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Abstract  

Closed form solutions are derived in this paper for Navier’s equations for axisymmetric elastic half-space 
problems. They are solved assuming body forces are disregarded.  The Boussinesq problem is considered. 
The displacements are used to obtain the stress fields. The shear stress-free boundary conditions on the 
boundary plane and the equilibrium of vertical stress and applied load are used to completely determine 
displacements and stresses. Other axisymmetric load problems considered are: (i) uniform (ii) conical (iii) 
inverted conical distributions. In each case, the Boussinesq solution is used as a Green function, yielding 
the vertical stress field as double integration problem. The vertical stress field for uniform load is obtained 
in terms of complete elliptic integrals of the second and third kinds. The vertical stress distribution under 
the center of a circular foundation under uniform load is obtained as a particularization of the solution for 
vertical stress at any point in the elastic half-space. The same result is derived by using the point load 
solution as an integral Kernel function. For conical distribution of load, the point load solution is used as 
a Green function, reducing the problem to double integration. The closed form expressions obtained for 
the vertical stress distributions under the center of the circular foundation for all the axisymmetrical load 
distributions considered are radially symmetrical functions; which agree with the symmetrical nature of 
the problem. The results obtained for all the load types considered are identical with previous results found 
in the literature. 

Keywords: Navier’s differential equations of equilibrium, Axisymmetric elasticity problem, Classical 
Boussinesq problem, Elastic half-space 
 

Introduction   

Background 

Elasticity problems of the elastic half-space which involve the determination of the stress fields, 
and displacement fields within the half-space due to point and distributed loads acting on the 
boundary are problems of the classical mathematical theory of elasticity [1 – 21]. The elastic 
half-space material can be assumed to be isotropic or non-isotropic, or orthogonally isotropic 
(orthotropic); homogeneous or heterogeneous. Elastic half-space problems of heterogeneous, 
non-isotropic materials are usually very difficult to solve and in many of such problems, rigorous 
mathematical solutions are not available [1 – 14]. 

Elastic half-space problems are extensively encountered in the analysis and design of foundation 
structures, or structural footings, and road pavements. Axisymmetric elasticity problems of the 
elastic half-space are characterized by a circular symmetry of the state of the stress about a 
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vertical axis, usually the vertical axis of symmetry of the applied point or distributed load. In 
general, in axially symmetric elasticity problems, the stress fields have a radial symmetry about 
a vertical axis of symmetry, which is usually the axis of application of the point load for the 
Boussinesq problem or the vertical axis of the centre of the circular foundation for the case of 
circular foundation areas subject to radially symmetric load distributions. 

Typical cases of axisymmetric elasticity problems are: 

(i)  the Boussineq problem of finding stress and displacement fields due to a vertical point 
load applied at the origin of an elastic half-space considered homogeneous, isotropic and 
linear elastic 

(ii)  finding stress and displacement fields in elastic half-space due to circular foundation areas 
subject to radially symmetric load distributions such as (a) uniformly distributed loads, 
and (b) conical load distribution. 

Axially symmetric elasticity problems are governed by the simultaneous requirements of the 
differential equations of equilibrium, the strain displacement relations and the constitutive 
equations that relate stresses to strains. These governing systems of equations are also required 
to satisfy the compatibility equations and the traction and deformation boundary conditions [1 – 
21]. Closed form solutions of axisymmetric elasticity problems expectedly involve intensive 
analytical rigours, and are often unwieldly.  

Three basic methods are used in the formulation of the governing equations of axially symmetric 
elasticity problems and they yield simplifications in the resulting governing equations to be 
solved. The three methods are the displacement method, the stress method and the mixed (hybrid) 
method [1 – 15]. The displacement methods are based on reformulation of the system of 
governing equations involving the differential equations of equilibrium, the kinematics equations 
and the material constitutive equations such that the stresses and strains components are 
eliminated, and the displacement components become the only unknown primary variables of the 
formulation. The governing equations are consequently reduced in number rendering the problem 
more amenable to solution. The displacement formulation was presented by Navier and Lamé 
and the resulting equations called the Navier displacement equations or the Lamé displacement 
equations. 

In the stress-based methods, the system of governing equations that are expressed using stresses, 
strains and displacement components as the unknowns are reformulated such that the strains and 
displacements are eliminated and stresses are the only unknown primary variables. Consequently, 
the number of equations becomes reduced rendering the solution process to be easier. 

Researchers such as Beltrami, Michell, Airy, Maxwell, Ike and Morera presented stress-based 
methods. In the mixed (hybrid) method, which is not commonly applied, the governing equations 
are formulated such that some components of displacement and some components of stress are 
the unknowns, and the rest of the displacement and stress components are eliminated. 

The simplifications consequential to the reformulation of the general elasticity problem have 
inspired research on the development of stress and displacement functions that satisfy the stress 
and displacement formulation of the elasticity problems [22 – 23]. Such functions further 
simplify the solutions of elasticity problems to the search for suitable stress or displacement 
potential functions that satisfy the boundary conditions of the considered problem. 
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Airy, Morera, Maxwell, Love, Ike, Michell, Nowacki, Egorov and Boussinesq have derived stress 
functions of the space variables that satisfy the elasticity problem governing equations. Elasticity 
problems of the elastic half-space for various cases of boundary loads have been studied using 
stress-based and displacement-based methods. Nwoji et al [22] used the Green and Zerna 
displacement potential function method to obtain the solutions for stress and displacements for 
the three-dimensional small deformation elasticity problem of a point load acting at a point on 
the boundary of a linear elastic, homogeneous, isotropic medium of semi-infinite extent
( , , 0 )x y z−∞ ≤ ≤ ∞ − ∞ ≤ ≤ ∞ ≤ ≤ ∞ .  Their formulation reduced the problem to one of finding a 

suitable harmonic function satisfying the loading/stress boundary conditions. They used the 
harmonic function, the strain displacement relations, and the stress-strain relations to determine 
the stress fields and the displacement fields. Nwoji et al [23] used the Boussinesq displacement 
potential functions to solve the elastic half-space problem for a point load acting at the origin of 
the three dimensional Cartesian coordinate space. They found the displacement field components 
from the Boussineq potential functions using Love’s expressions; and then used simultaneously 
the kinematics and material constitutive laws (relations) to obtain the stress fields from the 
displacement fields. They obtained solutions that were identical with solutions from the literature. 

