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Abstract

Closed form solutions are derived in this papeiNavier's equations for axisymmetric elastic hadase
problems. They are solved assuming body forcedisregarded. The Boussinesq problem is considered.
The displacements are used to obtain the strdds.fithe shear stress-free boundary conditiondien t
boundary plane and the equilibrium of vertical strand applied load are used to completely determin
displacements and stresses. Other axisymmetriqimdddlems considered are: (i) uniform (ii) coniga)
inverted conical distributions. In each case, tbed€sinesq solution is used as a Green functiolding

the vertical stress field as double integratiorbfgm. The vertical stress field for uniform loaskstained

in terms of complete elliptic integrals of the sed@nd third kinds. The vertical stress distribotimder

the center of a circular foundation under unifooad is obtained as a particularization of the smiufor
vertical stress at any point in the elastic halesp The same result is derived by using the poad
solution as an integral Kernel function. For cohdiatribution of load, the point load solutionused as

a Green function, reducing the problem to doubtegration. The closed form expressions obtained for
the vertical stress distributions under the ceotéhe circular foundation for all the axisymme#iidoad
distributions considered are radially symmetricaidtions; which agree with the symmetrical nature o
the problem. The results obtained for all the liyaes considered are identical with previous redolind

in the literature.

Keywords: Navier's differential equations of equilibrium, Aximmetric elasticity problem, Classical
Boussinesq problem, Elastic half-space

Introduction
Background

Elasticity problems of the elastic half-space whitlolve the determination of the stress fields,
and displacement fields within the half-space du@dint and distributed loads acting on the
boundary are problems of the classical mathemattieadry of elasticity [1 — 21]. The elastic
half-space material can be assumed to be isotmpion-isotropic, or orthogonally isotropic
(orthotropic); homogeneous or heterogeneous. Eldmstif-space problems of heterogeneous,
non-isotropic materials are usually very difficidtsolve and in many of such problems, rigorous
mathematical solutions are not available [1 — 14].

Elastic half-space problems are extensively en@vadtin the analysis and design of foundation
structures, or structural footings, and road pavemeAxisymmetric elasticity problems of the
elastic half-space are characterized by a circsjanmetry of the state of the stress about a
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vertical axis, usually the vertical axis of symmyedf the applied point or distributed load. In
general, in axially symmetric elasticity problertige stress fields have a radial symmetry about
a vertical axis of symmetry, which is usually thasaof application of the point load for the
Boussinesq problem or the vertical axis of the reenf the circular foundation for the case of
circular foundation areas subject to radially syrtrindoad distributions.

Typical cases of axisymmetric elasticity problenes a

0] the Boussineq problem of finding stress argpldicement fields due to a vertical point
load applied at the origin of an elastic half-spesesidered homogeneous, isotropic and
linear elastic

(i) finding stress and displacement fields irstiahalf-space due to circular foundation areas
subject to radially symmetric load distributionsislas (a) uniformly distributed loads,
and (b) conical load distribution.

Axially symmetric elasticity problems are governeyl the simultaneous requirements of the
differential equations of equilibrium, the straisglacement relations and the constitutive
equations that relate stresses to strains. Thessgog systems of equations are also required
to satisfy the compatibility equations and thetitacand deformation boundary conditions [1 —
21]. Closed form solutions of axisymmetric elasyigoroblems expectedly involve intensive
analytical rigours, and are often unwieldly.

Three basic methods are used in the formulatidgheo§overning equations of axially symmetric
elasticity problems and they yield simplificatioims the resulting governing equations to be
solved. The three methods are the displacemenbaigtie stress method and the mixed (hybrid)
method [1 — 15]. The displacement methods are basedeformulation of the system of
governing equations involving the differential etjoias of equilibrium, the kinematics equations
and the material constitutive equations such that stresses and strains components are
eliminated, and the displacement components betioenenly unknown primary variables of the
formulation. The governing equations are consedyieediuced in number rendering the problem
more amenable to solution. The displacement fortimavas presented by Navier and Lamé
and the resulting equations called the Navier disgginent equations or the Lamé displacement
equations.

In the stress-based methods, the system of gogeegjunations that are expressed using stresses,
strains and displacement components as the unknaneneformulated such that the strains and
displacements are eliminated and stresses araihartknown primary variables. Consequently,
the number of equations becomes reduced renddwngpoiution process to be easier.

