called the planar grid graph. Let a_{ij} be the vertex in the i^{th} row and j^{th} column.

Definition 3. [2]. The Mangolian tent graph $M_{m,n}$ is obtained from the grid $P_m \times P_n$, n is odd by joinging one extra vertex above the grid and joining the vertex a with the vertices $a_{11}, a_{12}, a_{13}, \dots, a_{1n}$.

4 Pair difference cordial labeling

Definition 4. [4]. Let G = (V, E) be a (p, q) graph. Define

$$\rho = \begin{cases} \frac{p}{2}, & \text{if } p \text{ is even} \\ \frac{p-1}{2}, & \text{if } p \text{ is odd} \end{cases}$$

and $L = \{\pm 1, \pm 2, \pm 3, \dots, \pm \rho\}$ called the set of labels.

Consider a mapping $f: V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that $|\Delta_{f_1} - \Delta_{f_1^c}| \leq 1$, where Δ_{f_1} and $\Delta_{f_1^c}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1.A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph.

5 Main Results

Theorem 5. The plannar grid $P_n \times P_n$ is pair difference cordial for all values of $n \geq 2$.

Proof. Take the vertex set and edge set from the definition 2.2 There are two cses arises. Case 1. n is even.

Assign the labels $1, 2, 3, \dots, n$ respectively to the vertices $a_{11}, a_{12}, a_{13}, \dots, a_{1n}$ and assign the labels $n+1, n+2, n+3, \dots, 2n$ to the vertices $a_{21}, a_{22}, a_{23}, \dots, a_{2n}$ respectively. Next assign the labels $2n+1, 2n+2, 2n+3, \dots, 3n$ respectively to the vertices $a_{31}, a_{32}, a_{33}, \dots, a_{3n}$. Proceeding like this until we reach the vertex $a_{\frac{n}{2}n}$. Note that in this process the vertex $a_{\frac{n}{2}n}$ receive the label $\frac{n^2}{2}$.

Now we assign the labels $-1, -2, -3, \dots, -n$ respectively to the vertices $a_{\frac{n+2}{2}1}, a_{\frac{n+2}{2}2}, a_{\frac{n+2}{2}3}, \dots, a_{\frac{n+2}{2}n}$ and assign the labels $-(n+1), -(n+2), -(n+3), \dots, -2n$ to the vertices $a_{\frac{n+4}{2}1}, a_{\frac{n+4}{2}2}, a_{\frac{n+4}{2}3}, \dots, a_{\frac{n+4}{2}n}$ respectively. Next assign the labels $-(2n+1), -(2n+2), -(2n+3), \dots, -3n$ respectively to the vertices $a_{\frac{n+6}{2}1}, a_{\frac{n+6}{2}2}, a_{\frac{n+6}{2}3}, \dots, a_{\frac{n+6}{2}n}$. Proceeding like this until we reach the vertex a_{nn} . Clearly the vertex a_{nn} receive the label $-\frac{n^2}{2}$.

Case 2. n is odd.

Assign the labels $1, 2, 3, \dots, n$ respectively to the vertices $a_{11}, a_{12}, a_{13}, \dots, a_{1n}$ and assign the labels $n+1, n+2, n+3, \dots, 2n$ to the vertices $a_{21}, a_{22}, a_{23}, \dots, a_{2n}$ respectively. Next assign the labels $2n+1, 2n+2, 2n+3, \dots, 3n$ respectively to the vertices $a_{31}, a_{32}, a_{33}, \dots, a_{3n}$. Proceeding like this until we reach the vertex $a_{\frac{n-1}{2}n}$. In this process $\frac{n^2-n}{2}$ is the label of the vertex $a_{\frac{n-1}{2}n}$.

Secondly assign the labels $-1, -2, -3, \dots, -n$ respectively to the vertices $a_{\frac{n+1}{2}1}$, $a_{\frac{n+1}{2}2}, a_{\frac{n+1}{2}3}, \dots, a_{\frac{n+1}{2}n}$ and assign the labels $-(n+1), -(n+2), -(n+3), \dots, -2n$ to the vertices $a_{\frac{n+3}{2}1}, a_{\frac{n+3}{2}2}, a_{\frac{n+3}{2}3}, \dots, a_{\frac{n+3}{2}n}$ respectively. Next assign the labels $-(2n+1), -(2n+2), -(2n+3), \dots, -3n$ respectively to the vertices $a_{\frac{n+5}{2}1}, a_{\frac{n+5}{2}2}, a_{\frac{n+5}{2}3}, \dots, a_{\frac{n+5}{2}n}$. Proceeding like this until we reach the vertex a_{n-1n} . Clearly the vertex a_{n-1n} receive the label $-\frac{n^2-n}{2}$.