Ike et al [21] used the Trefftz potential function method to derive the solutions to the 3D elasticity 
problem of a point load acting at the origin of a linear elastic homogeneous, isotropic half-space. 
The Trefftz method simplified the problem to one of finding a suitable harmonic function of the 
space coordinates that is bounded and satisfies the loading and stress boundary conditions. The 
functions were used together with the kinematic and constitutive relations to obtain the stress and 
displacement fields. They obtained identical solutions as the Boussinesq solutions. Ike [14] used 
the Fourier-Bessel transformation method in a stress-based formulation to determine the vertical 
stress fields in axisymmetric elasticity problems of elastic half space involving circular 
foundation areas subject to uniformly distributed loads. The biharmonic stress compatibility 
equation was solved using the variable-separable technique to obtain a general solution for the 
bounded stress functions as Fourier-Bessel integrals. Egorov expressions for the vertical stress 
fields defined in terms of harmonic functions were used to obtain the vertical stress fields. The 
load distribution was similarly transformed by the Fourier-Bessel transformation. Enforcement 
of the boundary condition of the equilibrium of the internal vertical stress at the z = 0 plane and 
the applied load was used to obtain the unknown parameter of the bounded Fourier-Bessel 
transform integral, and hence the bounded stress function was completely found. The vertical 
stress fields were determined from the bounded stress function using Egorov expressions. 
Evaluation of the integration problem gave analytical expressions for the vertical stress fields in 
the elastic half-space. The vertical stresses at any point under the center and at any point at a 
radial distance r at a depth z were computed and tabulated. The mathematical expressions 
obtained were identical with those found in the literature, thus validating the study. 

Ike [17] used the Hankel transform method to derive general solutions for the stress and 
displacement fields in semi-infinite, linear elastic, isotropic soil under axisymmetric load. Hankel 
transformation was applied to the governing equations in a stress-based formulation to obtain the 
Love stress function. Hankel transformation was similarly applied to the stress and displacement 
fields to obtain general solutions for the stresses and displacements. The general solutions 
obtained were used to solve the specific axisymmetric problem of Boussinesq, and it was found 
that the solutions agreed with the literature. Ike [18] also used the Hankel transform method to 
derive solutions for stresses and displacement fields in homogeneous, isotropic linear elastic half-
space subject to uniformly distributed axisymmetric load over a circular area on the boundary (z 
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= 0 plane). Hankel transformation of the biharmonic stress compatibility equation was done to 
obtain bounded stress functions for the elastic half-space problem. Hankel transformations were 
similarly applied to the Love stress functions yielding the stresses and displacements in the 
Hankel transform space. Boundary conditions were used to obtain the unknown constants of the 
stress function. Inversion of the Hankel transform expressions for the stresses and displacements 
gave the corresponding expressions in the physical domain space, which were found to be 
identical with the results of previous research works which applied other different methodologies. 

Onah et al [24] used the Boussinesq displacement potential functions to determine the vertical 
stress distribution and the vertical displacements in linear elastic, homogeneous, isotropic elastic 
half space due to uniformly distributed load applied over a rectangular area, and obtained results 
identical to those previously obtained by Newmark and Steinbrenner. More research work on the 
elasticity problems of the elastic half-plane and elastic half-space using Fourier transform 
methods, Mellin transform method, and exponential Fourier integral transform method can be 
found in Onah et al [25 – 26] and Ike [27 – 30]. Onah et al [31] derived from first principles 
displacement and stress functions for solving three-dimensional elasticity problems. Ike [32-34] 
solved two-and three-dimensional elasticity problems using such novel methods as Elzaki 
transform method, Fourier cosine transform method, and cosine integral transformation method. 
Ike et al [35] applied Trefftz displacement potential function method to solve elastic half-space 
problems. Ike[36] applied the Fourier integral transformation method to find solutions to two-
dimensional elasticity problems for plane strain conditions by using Love stress functions. 

In this work, the Navier’s differential equations of equilibrium for axisymmetric problems of the 
elastic half-space are solved analytically to obtain solutions for the general axisymmetric load; 
and particular solution to the Boussinesq axisymmetric problem. The solutions for vertical stress 
distribution for the point load at the origin is then used as Green (Kernel) function to derive 
solutions for vertical stress for other axisymmetric load cases. 

 

Research aim and objectives 

The research aim is the determination of closed form solutions of the Navier’s equations for 
axisymmetric elasticity problems of the elastic half-space, and the vertical stress distributions for 
axisymmetric elasticity problems for various axisymmetric load types. The objectives are as 
follows: 

(i) to obtain the general mathematical solution to the Navier’s differential equation for the 
elastic half space expressed in cylindrical coordinates system when body forces are 
disregarded. 

(ii) to obtain the solution to the Navier’s differential equations of equilibrium for the 
axisymmetric case of point load acting at the origin on the elastic half-space as shown in 
Figure 1. 

(iii) to use the vertical stress distributions solutions obtained for the Boussinesq point load 
problem as Green functions to obtain the vertical stress distributions: (a) at any point (r, 
z) in the elastic half-space due to circular foundation areas subject to uniformly distributed 
load over the entire domain of the foundation which is shown in Figure 2; (b) at any point 
(r = 0, z) under the center of the circular foundation area subject to uniformly distributed 
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load; (c) at any point under the center of a circular foundation area due to a conical load 
distribution (load intensity varies from zero at the center to a maximum at the perimeter) 
shown in Figure 3; (d) at any point under the center of a circular foundation area due to 
an inverted conical load distribution (load intensity varies linearly from a maximum at 
the center to zero at the perimeter or circumference) shown in Figure 4. 