Researchers such as Beltrami, Michell, Airy, Maxwide and Morera presented stress-based
methods. In the mixed (hybrid) method, which isecmnmonly applied, the governing equations
are formulated such that some components of digspiant and some components of stress are
the unknowns, and the rest of the displacemenstieds components are eliminated.

The simplifications consequential to the reformiolatof the general elasticity problem have
inspired research on the development of stresslepthcement functions that satisfy the stress
and displacement formulation of the elasticity peots [22 — 23]. Such functions further
simplify the solutions of elasticity problems tcetlsearch for suitable stress or displacement
potential functions that satisfy the boundary ctiods of the considered problem.
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Airy, Morera, Maxwell, Love, Ike, Michell, NowacKtgorov and Boussinesq have derived stress
functions of the space variables that satisfy thstieity problem governing equations. Elasticity
problems of the elastic half-space for various sageéboundary loads have been studied using
stress-based and displacement-based methods. Mwaii [22] used the Green and Zerna
displacement potential function method to obtam sblutions for stress and displacements for
the three-dimensional small deformation elastipitgblem of a point load acting at a point on
the boundary of a linear elastic, homogeneousrapa medium of semi-infinite extent
(o< X< —0< y<o, 0< z< ). Their formulation reduced the problem to onéirding a

suitable harmonic function satisfying the loaditg/ss boundary conditions. They used the
harmonic function, the strain displacement relajand the stress-strain relations to determine
the stress fields and the displacement fields. Netogl [23] used the Boussinesq displacement
potential functions to solve the elastic half-sppi#blem for a point load acting at the origin of
the three dimensional Cartesian coordinate spdwy found the displacement field components
from the Boussineq potential functions using Lowexpressions; and then used simultaneously
the kinematics and material constitutive laws (refes) to obtain the stress fields from the
displacement fields. They obtained solutions thereadentical with solutions from the literature.

Ike et al[21] used the Trefftz potential function methodl&rive the solutions to the 3D elasticity
problem of a point load acting at the origin ofree&r elastic homogeneous, isotropic half-space.
The Trefftz method simplified the problem to ondintling a suitable harmonic function of the
space coordinates that is bounded and satisfieedladéng and stress boundary conditions. The
functions were used together with the kinematic @nktitutive relations to obtain the stress and
displacement fields. They obtained identical sohsias the Boussinesq solutions. lke [14] used
the Fourier-Bessel transformation method in a stbesed formulation to determine the vertical
stress fields in axisymmetric elasticity problemf etastic half space involving circular
foundation areas subject to uniformly distributedds. The biharmonic stress compatibility
equation was solved using the variable-separablenique to obtain a general solution for the
bounded stress functions as Fourier-Bessel inedgegorov expressions for the vertical stress
fields defined in terms of harmonic functions wesed to obtain the vertical stress fields. The
load distribution was similarly transformed by tReurier-Bessel transformation. Enforcement
of the boundary condition of the equilibrium of tilernal vertical stress at tlae= 0 plane and
the applied load was used to obtain the unknowmrpater of the bounded Fourier-Bessel
transform integral, and hence the bounded stresgitun was completely found. The vertical
stress fields were determined from the boundedsstfanction using Egorov expressions.
Evaluation of the integration problem gave anajltexpressions for the vertical stress fields in
the elastic half-space. The vertical stresses ypamt under the center and at any point at a
radial distance at a depthz were computed and tabulated. The mathematicalesgjuns
obtained were identical with those found in therbture, thus validating the study.

Ike [17] used the Hankel transform method to demmeral solutions for the stress and
displacement fields in semi-infinite, linear elastsotropic soil under axisymmetric load. Hankel
transformation was applied to the governing equatia a stress-based formulation to obtain the
Love stress function. Hankel transformation waslaitty applied to the stress and displacement
fields to obtain general solutions for the stresaad displacements. The general solutions
obtained were used to solve the specific axisymmptoblem of Boussinesq, and it was found
that the solutions agreed with the literature. [&] also used the Hankel transform method to
derive solutions for stresses and displacemernisfiel homogeneous, isotropic linear elastic half-
space subject to uniformly distributed axisymmelwed over a circular area on the boundary (
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= 0 plane). Hankel transformation of the biharmastiess compatibility equation was done to
obtain bounded stress functions for the elastits@dce problem. Hankel transformations were
similarly applied to the Love stress functions glieh the stresses and displacements in the
Hankel transform space. Boundary conditions weesl s obtain the unknown constants of the
stress function. Inversion of the Hankel transfemxpressions for the stresses and displacements
gave the corresponding expressions in the physicaiain space, which were found to be
identical with the results of previous researchksavhich applied other different methodologies.