Next assign the labels $-\frac{n^2-n+2}{2}, -\frac{n^2-n+4}{2}, -\frac{n^2-n+6}{2}, \cdots, -\frac{n^2-1}{2}$ to the vertices $a_{nn}, a_{n(n-1)}, a_{n(n-2)}, \cdots, a_{n\frac{n+1}{2}}$ and assign the labels $\frac{n^2-n+2}{2}, \frac{n^2-n+4}{2}, \frac{n^2-n+6}{2}, \cdots, \frac{n^2-1}{2}$ to the vertices $a_{n\frac{n-1}{2}}, a_{n\frac{n-3}{2}}, a_{n\frac{n-5}{2}}, \cdots, a_{n2}$. Finally assign the label $\frac{n^2-3}{2}$ to the vertex a_{n1} .

Theorem 6. The grid $P_n \times P_m$ is pair difference cordial for all values of $n \geq 2$ and $m \geq 2$.

Proof. There are four cases arises.

Case 1. $n \equiv 0 \pmod{4}$.

First we assign the labels $1,2,3,\cdots,m$ respectively to the vertices $a_{11},a_{12},a_{13},\cdots,a_{1m}$ and assign the labels $2m,2m-1,2m-2,\cdots,(m+1)$ to the vertices $a_{21},a_{22},a_{23},\cdots,a_{2m}$ respectively. Next assign the labels $2m+1,2m+2,2m+3,\cdots,3m$ respectively to the vertices $a_{31},a_{32},a_{33},\cdots,a_{3m}$ and assign the labels $4m,4m-1,4m-2,\cdots,(3m+1)$ to the vertices $a_{41},a_{42},a_{43},\cdots,a_{4m}$ respectively. Proceeding like this until we reach the $\frac{n}{4}$ row. Next assign the labels $4m+1,4m+2,4m+3,\cdots,5m$ respectively to the vertices $a_{51},a_{52},a_{53},\cdots,a_{5m}$ and assign the labels $5m+1,5m+2,5m+3,\cdots,6m$ respectively to the vertices $a_{61},a_{62},a_{63},\cdots,a_{6m}$. Proceed this process until we reach the $\frac{n}{2}$ row. Next assign the remaining vertices.

Next assign the labels $-1, -2, -3, \cdots, -m$ respectively to the vertices $a_{\frac{n+2}{2}1}, a_{\frac{n+2}{2}2}, a_{\frac{n+2}{2}3}, \cdots, a_{\frac{n+2}{2}m}$ and assign the labels $-(m+1), -(m+2), -(m+3), \cdots, -2m$ to the vertices $a_{\frac{n+4}{2}1}, a_{\frac{n+4}{2}2}, a_{\frac{n+4}{2}3}, \cdots, a_{\frac{n+4}{2}m}$ respectively. Next assign the labels $-(2m+1), -(2m+2), -(2m+3), \cdots, -3m$ respectively to the vertices $a_{\frac{n+6}{2}1}, a_{\frac{n+6}{2}2}, a_{\frac{n+6}{2}3}, \cdots, a_{\frac{n+6}{2}m}$. Proceeding this process upto the $(n-1)^{th}$ row.

Subcase 1. $m \equiv 0, 1, 3 \pmod{4}$.

Now we assign the labels $-(\frac{mn-2m}{2}) - 1$, $-(\frac{mn-2m}{2}) - 3$, $-(\frac{mn-2m}{2}) - 2$, $-(\frac{mn-2m}{2}) - 4$ respectively to the vertices $a_{n1}, a_{n2}, a_{n3}, a_{n4}$ and assign the labels $-(\frac{mn-2m}{2}) - 5$, $-(\frac{mn-2m}{2}) - 6$, $-(\frac{mn-2m}{2}) - 7$, ..., $-\frac{mn}{2}$ to the vertices $a_{n5}, a_{n6}, a_{n7}, \cdots, a_{nm}$ respectively.

Subcase 2. $m \equiv 2 \pmod{4}$.