 

Figure 1: Axisymmetric problem of point load at the origin O on an elastic half-space (–∞ ≤ x 
≤ ∞; –∞ ≤ y ≤ ∞; 0 ≤ z ≤ ∞). (0 ≤ r ≤ ∞; 0 ≤ z ≤ ∞; 0 ≤ θ ≤ 2π) 

 

 

Figure 2: Axisymmetric problem of circular foundation of radius R0 subject to uniformly 
distributed load q(r) = q0 

 



Journal of Computational Applied Mechanics 2021, 52(4): 588-618 593 
 

 

 

Figure 3: Axisymmetric problem of circular foundation of radius R0 subject to a conical load 
distribution q(r) = q1r/R0 (where q(r = 0) = 0; q(r = R0) = q1) 

 

 

Figure 4: Axisymmetric problem of circular foundation of radius R0 subject to an inverted 
conical load distribution given by q(r) = qmax (1 –  r/R0) (where q(r = 0) = qmax; and q(r = R0) = 

0) 

Theoretical framework   

Governing equations 

In axisymmetric elasticity problems of the elastic half-space (–∞ ≤ x ≤ ∞; –∞ ≤ y ≤ ∞; 0 ≤ z ≤ ∞) 
or (0 ≤ r ≤ ∞; 0 ≤ z ≤ ∞; 0 ≤ θ ≤ 2π) where  x, y, and z are the three dimensional (3D) Cartesian 
coordinates, and r, θ, z are the cylindrical polar coordinates, the displacement field v

r
 is axially 

symmetric with respect to the z coordinate axis, yielding the displacement vector as: 

( ( , ), 0, ( , )) ( , ) ( , )r r r zv u r z w r z u r z i w r z i= = +r
        (1) 

Since 0uθ =             (2) 

ur(r, z) is the radial component, uθ is the tangential component, and w(r, z) is the z component of 
the displacement, ir is the unit vector in the radial coordinate direction, iz is the unit vector in the 
z coordinate direction, r is the radial coordinate, θ is the tangential coordinate while z is the depth 
(transverse) coordinate. 
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Navier’s equations of equilibrium for axisymmetric elastostatic problems 

The Navier’s differential equation for the displacement formulation of 3D elastostatic problems 
is given in vector form as: 

2 ( ) ( ) 0G v G v F∇ + λ + ∇ ∇ ⋅ + =
rr

         (3) 

where G is the shear modulus or modulus of rigidity, λ is the Lamé constant, F
r

 is the body force 
vector, and 

i j k
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

           (4) 

where i, j, k are the unit vectors of the 3D Cartesian coordinates system, while 
2 2

2
2 2

1

r rr z

∂ ∂ ∂∇ = + +
∂∂ ∂

          (5) 

The elastic constants λ and G are expressed in terms of Young’s modulus of elasticity E and 
Poisson’s ratio, µ, as: 

(1 )(1 2 )

Eµλ =
+ µ − µ

           (6) 

2(1 )

E
G =

+ µ
            (7) 

For axisymmetric elastostatic problems, Navier’s equations of equilibrium are given by the 
following system of partial differential equations (PDEs): 

2
2

( , )
( , ) r

r
u r z

G u r z
r

 ∇ − + 
 

 
( , ) ( , ) ( , )

( ) ( , ) 0r r
r

u r z u r z w r z
G F r z

r r r z

∂∂ ∂ λ + + + + = ∂ ∂ ∂ 
  (8)  

for equilibrium in the radial direction, and  

2 ( , ) ( , )
( , ) ( ) r ru r z u r z

G w r z G
z r r

∂∂ ∇ + λ + + +∂ ∂

( , )
( , ) 0z

w r z
F r z

z

∂  + =∂ 
     (9) 

for equilibrium in the z coordinate direction. 
Fr(r, z) is the radial component of the body force vector while Fz(r, z) is the z component of the 
body force vector. 

 

Kinematic equations 

For linear small (infinitesimal) displacement elasticity, the strain-displacement equations for 
axisymmetric elasticity problems are given by: 

( , )r
rr

u
r z

r

∂ε =
∂

            (10) 

( , )ru
r z

rθθε =             (11) 

( , )zz
w

r z
z

∂ε =
∂

            (12) 

( , )( , ) r
rz

u r zw r z

r z

∂∂γ = +
∂ ∂

          (13) 

where εrr is the radial strain, εθθ is the circumferential strain, εzz is the strain in the z coordinate 
direction, γrz is the shear strain. 
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Constitutive equations 

The Hooke’s stress-strain relations for axisymmetric elasticity problems expressed in terms of 
Lamé’s constants are given by: 

( ) 2rr rr zz rrGθθσ = λ ε + ε + ε + ε         (14) 

( ) 2rr zz Gθθ θθ θθσ = λ ε + ε + ε + ε         (15) 

( ) 2zz rr zz zzGθθσ = λ ε + ε + ε + ε         (16) 

rz rz rzGσ = τ = γ           (17) 

σrr is the radial stress, σθθ is the circumferential stress, σzz is the normal stress in the z coordinate 
direction, σrz (or τrz) is the shear stress. 