Onahet al [24] used the Boussinesq displacement potentradtions to determine the vertical
stress distribution and the vertical displacemantimear elastic, homogeneous, isotropic elastic
half space due to uniformly distributed load applieer a rectangular area, and obtained results
identical to those previously obtained by Newmar#t &teinbrenner. More research work on the
elasticity problems of the elastic half-plane andds#c half-space using Fourier transform
methods, Mellin transform method, and exponent@lrier integral transform method can be
found in Onalet al [25 — 26] and lke [27 — 30]. Onah et al [31] dedvfrom first principles
displacement and stress functions for solving taiegensional elasticity problems. Ike [32-34]
solved two-and three-dimensional elasticity proldeusing such novel methods as Elzaki
transform method, Fourier cosine transform metlaod, cosine integral transformation method.
Ike et al [35] applied Trefftz displacement potahfunction method to solve elastic half-space
problems. Ike[36] applied the Fourier integral sfammation method to find solutions to two-
dimensional elasticity problems for plane straindidons by using Love stress functions.

In this work, the Navier’s differential equationfseguilibrium for axisymmetric problems of the
elastic half-space are solved analytically to ob&alutions for the general axisymmetric load,;
and particular solution to the Boussinesq axisymimptoblem. The solutions for vertical stress
distribution for the point load at the origin isethused as Green (Kernel) function to derive
solutions for vertical stress for other axisymmeknad cases.

Research aim and objectives

The research aim is the determination of closethfsolutions of the Navier's equations for

axisymmetric elasticity problems of the elastidtsglace, and the vertical stress distributions for
axisymmetric elasticity problems for various axisgetric load types. The objectives are as
follows:

(1) to obtain the general mathematical solutioth® Navier’'s differential equation for the
elastic half space expressed in cylindrical coatdia system when body forces are
disregarded.

(i) to obtain the solution to the Navier's differt@al equations of equilibrium for the
axisymmetric case of point load acting at the orign the elastic half-space as shown in
Figure 1.

(i)  to use the vertical stress distributions smns obtained for the Boussinesq point load
problem as Green functions to obtain the vertitass distributions: (a) at any poimnt (
2) in the elastic half-space due to circular fourataareas subject to uniformly distributed
load over the entire domain of the foundation whecshown in Figure 2; (b) at any point
(r = 0,2) under the center of the circular foundation anélgject to uniformly distributed
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load; (c) at any point under the center of a cacfibundation area due to a conical load
distribution (load intensity varies from zero ag¢ ttenter to a maximum at the perimeter)
shown in Figure 3; (d) at any point under the ceate circular foundation area due to
an inverted conical load distribution (load intéysiaries linearly from a maximum at
the center to zero at the perimeter or circumfegesbown in Figure 4.
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Figure 1: Axisymmetric problem of point load at the origind@ an elastic half-spacec{-< x
<00, —00<yY<0w;,0<2<0). (0<r<o;0<z<00; 0<0< 2n)

Figure 2: Axisymmetric problem of circular foundation of ragl Ry subject to uniformly
distributed loady(r) = qo
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Figure 3: Axisymmetric problem of circular foundation of radiRy subject to a conical load
distributionq(r) = qur/Ro (whereq(r = 0) = 0;q(r = Ro) = 1)
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Figure 4: Axisymmetric problem of circular foundation ofdias Ry subject to an inverted
conical load distribution given by(r) = gmax (1 — r/Ro) (whereq(r = 0) =0max, andq(r = Ro) =
0)

Theoretical framework
Governing equations

In axisymmetric elasticity problems of the elastadf-space (e < X< 00; -0 <y < 00; 0< Z2< )

or (0sr<om; 0<z<0; 0< 0 < 21) where X, y, andz are the three dimensional (3D) Cartesian
coordinates, and 6, z are the cylindrical polar coordinates, the disptaent fieldv is axially
symmetric with respect to thecoordinate axis, yielding the displacement veator

V=(u(r,2, 0, W(r,2)= y(r i+ wr 3 (1)
Sinceu, =0 (2)
ur(r, 2) is the radial componenty is the tangential component, an(t, ) is thez component of
the displacement; is the unit vector in the radial coordinate dii@cti is the unit vector in the
zcoordinate directiom, is the radial coordinaté,is the tangential coordinate whités the depth
(transverse) coordinate.
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Navier's equations of equilibrium for axisymmetlastostatic problems