In this case we now assign the labels $-\frac{nm}{2}, -\frac{nm-2}{2}, -\frac{nm-4}{2}, \cdots, -\frac{mn-2m}{2} - 1$ respectively to the vertices $a_{n1}, a_{n2}, a_{n3}, \cdots, a_{nm}$.

The Table 1 given below establish that this vertex labeling f is a pair difference cordial of Grid graph for the values of $n \equiv 0 \pmod{4}$.

Case 2. $n \equiv 1 \pmod{4}$.

There are four cases arises.

Nature of m	$\Delta_{f_1^c}$	Δ_{f_1}
$m \equiv 0 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$
$m \equiv 1 \pmod{4}$	$\frac{2mn-m-n-1}{2}$	$\frac{2mn-m-n+1}{2}$
$m \equiv 2 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$
$m \equiv 3 \pmod{4}$	$\frac{2mn-m-n-1}{2}$	$\frac{2mn-m-n+1}{2}$

Table 1:

Subcase 1. $m \equiv 0 \pmod{4}$.

We know that $P_n \times P_m \cong P_m \times P_n$, then assign the labels as in Subcase 2 of case 1.

Now Consider the remaining cases.

Subcase 2. $m \equiv 1, 3 \pmod{4}$.

First we assign the labels $1,2,3,\cdots,m$ respectively to the vertices $a_{11},a_{12},a_{13},\cdots,a_{1m}$ and assign the labels $2m,2m-1,2m-2,\cdots,(m+1)$ to the vertices $a_{21},a_{22},a_{23},\cdots,a_{2m}$ respectively. Next assign the labels $2m+1,2m+2,2m+3,\cdots,3m$ respectively to the vertices $a_{31},a_{32},a_{33},\cdots,a_{3m}$ and assign the labels $4m,4m-1,4m-2,\cdots,(3m+1)$ to the vertices $a_{41},a_{42},a_{43},\cdots,a_{4m}$ respectively. Proceeding like this until we reach the $\frac{n-1}{4}^{th}$ row. Next assign the labels $4m+1,4m+2,4m+3,\cdots,5m$ respectively to the vertices $a_{51},a_{52},a_{53},\cdots,a_{5m}$ and assign the labels $5m+1,5m+2,5m+3,\cdots,6m$ respectively to the vertices $a_{61},a_{62},a_{63},\cdots,a_{6m}$. Proceed this process until we reach the $\frac{n-1}{2}^{th}$ row.

Now assign the labels $-1, -2, -3, \cdots, -m$ respectively to the vertices $a_{\frac{n+1}{2}1}, a_{\frac{n+1}{2}2}, a_{\frac{n+1}{2}3}, \cdots, a_{\frac{n+1}{2}m}$ and assign the labels $-(m+1), -(m+2), -(m+3), \cdots, -2m$ to the vertices $a_{\frac{n+3}{2}1}, a_{\frac{n+3}{2}2}, a_{\frac{n+3}{2}3}, \cdots, a_{\frac{n+3}{2}m}$ respectively. Next assign the labels $-(2m+1), -(2m+2), -(2m+3), \cdots, -3m$ respectively to the vertices $a_{\frac{n+5}{2}1}, a_{\frac{n+5}{2}2}, a_{\frac{n+5}{2}3}, \cdots, a_{\frac{n+5}{2}m}$. Proceeding this process util we reach the $n-1^{th}$ row . Now assign the labels $(\frac{mn-m}{2}+1), (\frac{mn-m}{2}+2), (\frac{mn-m}{2}+3), \cdots, \frac{mn-1}{2}$ respectively to the vertices $a_{n1}, a_{n2}, a_{n3}, \cdots, a_{n\frac{m-1}{2}}$ and assign the labels $-(\frac{mn-m}{2}+1), -(\frac{mn-m}{2}+3)$ to the vertices $a_{n\frac{m+1}{2}}, a_{n\frac{m+3}{2}}$ and assign the labels $-(\frac{mn-m}{2}+2), -(\frac{mn-m}{2}+4)$ to the vertices $a_{n\frac{m+5}{2}}, a_{n\frac{m+7}{2}}$ respectively . Next assign the labels $-(\frac{mn-m}{2}+5), -(\frac{mn-m}{2}+7)$ to the vertices $a_{n\frac{m+5}{2}}, a_{n\frac{m+11}{2}}$ respectively and assign the labels $-(\frac{mn-m}{2}+5), -(\frac{mn-m}{2}+8)$ respectively to the vertices $a_{n\frac{m+1}{2}}, a_{n\frac{m+13}{2}}, a_{n\frac{m+15}{2}}$. Proceeding like this until reach the vertex $a_{n(m-1)}$. Clearly $-\frac{mn-1}{2}$ is the label of the vertex a_{nm-1} . Now assign the label $\frac{mn-3}{2}$ to the vertex a_{nm} .