 

Methodology  

We denote the volumetric strain as ϕ  and then have: 

rr zz vθθε + ε + ε = ϕ = ∇ ⋅ r          (18) 

The Navier’s equation can then be expressed in general as: 
2 ( ) 0G v G F∇ + λ + ∇ϕ + =          (19) 

From the Navier differential equation of equilibrium, if body forces are disregarded and harmonic 
displacement field ,v

r
assumed we have: 

2 0∇ ϕ =            (20) 

The most elementary potential function φ of the 3D space coordinates that is a potential function 
at every point in the elastic half-space geometry (– ∞ ≤ x ≤ ∞; – ∞ ≤ y ≤ ∞; 0 ≤ z ≤ ∞) of the 
Boussinesq and other axisymmetric elasticity problems except at the origin (x = 0, y = 0, z = 0) 
of the coordinates is expressed by: 

1
1

c v
z R

∂  ϕ = = ∇ ⋅ ∂  

r
          (21) 

where 2 2 2 2 2 2R x y z r z= + + = +         (22) 
2 2 2r x y= +            (23) 

and c1 is a constant. 
The Navier differential equation of equilibrium in the z direction, is given as: 

2 ( , ) ( ) ( , ) ( , ) 0zG w r z G r z F r z
z

∂∇ + λ + ϕ + =
∂

       (24) 

In the absence of body forces or when the body force component in the Fz direction is disregarded, 
the Navier differential equation of equilibrium in the z direction simplifies to: 

2 ( , ) ( ) ( , ) 0G w r z G r z
z

∂∇ + λ + ϕ =
∂

        (25) 

Hence, 
2

2
1 2

1
( , ) ( , )

G G
w r z r z c

G z G Rz

λ + ∂ λ + ∂     ∇ = − ϕ = −     ∂ ∂     
     (26) 
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2

2
1 5 3

3 1
( , )

G z
w r z c

G R R

 λ + ∇ = − −       
        (27) 

2
2 1

12 3

1 3
( , )

cG z G
w r z c

G G RR R

 λ + λ +    ∇ = − +    
     

      (28) 

This suggests that a suitable solution for w(r, z) would depend upon the functions 
2

3

z

R
 and 

1
.

R
  

We seek to find the general solution to the non-homogeneous partial differential equation (PDE) 
given as: 

2 2
2

2 2

1
( , )

w w w
w r z

r rr z

∂ ∂ ∂∇ = + +
∂∂ ∂

 ( )
2

2

1
( , )r

w G
rw r z

r r G zz

∂ ∂ λ + ∂ϕ = + = −  ∂ ∂∂  
   (29) 

The general solution to Equation (29) is obtained as the superposition of the homogeneous 
solution and the particular solution as: 

2

1 23

1
( , )

2

G z
w r z c c

G RR

λ + = + 
 

        (30) 

where c1 and c2 are the arbitrary constants of integration which can be obtained from the 
definition of the volumetric strain. 
From  

1
( )r

w
v ru

r r z

∂ ∂ϕ = ∇ ⋅ = +
∂ ∂

         (31) 

In order to avoid singularity in the radial displacement function ur(r, z), we seek to obtain ur(r, z) 
using the boundedness condition that as r → 0, ur → 0 for any z. Thus, ur(r → 0,  z) → 0 
By substitution of expressions for w(r, z) and φ(r, z) in Equation (31) we have: 

2

1 1 23

1 1 1
( )

2r
G z

c ru c c
z R r r z G RR

  ∂ ∂ ∂ λ +   = + +     ∂ ∂ ∂     
      (32) 

Equation (32) simplifies after evaluation of the partial derivatives to: 
3

1 1 23 3 5 3

1 2 3
( )

2r
z G z z z

c ru c c
r r GR R R R

 − ∂ λ + −     = + − +       ∂      
     (33) 

Hence,  
3

1 2 13 3 3 5

1 2 3
( )

2r
z z G z z

ru c c c
r r GR R R R

 ∂ − − λ +     = − − −        ∂        
    (34) 

Simplification yields: 
3

2 1 13 3 5

1 2 3
( ) ( )

2r
z G z z

ru c c c
r r GR R R

 ∂ λ + = − − −    ∂    
      (35) 

Simplifying, 
3

2 1 13 3 5

2 3
( ) ( )

2r
zr G zr z r

ru c c c
r GR R R

 ∂ λ + = − − −    ∂    
      (36) 

Integrating with respect to r, 

2 1 13 3
( ) ( ) 2

2r
r G r

ru c c z dr c z dr
GR R

λ + ∂ = − − + 
 

∫ ∫ ∫
3

1 5
3

2

G r
c z dr

G R

λ + 
 
 

∫   (37) 

Hence, 

2 1 1
1 1

( ) 2
2r

G
ru c c z c z

R G R

λ +     = − − − − +     
     

3
1 33

1
3

2 3

G
c z c

G R

λ +   − +   
   

  (38) 
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where c3 is an integration constant. 
Simplifying, 

3

1 2 1 1 33

2
( )

2 2r
z G z G z

ru c c c c c
R G R G R

λ + λ +   = − + − +   
   

      (39) 

Further simplification yields: 
3

1 2 1 1 33

2

2 2r
z z G z G z

ru c c c c c
R R G R G R

λ + λ +   = − + − +   
   

      (40) 

3

1 2 1 33

2 2
1

2 2r
G z z G z

ru c c c c
G R R G R

λ + λ +   = + − − +   
   

      (41) 

3

1 2 1 33

2 4

2 2r
G z z G z

ru c c c c
G R R G R

λ + λ +   = − − + =   
   

  

  
3

1 2 1 33

2

2

G z z G z
c c c c

G R R G R

λ + λ +   − − +   
   

     (42) 

As r → 0, ur(r → 0, z) → 0 
Hence, R(r → 0) → z 

1 2 1 3
2

0
2

G G
c c c c

G G

λ + λ +   = − − +   
   

        (43) 

3 1 1 2
2

2

G G
c c c c

G G

λ + + λ   ∴ = − + =   
   

2 1
2

2

G G
c c

G G

λ + + λ + − = 
 

 

 2 1
4 2

2

G G
c c

G

λ + − − λ + = 
 

2 1
3

2

G
c c

G

− − λ + = 
 

 2 1
3

2

G
c c

G

+ λ −  
 

  (44) 

Thus, 

    (45) 

The two displacement field components are now determined in terms of two unknown constants 
c1 and c2. 