The Navier’s differential equation for the displant formulation of 3D elastostatic problems
is given in vector form as:

GO?v+(A+G)O(0W+ F=0 3)

whereG is the shear modulus or modulus of rigiditys the Lamé constanE is the body force
vector, and

D:ii+ji+ki 4)
ox "dy 0z

wherei, j, k are the unit vectors of the 3D Cartesian coorémaystem, while

0> 19  9°
DZ =t —-—+— 5
% ror  az? ®)
The elastic constantsand G are expressed in terms of Young’s modulus of ieiastE and
Poisson’s ratioy, as:

Eu

A= —————— (6)
@+p)@-2u)
_E
T2+ p) (7)

For axisymmetric elastostatic problems, Navier'siggpns of equilibrium are given by the
following system of partial differential equatio(RDES):

2 _u(r,2) 0 ou,(r,z) . y(r,2 , ow(r,z) _
G(D 4(na-= 5= ]+ ()\+G)ar( P - ]+Fr(r,z) 0 8)
for equilibrium in the radial direction, and
GDZW(I’, Z)+()\ + G)%(aura(:. Z) + L'}(rr, Z) + aWé;, Z)j+ FZ(I’,Z) = 0 (9)

for equilibrium in thez coordinate direction.
Fi(r, 2) is the radial component of the body force veetbile F(r, Z) is thez component of the
body force vector.

Kinematic equations

For linear small (infinitesimal) displacement eieisg, the strain-displacement equations for
axisymmetric elasticity problems are given by:

_ oy
e =2 (1,2) (10)
€gp = % (r,z) (11)
£ =2 (r,2) (12)
0z

_ ow(r, 2) N ou, (r,z)
" ar 0z
whereg is the radial straimgy is the circumferential straimz; is the strain in the coordinate
direction,yr; is the shear strain.

(13)
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Constitutive equations

The Hooke’s stress-strain relations for axisymmedtasticity problems expressed in terms of
Lamé’s constants are given by:

cyrr = )\(arr + 899 + azz) + ZG“5rr (14)
Ogg = A(Ey +Egg +€,;) +2GEgg (15)
0-zz = )\(E r + 899 + Ezz) +2Ge Zi (16)
O, =T, = Gyrz (17)

orr is the radial stressyy is the circumferential stress;; is the normal stress in tzecoordinate
direction,or; (Or tr;) is the shear stress.

Methodology

We denote the volumetric strain @4sand then have:

Err +£99+£ZZ :q) =0 (18)
The Navier's equation can then be expressed inrgeas:

GO?v+(A+G)dp+ F=0 (19)

From the Navier differential equation of equilibmuif body forces are disregarded and harmonic
displacement field/, assumed we have:

0% =0 (20)

The most elementary potential functiprof the 3D space coordinates that is a potentratian

at every point in the elastic half-space geometryp € X < 00; —00 <y < 00; 0< 2 < ) Of the
Boussinesq and other axisymmetric elasticity pnoisi@xcept at the origix & 0,y = 0,z = 0)

of the coordinates is expressed by:

o921

b=o()=0m (21)
whereR?* = ¥ + Y+ 2= '+ 7 (22)
rZ=x%+y? (23)

andc: is a constant.
The Navier differential equation of equilibriumtime z direction, is given as:

GIPW(r 2)+ ( + G- 0(1 3+ F(1 3= 0 (24)

In the absence of body forces or when the bodyefoamnponent in thig; direction is disregarded,
the Navier differential equation of equilibriumtime z direction simplifies to:

GO2W(r, 2) + (A + G)%q)( 2)=0 (25)

Hence,

2 __[A+G)o __(A+G) 0% (1
0w(r,2) = [ - )azcb(r,z) [ . )qazz[Rj (26)
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O2w(r, z)=—(Aéqu(1—Z:—%] (27)
2 _ 1] (A+G) 37 (A+G\g
Dw(r’z)_Rz{[ G ]qR3+[ G ]R} (28)

2
This suggests that a suitable solutionvigr, z) would depend upon the functionZR;eg and%.

We seek to find the general solution to the non-dgameous partial differential equation (PDE)
given as:
°w 1ow d*w 19 0°w A+G) oo
= + ==—(rw,(r,z)) +— =~ — 29
a2 ro 92> rar( (r2) (G ]az (29)
The general solution to Equation (29) is obtainsdtte superposition of the homogeneous
solution and the particular solution as:

w(r,z):q()Hszz 1

L soz 30
2G )R® CZR (30)

wherec; and c; are the arbitrary constants of integration whiem de obtained from the
definition of the volumetric strain.