Subcase 3. $m \equiv 2 \pmod{4}$.

As in subcase 2 of case 2, assign the labels to the vertices $a_{ij}, 1 \le i \le n-1, 1 \le j \le m$. Now assign the labels $-(\frac{mn-m}{2}+1), -(\frac{mn-m}{2}+2), -(\frac{mn-m}{2}+3), \cdots, -\frac{mn}{2}$ respectively to the vertices $a_{n1}, a_{n2}, a_{n3}, \cdots, a_{n\frac{m}{2}}$ and assign the labels $(\frac{mn-m}{2}+1), (\frac{mn-m}{2}+2), (\frac{mn-m}{2}+1)$

3), \cdots , $\frac{mn-4}{2}$ to the vertices $a_{n\frac{m+2}{2}}, a_{n\frac{m+4}{2}}, a_{n\frac{m+6}{2}}, \cdots, a_{n(m-2)}$ respectively. Next assign the labels $\frac{mn}{2}, \frac{mn-2}{2}$ to the vertices $a_{n(m-1)}, a_{nm}$ respectively.

The Table 2 given below establish that this vertex labeling f is a pair difference cordial of Grid graph for the values of $n \equiv 1 \pmod{4}$.

Case 3. $n \equiv 2 \pmod{4}$.

Nature of m	$\Delta_{f_1^c}$	Δ_{f_1}
$m \equiv 0 \pmod{4}$	$\frac{2mn-m-n-1}{2}$	$\frac{2mn-m-n+1}{2}$
$m \equiv 1 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$
$m \equiv 2 \pmod{4}$	$\frac{2mn-m-n-1}{2}$	$\frac{2mn-m-n+1}{2}$
$m \equiv 3 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$

Table 2:

Subcase 1. $m \equiv 1 \pmod{4}$.

We know that $P_n \times P_m \cong P_m \times P_n$, then assign the labels assign in Subcase 3 of case 2. Now Consider the remaining cases.

We assign the labels $1,2,3,\cdots,m$ respectively to the vertices $a_{11},a_{12},a_{13},\cdots,a_{1m}$ and assign the labels $2m,2m-1,2m-2,\cdots,(m+1)$ to the vertices $a_{21},a_{22},a_{23},\cdots,a_{2m}$ respectively. Next assign the labels $2m+1,2m+2,2m+3,\cdots,3m$ respectively to the vertices $a_{31},a_{32},a_{33},\cdots,a_{3m}$ and assign the labels $4m,4m-1,4m-2,\cdots,(3m+1)$ to the vertices $a_{41},a_{42},a_{43},\cdots,a_{4m}$ respectively. Proceeding like this until we reach the $\frac{n-2}{4}^{th}$ row. Next assign the labels $4m+1,4m+2,4m+3,\cdots,5m$ respectively to the vertices $a_{51},a_{52},a_{53},\cdots,a_{5m}$ and assign the labels $5m+1,5m+2,5m+3,\cdots,6m$ respectively to the vertices $a_{61},a_{62},a_{63},\cdots,a_{6m}$. Proceed this process until we reach the $\frac{n}{2}^{th}$ row.

Now assign the labels $-1,-2,-3,\cdots,-m$ respectively to the vertices $a_{\frac{n+1}{2}1},a_{\frac{n+1}{2}2},a_{\frac{n+1}{2}3},\cdots,a_{\frac{n+1}{2}m}$ and assign the labels $-(m+1),-(m+2),-(m+3),\cdots,-2m$ to the vertices $a_{\frac{n+3}{2}1},a_{\frac{n+3}{2}2},a_{\frac{n+3}{2}3},\cdots,a_{\frac{n+3}{2}m}$ respectively. Next assign the labels $-(2m+1),-(2m+2),-(2m+3),\cdots,-3m$ respectively to the vertices $a_{\frac{n+5}{2}1},a_{\frac{n+5}{2}2},a_{\frac{n+5}{2}2},a_{\frac{n+5}{2}3},\cdots,a_{\frac{n+5}{2}m}$. Proceeding this process util we reach the $n-1^{th}$ row .