 

Results 

Boussinesq problem of vertical point load on an elastic half space 

For the Boussinesq problem of finding the stresses and displacements at any arbitrary point Ap(x, 
y, z) in an elastic half-space due to a vertical point load Q0 applied at the origin as shown in Figure 
1, the two constants of integration c1 and c2 which are present in ur(r, z) and w(r, z) are determined 
by using the shear stress free boundary conditions on the xy coordinate plane (i.e. z  = 0 plane) 
and the requirement of equilibrium of the internal vertical stress and the applied vertical point 
load. 
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Figure 5: Boussinesq problem: stress and displacement at Ap(x, y, z) due to vertical point load 

applied at the origin of an elastic half-space 
 
Stress field components 

The stress field components are obtained by using the stress-displacement equations given as 
follows: 
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Enforcement of shear stress free boundary condition 

The shear stress field on the z = 0 plane ( , ) 0rz r zτ =  is obtained as: 
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Application of the shear stress free boundary condition yields: 
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Vertical stress field 

The vertical stress field is obtained from Equation (48). Using Equation (66), 
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Equilibrium of internal vertical stress and applied vertical point load yields: 
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We evaluate the integration problem by introduction of coordinate transformation from 3D 
Cartesian to cylindrical coordinates, 
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where K(r/z) is the Boussinesq vertical stress influence coefficient which is presented in Table 1 
and Figure 11. 
 
 

Table 1: Boussinesq vertical stress influence coefficients K(r/z) for vertical point load at the 
origin on an elastic half-space. 

r/z K(r/z) r/z K(r/z) 
0 0.4775 1.10 0.0658 

0.05 0.4745 1.20 0.0513 
0.10 0.4657 1.30 0.0402 
0.15 0.4516 1.40 0.0317 
0.20 0.4329 1.50 0.0251 
0.25 0.4103 1.6 0.0200 
0.30 0.3849 1.7 0.0160 
0.35 0.3577 1.8 0.0129 
0.40 0.3294 1.9 0.0105 
0.45 0.3011 2.0 0.0085 
0.50 0.2733 2.5 0.0034 
0.55 0.2466 3 0.0015 
0.60 0.2214 4 0.0004 
0.65 0.1978 ∞ 0 
0.70 0.1762   
0.75 0.1565   
0.80 0.1386   
0.85 0.1226   
0.90 0.1083   
0.95 0.0956   
1.00 0.0844   
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The stresses are obtained from the stress-displacement relations as: 
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The displacements are: 
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On the surface of the soil, z = 0, 
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Vertical stress due to uniformly loaded circular foundation areas 

The vertical stress at any point, B, in an elastic half-space due to uniformly loaded circular 
foundation is obtained by using the Boussinesq point load solution for vertical stress as a Green 
function as follows: 
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π θ
σ =
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where from the cosine law (cosine rule),  
2 2 2 2 2 cosR r e z er= + + − θ          (106) 

R0 is the radius of the circular foundation. 
 
 

 

Figure 6: Vertical stress at point B due to a circular foundation carrying uniformly distributed 
load 
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Figure 7: Arbitrary point B in an elastic half-space for circular foundation subject to uniformly 
distributed load 

 
For uniformly distributed loads 
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Egorov and Serebjanyi [37] and Egorov [38] evaluated the complicated integration problem in 
Equation (107). Using Egorov’s results for the double integration problem, the vertical stress is 
obtained as follows: 
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in which, 
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 is presented in Table 2 and, 
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E(k) is the complete elliptic integral of the second kind with a modulus of k and parameter, m. 
П0(k1m) is the complete elliptic integral of the third kind with a modulus of k and parameter, m. 
The result obtained for vertical stress field σzz(r, z) are similar to results obtained by Harr [39]. 
Generally, the vertical stress at any arbitrary point (r, z) in an elastic half-space due to uniformly 
distributed load of intensity q0 applied over a circular foundation area of radius R0 is expressed 

in terms of non-dimensional vertical stress influence factors 
0 0
, zrI R R

 
 
 

 which depend upon 

the dimensionless ratios r/R0 and z/R0. 

A table of values for 
0 0
, zrI R R

 
 
 

 for various of r/R0 and z/R0 is presented in Table 2. 



604  Ike 

 
 

Vertical stress distribution under the center of circular foundation carrying uniformly distributed 
load 

The vertical stress distribution under the center of circular foundation subjected to uniformly 
distributed load can be obtained as a special case of the general solution presented in Equation 
(108) when r = 0, since r = 0 at all points under the center of the circular foundation. Then, 
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   (115)  

Table of values for 
1

0
c

RI z
 
 
 

 is given in Table 3. The same result for vertical stress distribution 

under the center of circular foundations subject to uniformly distributed loads is obtained by 
using the Boussinesq point load solution as the integral Kernel function. 

 

Table 2: Vertical stress influence coefficients 
0 0
, zrI R R

 
 
 

 for circular foundation areas 

subjected to uniformly distributed loads 
 r/R0  

z/R0 

0 0.2 0.4 0.5 0.6 0.8 1.0 1.5 1.8 

0 1.000 1.000 1.000 1.0 1.000 1.000 1.0 0 1.000 
0.1 0.999 0.999 0.998  0.996 0.976   0.484 
0.2 0.992 0.991 0.987  0.970 0.890   0.468 
0.25 0.990   0.96   0.50 0.03  
0.3 0.976 0.973 0.963  0.922 0.793   0.451 
0.4 0.949 0.943 0.920  0.860 0.712   0.435 
0.5 0.911 0.902 0.869 0.83 0.796 0.646 0.41 0.07 0.417 
0.6 0.864 0.852 0.814  0.732 0.591   0.400 
0.7 0.811 0.782 0.756  0.674 0.545   0.367 
0.8 0.756 0.743 0.699  0.619 0.504   0.366 
0.9 0.701 0.688 0.644  0.570 0.467   0.348 
1.0 0.646 0.633 0.591 0.56 0.525 0.434 0.34 0.11 0.332 
1.2 0.546 0.535 0.501  0.447 0.377   0.30 
1.5 0.424 0.416 0.392 0.37 0.355 0.308 0.24 0.13 0.256 
2 0.286 0.286 0.268 0.26 0.248 0.224 0.91 0.13 0.196 
2.5 0.200 0.197 0.191  0.180 0.167   0.151 
3 0.146 0.145 0.141  0.135 0.127   0.118 
4 0.087 0.086 0.085  0.082 0.080   0.075 