From

0=0m=22 () + 2 (31)

In order to av0|d singularity in the radial dismatent functionu(r, z), we seek to obtaia(r, 2)
using the boundedness condition that as 0, ur — O for anyz Thus,u(r - 0, 2y — 0

By substitution of expressions fefr, z) ande(r, z) in Equation (31) we have:

d(1)_10 0 A+G 2 1
qa(aj“ra““r)*a—z{Q( 2G Rs“‘ij} (32)
Equation (32) simplifies after evaluation of thetd derivatives to:

-z A+G\( 2z 37 -
Q(R%] 7o (m) { ZE:K;§‘7§J+%[7EJ (33)
Hence,
10 _ (~z\__ (-z\_ (A+G\(2z_ 33
TGRSR Ea) @
Simplification yields:
19 z A+G\( 2z 37
?_(ru) (c, - Q)E‘Cl( = j(ﬁ_?] (35)
Simplifying,
O iy =(o,— ) 2 - o[A*C)(2zr_37r
g(rur)_(CZ Cl) R3 C_I.( G \J( # Q\J (36)
Integrating with respect tq

A A

[atru) =(c, - cl)zj dr— ( +Gj 4R3 r+cl( +stz3j 37)
Hence,

el e o e
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wherecs is an integration constant.
Simplifying,

ru :( — )E+ ()\+Gj2_2_ ()\+Gj_2+
rClCZRClzG RCLZGR3C3

Further simplification yields:

" :Clz_cz_z+cl(2%_+6]_z_ q(“ G]_h :
' R R 2G )R 2G)R®
_ (2A+2G z z A+ G) 2
R R LI R I A
" =q(2“46j—— ~ ()\+ G]_ZH;S:
' 2G )R 2G )R®

Z
R
()\+26j z [)\+Gj2
_ _+%
2G JR®
Asr—0,u(r—0,2—>0
HenceR(r - 0)—> z

A+ ZG A+G
0=¢ BRI vl

_ (A+G 2G + A _ A+G 2G+A)_
e =g -G tG=C6+0 - =

2G G 2G G

o+ ()\+G—4G—2)\jzc N [—36—)\): o - (3G+)\j
>t QG - 7IR ] G 2~ G G
Thus,

W= - [SG+AJ+ [2G+Aj_z_ z_ ()\+Gj_§
T2 )T YT e R %R 426 )R

(39)

(40)

(41)

(42)

(43)

(44)

(45)

The two displacement field components are now detexd in terms of two unknown constants

c1 andcp.

Results

Boussinesq problem of vertical point load on arsttahalf space

For the Boussinesq problem of finding the streaselsdisplacements at any arbitrary p@ig(k,

Yy, 2) in an elastic half-space due to a vertical plmat Qo applied at the origin as shown in Figure
1, the two constants of integrationandc, which are present n(r, z) andw(r, z) are determined
by using the shear stress free boundary conditonthexy coordinate plane (i.e = 0 plane)
and the requirement of equilibrium of the intermattical stress and the applied vertical point

load.
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Figure 5: Boussinesq problem: stress and displacemeii(aty, z) due to vertical point load
applied at the origin of an elastic half-space

Stress field components

The stress field components are obtained by usiagstress-displacement equations given as
follows:
ou

o, =AO +2G—- (46)
or
Gop = ANO ¥ +2Gu—’ (47)
—mmze"_w 48)
0z
=62 | (49)
or 0z
From the expressions farandur,
AN+G) Z 1
_(r 2)= az[ (2(3 j?JrCZ_R] (50)
ow__(A+G A+G\(2z 37 -z
e IR SR ) e R I
ow _ 0 A+G) Z 1
?a—r(‘ﬁ[ e )?%E] (52)
e R G e S R
o ;s Jor R® 2a\R)” U 2c or\ R® @5
A+G o1 -r
(' alwe) ol ) 3
0 1
a—\:/(r z=0)=—c, (—Zj (54)
SinceR3}(z=0)=r
ou _0( 4 4(3G+A)_ ZG+)\ _1_z_ G+)\ 17
E_az[czr af ( zej ( J R rR3J (®5)
ou _ (. _ (2G+A\\19(z)\_ _(G+A\1d Z
o (Cz o 2 D_ra_z(_R] o 26] I~ (56)
ou _ (. (2G+A\\1(1 Z) G+)\ 3z2 _ 3z
oz [Cz q[ G D?[E ?J j o)
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ou, O N - C L R D R
B eemo=-{a-o[ M )iRe=o
ou, PO S