Subcase 2. $m \equiv 0 \pmod{4}$.

Next we assign the labels $-\frac{mn}{2}, -\frac{mn-2}{2}, -\frac{mn-4}{2}, -\frac{mn-6}{2}, \cdots \frac{-mn+2m-10}{2}$ to the vertices $a_{n1}, a_{n2}, a_{n3}, \cdots, a_{n(m-4)}$ respectively and assign the labels $\frac{-mn+2m-8}{2}, \frac{-mn+2m-4}{2}, \frac{-mn+2m-6}{2}, \frac$

Subcase 3. $m \equiv 2 \pmod{4}$.

Next assign the labels to the last row vertices. We assign the labels $-(\frac{mn-2m}{2}+1)$, $-(\frac{mn-2m}{2}+2)$, $-(\frac{mn-2m}{2}+3)$, $\cdots - \frac{mn-m}{2}$ to the vertices $a_{n1}, a_{n2}, a_{n3}, \cdots, a_{n\frac{m}{2}}$ respectively. Now assign

the labels $-(\frac{mn-m}{2}+1)$, $-(\frac{mn-m}{2}+3)$ respectively to the vertices $a_n\frac{m+2}{2}$, $a_n\frac{m+4}{2}$ and assign the labels $-(\frac{mn-m}{2}+2)$, $-(\frac{mn-m}{2}+4)$ to the vertices $a_n\frac{m+6}{2}$, $a_n\frac{m+8}{2}$ respectively. Next assign the labels $-(\frac{mn-m}{2}+5)$, $-(\frac{mn-m}{2}+7)$ respectively to the vertices $a_n\frac{m+10}{2}$, $a_n\frac{m+12}{2}$ and assign the labels $-(\frac{mn-m}{2}+6)$, $-(\frac{mn-m}{2}+8)$ to the vertices $a_n\frac{m+14}{2}$, $a_n\frac{m+16}{2}$ respectively. Proceeding like this until reach the vertex $a_{n(m-3)}$. Clearly the vertex $a_{n(m-3)}$ receive the label $-\frac{mn-m-4}{2}$. Now we assign the labels $-\frac{mn-m-6}{2}$, $-\frac{mn-m}{2}$, $-\frac{mn-m-2}{2}$ respectively to the vertices $a_{n(m-2)}$, $a_{n(m-1)}$, a_{nm} .

Subcase 4. $m \equiv 3 \pmod{4}$.

Next we assign the labels $-(\frac{mn-2m}{2}+1), -(\frac{mn-2m}{2}+2), -(\frac{mn-2m}{2}+3), \cdots, -\frac{mn-m-1}{2}$ to the vertices $a_{n1}, a_{n2}, a_{n3}, \cdots, a_{n\frac{m-1}{2}}$ respectively. Now we assign the labels $-(\frac{mn-2m}{2}+1), -(\frac{mn-2m}{2}+3)$ to the vertices $a_{n\frac{m+1}{2}}, a_{n\frac{m+3}{2}}$ and assign the labels $-(\frac{mn-2m}{2}+2), -(\frac{mn-2m}{2}+4)$ to the vertices $a_{n\frac{m+5}{2}}, a_{n\frac{m+7}{2}}$ respectively. Proceeding like this until we reach the vertex $a_{n(m-1)}$. Clearly the vertex $a_{n(m-1)}$ receive the label $-\frac{mn-m-1}{2}$. Now we assign the label $\frac{mn-m-1}{2}$ to the vertex a_{nm} .

The Table 3 given below establish that this vertex labeling f is a pair difference cordial of Grid graph for the values of $n \equiv 2 \pmod{4}$.

Case 4. $n \equiv 3 \pmod{4}$.

Nature of m	Δ_{f_1}	$\Delta_{f_1^c}$
$m \equiv 0 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$
$m \equiv 1 \pmod{4}$	$\frac{2mn-m-n+1}{2}$	$\frac{2mn-m-n-1}{2}$
$m \equiv 2 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$
$m \equiv 3 \pmod{4}$	$\frac{2mn-m-n-1}{2}$	$\frac{2mn-m-n+1}{2}$

Table 3:

Subcase 1. $m \equiv 0 \pmod{4}$.