 
 



Journal of Computational Applied Mechanics 2021, 52(4): 588-618 605 
 

 
Table 3: Vertical stress influence coefficients for points in the elastic half space under the 

center of circular foundation areas under uniformly distributed loads 
R/z Ic1(R/z) R/z Ic1(R/z) R/z Ic1(R/z) 
0 0 1.05 0.67198 3 0.96836 

0.05 0.00374 1.10 0.69562 4 0.98573 
0.10 0.01481 1.15 0.71747 5 0.99246 
0.15 0.03283 1.20 0.73763 6 0.99556 
0.20 0.05713 1.25 0.75622 7 0.99717 
0.25 0.08692 1.30 0.77334 8 0.99809 
0.30 0.12126 1.35 0.78911 9 0.99865 
0.35 0.15915 1.40 0.80364 10 0.99901 
0.40 0.19959 1.45 0.81701 20 0.99988 
0.45 0.24165 1.50 0.82932 30 0.99996 
0.50 0.28446 1.55 0.84067 40 0.99998 
0.55 0.32728 1.60 0.85112 50 0.99999 
0.60 0.36949 1.65 0.86077 100 1.00000 
0.65 0.41058 1.70 0.86966 ∞ 1.00000 
0.70 0.45018 1.75 0.87787   
0.75 0.48800 1.80 0.88546   
0.80 0.52386 1.85 0.89248   
0.85 0.55766 1.90 0.89897   
0.90 0.58934 1.95 0.90498   
0.95 0.61892 2 0.91056   
1.00 0.64645 2.5 0.94877   

 
The use of the Boussinesq point load solution as the Green function gives the solution for vertical 
stress at points under the center of circular foundation areas subject to uniformly distributed loads 
as: 

0 02 23 3
0 0

2 2 5/2 2 2 5/2
0 0 0 0

3 3

22 ( ) ( )

R R

r v
q z r dr d q z r dr

d
r z r z

π πθ
σ = σ = = θ =

ππ + +∫ ∫ ∫ ∫  
03

20
0 2 2 5/2

0

3
[ ]

2 ( )

R
q z r dr

r z
πθ

π +∫     (116) 

0 03
30

02 2 5/2 2 2 5/2
0 0

3
2 3

2 ( ) ( )

R R

zz
q z r dr r dr

q z
r z r z

σ = π =
π + +∫ ∫       (117) 
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Vertical stress fields (distribution) under the center of a circular foundation area due to conical 
load distribution 

A conical load distribution shown in the Figure 8 such that q(t) = q1 if t = R0, q0(t) = 0, if t = 0 is 
considered to act on the circular foundation of radius R, t is a dummy radial coordinate. 
 

 
Figure 8: Circular foundation area subject to conical load distribution (q(t) = q1t/R0, where q(t 

= 0) = 0, and q(t = R0) = q1) 
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The vertical normal stress distribution at any arbitrary depth z under the center of the circular 
foundation is obtained as: 
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where 5 2 2 5/2( )R t z= +          (129) 
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Table of values for Ic2(R0/z) is presented in Table 4. The results agree with solutions presented 
by Harr and Lovell [34]. 
 

Circular foundation under inverted conical load distribution 

Vertical stress (under the center) of circular foundation due to a circular foundation area subject 
to load intensity that varies linearly from a maximum at the center to zero at the perimeter as 
shown in Figure 4 was also considered and mathematical solutions sought. 
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Figure 9: Vertical stress field in an elastic half space due to circular foundation under inverted 
conical load distribution (load varies linearly from a maximum intensity q2 at the center of the 
circular foundation where r = 0 to zero intensity at the circumference (perimeter) where r = R0) 
 
 

 
Figure 10: Application of the superposition principle in the computation of stress fields in 

elastic half-space due to inverted conical load distribution from the stress fields for uniformly 
distributed loads, and stress fields due to conical load distribution. 
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where ( 0, )zz r zσ =  is for the center of a circular foundation under uniformly distributed load (q0) 

and 2( 0, )zz r zσ =  is for the center of a circular foundation under conical distribution of load 
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 is calculated and presented for various values of R0/z in Table 5. The results for 

( 0, )zz r zσ =  given in Equation (146) are identical with solutions presented by Harr and Lovell 

[40]. 
The distributed load is expressed as: 
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The Boussineq point load solution is used as a Green function to express the vertical stress under 
the center of the circular foundation subject to the considered load in this section as follows: 
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The results presented in Equation (155) are identical with solutions presented by Harr and Lovell 
[40], thus validating the research work presented in this paper. 

 

Discussion 

In this work, the Navier’s differential equations of equilibrium, presented in terms of the 
axisymmetric coordinates as a system of two differential equations were solved in closed form 
to obtain the general expressions for the displacement components. The solutions were sought 
for the case when body forces were disregarded and for harmonic displacement field. The 
solution for the Navier’s differential equation of equilibrium in the z coordinate direction was 
obtained in general as Equation (30). In Equation (24), the two unknown constants were obtained 
from the equation for the volumetric strain given as Equation (31). The radial component of the 
displacement ur(r, z) was obtained by solving Equation (31) in closed form such that singularities 
of ur(r, z) were avoided by implementation of the boundedness condition that requires that as r 
→ 0, ur(r → 0, z) → 0 for any z. By substitution of the expressions for the volumetric strain φ 
and the vertical z component of the displacement w(r, z), the equation to be solved for ur 
simplified to Equation (36). Integration of Equation (36) gave Equation (38) which contains 
another integration constant c3 which was evaluated from the condition for nonsingular solution 
for ur as r → 0. 