E(r,Z—O)— (CZ Q.( j

Since R(z=0) = (P + 22)1’2‘ =T

z=0

ou 2G +A 1
_I' :O: _ —_—
% (r,z=0) [q( G j Cz]rz

Enforcement of shear stress free boundary condition

The shear stress field on the 0 planet,,(r,z) = 0 is obtained as:

T,(r,z=0)= G(g—\:rv(r,z: O)+% (r,z= O)]

te=-{-s oo 22 o))

Application of the shear stress free boundary dardyields:

2G + A 1
t=0= 5o o[ B2 o) 2o

2G +)\J_

Hence,c, = cl[ S

_ (2G+A
CZ_Cl( G j

Vertical stress field

The vertical stress field is obtained from Equai8). Using Equation (66),

ow_ _(A+G\[2z 37 2G+ A z
E‘Cl( 2G j[?_?}rcl[ 2G J[_Ej

ow _ (A+Gj2_z_ (2G+)\J_z_ (m st_%
"l R %6 JR Y6 B

ow [2)\+ZG)_Z_ [ZG”\j_Z_ [)\+ Gj3_§
0z 2GR3012(;F€’ClzeFé3

Rrojs 2

I
iy

a_w: (2)\+2G—ZG—AJ_Z_ z
0z 4 2G R® 2G )R Cl2(3R3
ow 91
=2G— +A¢——
Oz 0z Cl6zR
A oz (A\+G)3Z ( zj
=2G| ¢ ——= - 22 e ag| ——2
Ou ( GR 26 RL_’J =

32 A
O :Cl)‘é_cl()‘ + G)F_ CLEZ

—cl[

A G
2G

j3

4

R

(58)

(59)
(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)
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3

z
0z, = _301 (A + G)E (74)
Equilibrium of internal vertical stress and appliestical point load yields:

]0 T 0,,(r,z)dxdy+ @ =0 (75)

We evaluate the integration problem by introductaincoordinate transformation from 3D
Cartesian to cylindrical coordinates,

X = rcosh (76)
y=rsin® (77)
z=12 (78)
0<z<w 0<r<ow 0<6<2n

The equation of equilibrium becomes:

2Tt

[[o.n2)] 3 drde+Q =0 (79)
00

where J| is the Jacobian of the coordinate transformaftiom Cartesian to polar coordinates,
defined as:

| J|= g; g?’ = (;ionsg _rrsisr:reﬂ =rcogB+r sifO =r(cof B+ sirfO)=r (80)
o a9
Hence
2Tt
+J'J'_3Cl()\+G)Z3 drde=0 (81)
2Tt 00
o= 11 32?(1 ESTURAOL AR (82)
< d
Q =36(A +G) (j) ® Oﬁ (83)
© 3
Qo =3c,( + G)[6]F| (rZZJr;de;S/Z (84)
0
Qo =3¢ (A + G)21Tf£ (r2 :(12)5/2 (85)
Qp =61, (A + G) fj. (r? :(12)5/2 (86)
0
Letr2+ 22 =b(r) (87)
% =2 (88)
rdr = @ (89)
Qo = 671G, (A + G)fj dbir) (90)

: 2 b( ))5/2



Journal of Computational Applied Mechanics 2021(432588-618 601

Q =3 (A +G) 2 (1 9)™"* dif (91)
0
Q =3m,(+6)Z [ ~3( o) ¥ 92)
2 +G)e 2 (P + 2)¥?] " = Q (93)
2mA +G)q = Q (94)
. Q
AT o +G) (95)

NN SR < SR o S NN« - 1 PN R [Lj(-&j
O =30 +G RE2NMA+G) 2n R 222n(1+22 K272 (%6)

whereK(r/2) is the Boussinesq vertical stress influence agefit which is presented in Table 1
and Figure 11.