Since $P_n \times P_m \cong P_m \times P_n$, assign the labels assign in Subcase 4 of case 1.

Subcase 2. $m \equiv 1 \pmod{4}$.

Clearly $P_n \times P_m \cong P_m \times P_n$. We now assign the labels assign in Subcase 4 of case 2.

Subcase 3. $m \equiv 2 \pmod{4}$.

We know that $P_n \times P_m \cong P_m \times P_n$. The vertex labeling in Subcase 4 of case 3 is also pair difference cordial labeling for this case also.

Subcase 4. $m \equiv 3 \pmod{4}$.

First we assign the labels $1,2,3,\cdots,m$ respectively to the vertices $a_{11},a_{12},a_{13},\cdots,a_{1m}$ and assign the labels $2m,2m-1,2m-2,\cdots,(m+1)$ to the vertices $a_{21},a_{22},a_{23},\cdots,a_{2m}$ respectively. Next assign the labels $2m+1,2m+2,2m+3,\cdots,3m$ respectively to the vertices $a_{31},a_{32},a_{33},\cdots,a_{3m}$ and assign the labels $4m,4m-1,4m-2,\cdots,(3m+1)$ to the vertices $a_{41},a_{42},a_{43},\cdots,a_{4m}$ respectively. Proceeding like this until we reach the $\frac{n-3}{4}^{th}$ row $a_{\frac{n-3}{4}i},\leq i\leq m$. Next assign the labels $4m+1,4m+2,4m+3,\cdots,5m$ respectively to the vertices $a_{51},a_{52},a_{53},\cdots,a_{5m}$ and assign the labels $5m+1,5m+2,5m+3,\cdots,6m$ respectively to the vertices $a_{61},a_{62},a_{63},\cdots,a_{6m}$. Proceed this process until we reach the $\frac{n-1}{2}^{th}$ row.

Now assign the labels $-1, -2, -3, \cdots, -m$ respectively to the vertices $a_{\frac{n+1}{2}1}, a_{\frac{n+1}{2}2}, a_{\frac{n+1}{2}3}, \cdots, a_{\frac{n+1}{2}m}$ and assign the labels $-(m+1), -(m+2), -(m+3), \cdots, -2m$ to the vertices $a_{\frac{n+3}{2}1}, a_{\frac{n+3}{2}2}, a_{\frac{n+3}{2}3}, \cdots, a_{\frac{n+3}{2}m}$ respectively. Next assign the labels $-(2m+1), -(2m+2), -(2m+3), \cdots, -3m$ respectively to the vertices $a_{\frac{n+5}{2}1}, a_{\frac{n+5}{2}2}, a_{\frac{n+5}{2}2},$

 $a_{\frac{n+5}{2}3},\cdots,a_{\frac{n+5}{2}m}$. Proceeding this process util we reach the $n-1^{th}$ row . Now assign the labels $(\frac{mn-m}{2}+1),(\frac{mn-m}{2}+2),(\frac{mn-m}{2}+3),\cdots,\frac{mn-1}{2}$ respectively to the vertices $a_{n1},a_{n2},a_{n3},\cdots,a_{n\frac{m-1}{2}}$ and assign the labels $-(\frac{mn-m}{2}+1),-(\frac{mn-m}{2}+3)$ to the vertices $a_{n\frac{m+1}{2}},a_{n\frac{m+3}{2}}$ and assign the labels $-(\frac{mn-m}{2}+2),-(\frac{mn-m}{2}+4)$ to the vertices $a_{n\frac{m+5}{2}},a_{n\frac{m+7}{2}}$ respectively . Next assign the labels $-(\frac{mn-m}{2}+5),-(\frac{mn-m}{2}+7)$ to the vertices $a_{n\frac{m+9}{2}},a_{n\frac{m+11}{2}}$ respectively and assign the labels $-(\frac{mn-m}{2}+6),-(\frac{mn-m}{2}+8)$ respectively to the vertices $a_{n\frac{m+13}{2}},a_{n\frac{m+15}{2}}$. Proceeding like this until reach the vertex $a_{n(m-1)}$. In this process $\frac{mn-1}{2}$ is the label of the vertex $a_{n(m-1)}$. Now assign the label $\frac{mn-1}{2}$ to the vertex a_{nm} . Note that the vertex $a_{n(m-1)}$ receive the label $\frac{mn-1}{2}$.