The enforcement of nonsingular solution for ur(r, z) as r → 0, gave the expressions for c3 as 
Equation (44). The radial displacement component was thus found in terms of the two unknown 
integration constants c1 and c2 as Equation (45). The general solution to the Navier’s 
displacement equations of equilibrium were thus found as Equation (30) for w(r, z) and Equation 
(45) for ur(r, z). 

The specific classical Boussinesq problem of vertical point load applied at the origin on an elastic 
half space assumed linear elastic, homogeneous and isotropic was considered. The obtained 
solutions for the displacements were used in the stress displacement equations expressed as 
Equations (46 – 49) to obtain the shear stress field on the z = 0 plane as Equation (63). The 
enforcement of the shear stress free boundary condition gave the expression for the unknown 
integration constant c2 in terms of c1 as Equation (66). The vertical stress field, obtained by use 
of Equation (48) – vertical stress – displacement equation – was thus obtained in terms of only 
one unknown integration constant as Equation (74). 

The requirement of equilibrium of the resultant internal vertical stress and the applied vertical 
point load (at the origin)-expressed as Equation (75)-was used to derive the unknown integration 
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constant c1. This yielded a full determination of the two constants, and hence, the vertical stress 
distribution and the radial and vertical components of the displacement. The integration problem 
expressed in Equation (75) was solved by change or transformation of coordinates to the 
cylindrical coordinate system using the transformation equations – Equations (76 – 78); yielding 
the transformed problem as Equation (79). The requirement of equilibrium of resultant internal 
vertical stresses and the applied vertical point load is explicitly given by Equation (81) in the 
cylindrical polar coordinate system. The integration problem in Equation (81) was solved using 
the change of variables of integration given by Equation (87) to obtain the solutions for the 
unknown constants c1 as Equation (95) and c2 as Equation (97). Thus, the vertical stress field was 
determined as Equation (96). The stresses were determined using the stress displacement 
relations as Equation (98 – 100). The displacements determined by substitution of the obtained 
values for c1 and c2 are Equations (101) and (102). The displacement components on the surfaces 
z = 0 were obtained as Equations (103) and (104). The vertical stress at any point in the elastic 
half-space material due to a uniformly loaded circular foundation was obtained by using the 
Boussinesq point load solution for vertical stress as a Green function, thus yielding the vertical 
stress field as the complicated double integration problem given by Equation (105).  

For uniformly distributed loads, the stress field was found to simplify to the integration problem 
given after factoring out the constants to obtain Equation (107). The vertical stress field was 
obtained as Equation (108) using Egorov’s results in terms of complete elliptic integrals of the 
second kind and complete elliptic integrals of the third kind with a modulus dependent on the 
radius of the circular foundation and the radial distance of the arbitrary point in the elastic half-
space. The vertical stress field was presented in Table 2 in terms of non-dimensional vertical 
stress influence factors (coefficients) which depend upon the ratios r/R0 and z/R0. 

The vertical stress distribution under the center of circular foundation subjected to uniformly 
distributed load was obtained as a special case of the general solution for vertical stress at any 
point (r, z) in the elastic half-space. This is observed to be the case by setting r = 0 in the 
expression to obtain Equation (114), which upon evaluation of E(0) and П0(0, 0) and algebraic 
simplification yielded Equation (115). The vertical stress distribution under the center of circular 
foundation subject to uniformly distributed load was alternatively derived in the study by using 
the point load solution obtained as an integral Kernel function to obtain Equation (116). 
Evaluation of the double integration problem, and algebraic simplifications gave the result as 
Equation (126). 

The work also considered the vertical stress field (at any depth under the center) in an elastic half 
space due to a circular foundation area subject to a conical load distribution which varies linearly 
from an intensity q0(r = 0) = 0 at the center to q(r = R0) = q0 at the radius R0. The integration 
problem derived from the use of the point load solution obtained in this work was shown in 
Equation (128). The evaluation of the double integration problem over the two-dimensional 
domain of the circular plate yields, after algebraic simplifications, the solution for σzz(r = 0, z) as 
Equation (139), which is expressed in terms of dimensionless influence coefficients for vertical 
stress Ic2(R0/z) given by Equation (140) and presented in Table 4 and Figure 12. 

The vertical stress field under the center of circular foundation of radius R0 subject to an inverted 
conical load distribution (in Figure 9) was obtained by the application of superposition from the 
vertical stress field results for the uniformly distributed load and the conical load distribution. 
They are presented in terms of non-dimensional influence factors (coefficients) of vertical stress 
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Ic3(R0/z) as Equation (146). The same results were alternatively derived by the application of the 
principles of superposition from the point load solution by solving the double integration problem 
given in Equation (149) over the two dimensional (2D) region of the circular plate, to obtain 
Equation (155). 

Table 4: 
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 Vertical stress influence coefficients Ic2(R0/z) for vertical stress at any depth z under the 

center of a circular foundation of radius R0 carrying a conical load distribution 1

0
( ) q rq r R=  

R0/z Ic2(R0/z) R0/z Ic2(R0/z) 
0.20 0.037715 5 0.18857 
0.40 0.128066 6 0.159956 
0.50 0.178885 8 0.12213 
0.75 0.288 10 0.09852 
1.0 0.353553 20 0.04981 
1.2 0.377814 50 0.019988 
1.50 0.384023 100 0.0099985   

2 0.357771 ∞ 0 
2.5 0.3201644   
3 0.284605   

3.5 0.2539875   
4 0.2282688   

Table 5: 
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Vertical stress influence coefficients for vertical stress at any depth z under the center of a 
circular foundation of radius R0 subject to an inverted conical load distribution 

max
0

( ) 1 rq r q R
 = − 
 

 