Table 1: Boussinesq vertical stress influence omefftsK(r/z) for vertical point load at the
origin on an elastic half-space.

r/z K(r/2) riz K(r/2)

0 0.4775 1.10 0.0658
0.05 0.4745 1.20 0.0513
0.10 0.4657 1.30 0.0402
0.15 0.4516 1.40 0.0317
0.20 0.4329 1.50 0.0251
0.25 0.4103 1.6 0.0200
0.30 0.3849 1.7 0.0160
0.35 0.3577 1.8 0.0129
0.40 0.3294 1.9 0.0105
0.45 0.3011 2.0 0.0085
0.50 0.2733 2.5 0.0034
0.55 0.2466 3 0.0015
0.60 0.2214 4 0.0004
0.65 0.1978 o0 0
0.70 0.1762
0.75 0.1565
0.80 0.1386
0.85 0.1226
0.90 0.1083
0.95 0.0956
1.00 0.0844

_ (A+2G6)_ @ A+2G
= Cl( 2G ]_ 21\ +G)( 2G ] 7

The stresses are obtained from the stress-dispéataelations as:
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1 3z
o =2la-anf - %) - %5 (%8)
_ Q@-20)f1 z z
o0 =~ ; 21 {r_z_er _3} (%9)
2
0, = -0 (100)
The displacements are:
On the surface of the sod= 0,
U (rz=0)= —% (103)
w(r,z=0)= % (104)

Vertical stress due to uniformly loaded circulaofoation areas

The vertical stress at any poil, in an elastic half-space due to uniformly loadedular
foundation is obtained by using the Boussinesqgtdoad solution for vertical stress as a Green
function as follows:

(105)

o - ZJ-"T 32°q, rdrdd

© 0o 2n(r?+e?+ Z - 2ercod §'?
where from the cosine law (cosine rule),
R?=r’+e’+ Z -2 ercosh (106)
Ro is the radius of the circular foundation.

Figure 6: Vertical stress at poird due to a circular foundation carrying uniformlguibuted
load
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Zz

Figure 7: Arbitrary pointB in an elastic half-space for circular foundatiobject to uniformly
distributed load

For uniformly distributed loads
2R r dr do
= gy BL 107
=% 21‘['(”,(r2+e2+22—2ercose)5’2 (107)
Egorov and Serebjanyi [37] and Egorov [38] evalddtee complicated integration problem in
Equation (107). Using Egorov’s results for the deuhtegration problem, the vertical stress is
obtained as follows:

1-a
E(K + mno(k' m)}} (108)

n n’ -1+a?
m8/n? + (1 +a)?2 N’ +(1-a)?

o, (r,2) = qo|(yR0, %on (108)

in which, | (%Qo %?Oj is presented in Table 2 and,

O',(I‘,Z)ZOO{F:L—

n= % (109)
0= (110)
_ 41
k——nz Tray (111)
_ —4a
m _—(1+0()2 (112)
1 r<R,
R={3 r=R, (113)
0 r>R,

E(K) is the complete elliptic integral of the secomddkwith a modulus ok and parametem.
ITo(kim) is the complete elliptic integral of the thirchiiwith a modulus ok and parametem.
The result obtained for vertical stress fieldr, 2) are similar to results obtained by Harr [39].
Generally, the vertical stress at any arbitrarnp@i z) in an elastic half-space due to uniformly
distributed load of intensitgo applied over a circular foundation area of radiu$s expressed

in terms of non-dimensional vertical stress inflicefactorsl (VRO %;,Oj which depend upon

the dimensionless ratio#R, andz/Ro.
A table of values fo (VRO }/R)) for various off/Ro andz/Ro is presented in Table 2.
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Vertical stress distribution under the center a€alar foundation carrying uniformly distributed
load

The vertical stress distribution under the cenfecicular foundation subjected to uniformly
distributed load can be obtained as a special cb#e general solution presented in Equation
(108) wherr = 0, sincea = 0 at all points under the center of the circébandation. Then,

oAr:an:%{ﬁ——il—{f'lam+nua§”:q&ﬂL=0~%] (114)

T/1+n® [N +1 Ro

3

n
o = 0’ = 1-—
ZZ(r Z) qO { /—(1+ n2 )3

}=qJ1—a+n*ryﬂ:

) ) e

Table of values fot, (R%j is given in Table 3. The same result for vertgtatss distribution

under the center of circular foundations subjectundormly distributed loads is obtained by
using the Boussinesq point load solution as thegiatl Kernel function.