The Table 4 given below establish that this vertex labeling f is a pair difference cordial of Grid graph for the values of $n \equiv 3 \pmod{4}$.

Nature of m	$\Delta_{f_1^c}$	Δ_{f_1}
$m \equiv 0 \pmod{4}$	$\frac{2mn-m-n-1}{2}$	$\frac{2mn-m-n+1}{2}$
$m \equiv 1 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$
$m \equiv 2 \pmod{4}$	$\frac{2mn-m-n+1}{2}$	$\frac{2mn-m-n-1}{2}$
$m \equiv 3 \pmod{4}$	$\frac{2mn-m-n}{2}$	$\frac{2mn-m-n}{2}$

Table 4:

Theorem 7. The mangolian tent $M_{m,n}$ is pair difference cordial for all m and odd values of $n \geq 3$.

Proof. Let the vertex set and edge set taken from the definition 2.3 . Case 1. m is even.

Assign the labels $1, 2, 3, \dots, n$ respectively to the vertices $a_{11}, a_{12}, a_{13}, \dots, a_{1n}$ and assign the labels $2n, 2n-1, 2n-2, \dots, n+1$ to the vertices $a_{21}, a_{22}, a_{23}, \dots, a_{2n}$ respectively. Next assign the labels $2n+1, 2n+2, 2n+3, \dots, 3n$ respectively to the vertices $a_{31}, a_{32}, a_{33}, \dots, a_{3n}$ and assign the labels $4n, 4n-1, 4n-2, \dots, 3n+1$ respectively to the vertices $a_{41}, a_{42}, a_{43}, \dots, a_{4n}$. Proceeding like this until we reach the $\frac{m}{2}$ row.

Now we assign the labels $-1, -2, -3, \cdots, -n$ respectively to the vertices $a_{\frac{m+2}{2}1}, a_{\frac{m+2}{2}2}, a_{\frac{m+2}{2}3}, \cdots, a_{\frac{m+2}{2}n}$ and assign the labels $-(n+1), -(n+2), -(n+3), \cdots, -2n$ to the vertices $a_{\frac{m+4}{2}1}, a_{\frac{m+4}{2}2}, a_{\frac{m+4}{2}3}, \cdots, a_{\frac{m+4}{2}n}$ respectively. Next assign the labels $-(2n+1), -(2n+2), -(2n+3), \cdots, -3n$ respectively to the vertices $a_{\frac{m+6}{2}1}, a_{\frac{m+6}{2}2}, a_{\frac{m+6}{2}3}, \cdots, a_{\frac{m+6}{2}n}$ and assign the labels $-(3n+1), -(3n+2), -(3n+3), \cdots, -4n$ respectively to the vertices $a_{\frac{m+8}{2}1}, a_{\frac{m+8}{2}2}, a_{\frac{m+8}{2}3}, \cdots, a_{\frac{m+8}{2}n}$. Proceeding like this until we reach the $m-1^{th}$ row.

Next assign the labels $-\frac{mn}{2}$, $-\frac{mn-2}{2}$, $-\frac{mn-4}{2}$, \cdots , $-\frac{mn-2m}{2}$ to the vertices $a_{m1}, a_{m2}, a_{m3}, \cdots$, a_{mn} . Next assign the label $\frac{mn}{2}$ to the vertex a.

Case 2. m is odd.

Assign the labels $1, 2, 3, \dots, n$ respectively to the vertices $a_{11}, a_{12}, a_{13}, \dots, a_{1n}$ and assign the labels $2n, 2n-1, 2n-2, \dots, n+1$ to the vertices $a_{21}, a_{22}, a_{23}, \dots, a_{2n}$ respectively. Next assign the labels $2n+1, 2n+2, 2n+3, \dots, 3n$ respectively to the vertices $a_{31}, a_{32}, a_{33}, \dots, a_{3n}$ and assign the labels $4n, 4n-1, 4n-2, \dots, 3n+1$ respectively to the vertices $a_{41}, a_{42}, a_{43}, \dots, a_{4n}$. Proceeding like this until we reach the $\frac{m-1}{2}^{th}$ row.