R0/z Ic2(R0/z) R0/z Ic2(R0/z) 
0.20 0.01942 5 0.803884 
0.40 0.071523 6 0.83560 
0.50 0.105573 7 0.858579 
0.75 0.20 8 0.875965 
1.00 0.29289 9 0.88957 
1.2 0.3598156 10 0.900496 
1.5 0.44530 12.5 0.920255 
2 0.552786 15 0.933481 

2.5 0.628609 20 0.95006 
3 0.68377 50 0.98000 

3.5 0.72528 ∞ 1.00000 
4 0.75746   
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Figure 11: Variation of K(r/z) with (r/z) for the Boussinesq problem 
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Figure 12: Variation of Ic2(R0/z) with (R0/z) 
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Conclusion 

The following conclusions are made from the study: 

(i) Navier’s differential equations of equilibrium for elastostatic axisymmetric problems of 
the half-space which are two partial differential equations in terms of the radial and 
vertical displacement components have been integrated (solved) in general. The general 
solution gave the displacement components in terms of two unknown constants of 
integration c1 and c2, with the third integration constant obtained (found) by the 
appropriation of the boundedness condition for ur(r → 0, z) as r → 0. 
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(ii) Closed form expressions were obtained for the specific classical elasticity problem of a 

vertical point load applied at the origin of the half-space by the enforcement of the shear 
stress free boundary conditions. This helped to determine the one unknown integration 
constant c2 in terms of the other (c1). The requirement of the equilibrium of the resultant 
internal vertical stresses and the applied vertical point load was used to determine the 
unknown constant c1, thus leading to the full determination of the vertical displacement 
and radial displacement components as well as the normal and shear stress fields. 

(iii) Vertical stress distribution for the point load solution, being the most useful of the stress 
field expressions consequent to its significant use in elastic settlement analysis, was used 
as integral Kernels to determine the vertical stress distributions for distributed loads that 
produce axisymmetric stresses, strains and displacements. 

(iv) Expressions for vertical stress fields in the elastic half- space due to circular foundation 
areas subject to uniformly distributed load were obtained by considering the point load 
solutions as integral kernels and performing appropriate integrations over the circular 
foundation domain. Expressions obtained by the evaluation of the resulting complicated 
double integration problems in general involve elliptic integrals of the second and third 
kind, and were presented as tables. 

(v) Closed form expressions were obtained for the case of points in the elastic half-space 
under the center of circular foundation areas subject to uniform loads by putting r = 0 in 
the general solution for σzz(r, z). Consequently, simpler expression for the vertical stress 
influence coefficients were found in terms of the ratio of the radius of the foundation R0 
and the depth, z (R0/z). 

(vi) The vertical stress fields (distributions) under the center of circular foundation areas due 
to conical distribution of loads were similarly derived by considering the point load 
solution obtained as a Green function, resulting in the evaluation of double integration 
problem over the two dimensional domain of the circular foundation. 

(vii) The vertical stress distribution under the center of circular foundation areas due to 
inverted conical distribution of load were also derived by considering the point load 
solution obtained as a Green function in a double integration problem over the two 
dimensional domain of the circular foundation. 

(viii) The closed form expressions obtained for the vertical stress distributions under the center 
of the circular foundation for all the axisymmetrical load distributions considered were 
radially symmetrical functions with respect to the vertical axis of symmetry (r = 0) of the 
problem which is the vertical axis directly under the center of the circular foundation. 
This agrees with the symmetrical character of the elastostatic half-space problem 
considered and the symmetrical nature of the applied distributed loads about the vertical 
axis of symmetry (r = 0). 

 

Nomenclature  

x, y, z three dimensional Cartesian coordinates 

r, z, θ  cylindrical polar coordinates 

2D two-dimensional 
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3D three-dimensional 

∞   infinity 

v
r

  displacement field 

ur(r, z)  radial component of displacement field 

( , )u r zθ   tangential component of displacement field 

ir unit vector in the radial coordinate direction 

iz unit vector in the z coordinate direction 

r radial coordinate 

θ   tangential coordinate 

z depth (transverse) coordinate  

E Poisson’s ratio 

G shear modulus or modulus of rigidity 

λ   Lamé constant 

F
r

 body force vector 

i, j, k  unit vectors of the 3D Cartesian coordinate system 

∇    vector differential operator 

2∇    Laplacian operator 

µ    Poisson’s ratio 

PDE  Partial Differential Equation 

rrε    radial strain 

θθε    circumferential strain 

zzε    strain in the z coordinate direction 

xzγ    shear strain 

rrσ    radial stress 

θθσ    circumferential stress 

zzσ    normal stress in the z coordinate direction 

(or )rz rzσ τ   shear stress 

Fz  body force component in the z direction 

( , )rF r z   radial component of body force vector 

( , )zF r z   z-component of body force vector 

c1, c2, c3 constants 

→    tend to 
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| |J    Jacobian of the coordinate transformation from Cartesian to polar coordinates 

Q0  point load acting at the origin of an elastic half-space 

q0 intensity of uniformly distributed load acting over a circular area on the surface of an 
elastic half-space 

R0  radius of circular foundation 

z

∂
∂

   partial derivative with respect to z 

∫    integration sign or integral sign 

∫∫    double integration 

   determinant 

( )rk z    Boussinesq vertical stress influence coefficient expressed in terms of r/z 

E(k)  complete elliptic integral of the second kind with a modulus of k, and parameter, m 

0( , )k mΠ   complete elliptical integral of the third kind with a modulus of k, and parameter, m 

α    dimensionless parameter defined in terms of r and R0 

n   dimensionless parameter defined in terms of z and R0 

k  parameter defined in terms of n and α   

m  parameter defined in terms of α   

F1  parameter defined in terms of r and R0 

0 0
, zrI R R

 
 
 

  dimensionless vertical stress influence factors that depend upon r/R0 and z/R0 
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