We now assign the labels $-1, -2, -3, \cdots, -n$ respectively to the vertices $a_{\frac{m+1}{2}1}, a_{\frac{m+1}{2}2}, a_{\frac{m+1}{2}3}, \cdots, a_{\frac{m+1}{2}n}$ and assign the labels $-(n+1), -(n+2), -(n+3), \cdots, -2n$ to the vertices $a_{\frac{m+3}{2}1}, a_{\frac{m+3}{2}2}, a_{\frac{m+3}{2}3}, \cdots, a_{\frac{m+3}{2}n}$ respectively. Next assign the labels $-(2n+1), -(2n+2), -(2n+3), \cdots, -3n$ respectively to the vertices $a_{\frac{m+5}{2}1}, a_{\frac{m+5}{2}2}, a_{\frac{m+5}{2}3}, \cdots, a_{\frac{m+5}{2}n}$ and assign the labels $-4n, -(4n-1), -(4n-2), \cdots, -(3n+1)$ respectively to the vertices $a_{\frac{m+7}{2}1}, a_{\frac{m+7}{2}2}, a_{\frac{m+7}{2}3}, \cdots, a_{\frac{m+7}{2}n}$. Proceeding like this until we reach the $(m-2)^{th}$ row.

Next assign the labels $-\frac{mn-n}{2}, -\frac{mn-n-2}{2}, -\frac{mn-n-4}{2}, \cdots, -\frac{mn-3n}{2}$ to the vertices $a_{(m-1)1}, a_{(m-1)2}, a_{(m-1)3}, \cdots, a_{(m-1)n}$ and assign the labels $-(\frac{mn-n}{2}+1), -(\frac{mn-n}{2}+2), -(\frac{mn-n}{2}+3), \cdots, -\frac{mn+1}{2}$ to the vertices $a_{m1}, a_{m2}, a_{m3}, \cdots, a_{m\frac{n+1}{2}}$. Finally assign the labels $-(\frac{mn-n}{2}+1), -(\frac{mn-n}{2}+2), -(\frac{mn-n}{2}+3), \cdots, \frac{mn-1}{2}$ to the vertices $a_{m\frac{n+3}{2}}, a_{m\frac{n+5}{2}}, a_{m\frac{n+7}{2}}, \cdots, a_{mn}$ and assign the label $\frac{mn+1}{2}$ to the vertex a.

The Table 5 given below establish that this vertex labeling f is a pair difference cordial of the mangolian tent for all m and odd values of n.

Nature of m	$\Delta_{f_1^c}$	Δ_{f_1}
m is odd	$\frac{2mn-m+1}{2}$	$\frac{2mn-m-1}{2}$
m is even	$\frac{2mn-m}{2}$	$\frac{2mn-m}{2}$

Table 5:

References

- [1] Cahit, I., Cordial Graphs: A weaker version of Graceful and Harmonious graphs, *Ars combin.*, **23** (1987), 201–207.
- [2] Gallian, J.A., A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics.*, **19**, (2016).
- [3] Graham, R.L., and N.J, A.Solane., On additive bases and harmonious graphs, SIAM J. Alg. Disrete Methods., 1, (1980)382–404.
- [4] Harary, F., Graph theory, Addision wesley, New Delhi, 1969.
- [5] Ponraj,R., Gayathri,A., and Somasundaram,S., Pair difference cordial labeling of graphs, J. Math. Comp. Sci. Vol. 11(3), (2021), 2551–2567.
- [6] Ponraj,R., Gayathri,A., and Somasundaram,S., Pair difference cordiality of some snake and butterfly graphs, *Journal of Algorithms and Computation*, Vol.53(1), (2021), 149–163.
- [7] Ponraj,R., Gayathri,A., and Somasundaram,S., Pair difference cordial graphs obtained from the wheels and the paths, *J. Appl. and Pure Math.*, **Vol.3 No. 3-4**, (2021), pp. 97–114.
- [8] Ponraj,R., Gayathri,A., and Somasundaram,S., Pair difference cordiality of some graphs derived from ladder graph, J.Math. Comp.Sci., Vol.11 No 5, (2021), 6105– 6124.
- [9] Ponraj,R., Gayathri,A., and Somasundaram,S., Some pair difference cordial graphs, *Ikonion Journal of Mathematics.*, Vol.3(2), (2021),17–26.
- [10] Ponraj,R., Gayathri,A., and Somasundaram,S., Pair difference coordiality of some speecial graphs, J. Appl. and Pure Math., Vol.3 No. 5-6, (2021), pp. 263–274.
- [11] Rosa, A., On certain Valuations of the vertices of a graph, Theory of Graphs, *International Symposium*, Rome., July, (1967) 349–345.