Table 2: Vertical stress influence coefficiem(sVRo, %%j for circular foundation areas

subjected to uniformly distributed loads

r'Ro 0 0.2 0.4 0.5 0.6 0.8 1.0 15 1.8
ZRo
0 1.000 | 1.000| 1.000 1.0 1.000 1.000 1.0 @ 1.000
0.1 0.999| 0.999| 0.99§ 0.996 0.976 0.484
0.2 0.992| 0.991| 0.987% 0.970 0.890 0.468
0.25 0.990 0.96 0.50 0.03
0.3 0.976| 0.973] 0.963 0922 0.793 0.451
0.4 0.949 | 0.943] 0.92¢ 0.860p 0.712 0.435
0.5 0.911| 0.902| 0.869 0.83 0.796  0.646 0.41 0,07 41°0.
0.6 0.864 | 0.852| 0.814 0.73g  0.591 0.400
0.7 0.811| 0.782| 0.75¢ 0.674 0.545 0.3|67
0.8 0.756 | 0.743| 0.699 0.61p  0.504 0.366
0.9 0.701| 0.688| 0.644 0.570  0.467 0.348
1.0 0.646| 0.633] 0.591 0.56 0.525 0.434 0.84 0,11 332.
1.2 0.546 | 0.535 0.501 0.44r  0.377 0.30
15 0.424| 0.416| 0.397 0.37 0.335 0.308 0.24 0,13 2580.
2 0.286 | 0.286| 0.268 0.26 0.248 0.224 0.91 013 €0.19
2.5 0.200| 0.197 0.191 0.180 0.167 0.151
3 0.146 | 0.145| 0.141 0.13p  0.127 0.118
4 0.087 | 0.086| 0.085 0.082  0.080 0.0f75
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Table 3: Vertical stress influence coefficientsfoints in the elastic half space under the
center of circular foundation areas under unifordistributed loads

R/z lc(R/2) R/z lc1(R/2) R/iz Ic1(R/2)

0 0 1.05 0.67198 3 0.96836
0.05 0.00374 1.10 0.69562 4 0.98573
0.10 0.01481 1.15 0.71747 5 0.99246
0.15 0.03283 1.20 0.73763 6 0.99556
0.20 0.05713 1.25 0.75622 7 0.99717
0.25 0.08692 1.30 0.77334 8 0.99809
0.30 0.12126 1.35 0.78911 9 0.99865
0.35 0.15915 1.40 0.80364 10 0.99901
0.40 0.19959 1.45 0.81701 20 0.99988
0.45 0.24165 1.50 0.82932 30 0.99996
0.50 0.28446 1.55 0.84067 40 0.99998
0.55 0.32728 1.60 0.85112 50 0.99999
0.60 0.36949 1.65 0.86077 100 1.0000(¢
0.65 0.41058 1.70 0.86966 00 1.00000
0.70 0.45018 1.75 0.87787
0.75 0.48800 1.80 0.88546
0.80 0.52386 1.85 0.89248
0.85 0.55766 1.90 0.89897
0.90 0.58934 1.95 0.90498
0.95 0.61892 2 0.91056
1.00 0.64645 2.5 0.94877

The use of the Boussinesq point load solution @&tteen function gives the solution for vertical
stress at points under the center of circular fatiod areas subject to uniformly distributed loads
as:

2t 39, 2rdrdd 3,2 ® Ard 3 Rord
=0y = I j 21.?((; +7 )5/2 == J(;de_[) (r 22+r22r) 52 qo [erg" E[ 2+ : r2 5/2 (116)
_ 39,2 Roorar rdr
zz "~ o7 ZT[E[ (r2 +22)5/2 - SQOZS,([ (r2+22)5/2 (117)
Let, r2 +z2 = a%(r) (118)
Then, 2rdr = 2a(r )da(r)
(R2+A)V2
0o, =39,2 a(ryda(r) 119
O, 3qO a(rJ;:Z a(r)5 ( )
a(r=0) =z (120)
a(r=R)=(R+ 2)¥2 (121)
s 2 a1 (R2+A)V2
_ da(r) _ a(r)
o, =30,7 { e 3 f{——4+1 l (122)
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s _ﬂ@“ o Re+ 7

C { 3 } Y [(a(r)f'l w)

o, = qy 1—[2—2j3/2]:q0 -1 : (125)
(R +2) (1+ RZZ)

G, = 1_(“3_22}_3/2} (126)

Vertical stress fields (distribution) under the tamof a circular foundation area due to conical
load distribution

A conical load distribution shown in the Figurel®k thatg(t) = qu if t = Ro, qo(t) = 0, ift=0is
considered to act on the circular foundation ofus®, t is a dummy radial coordinate.

Figure 8: Circular foundation area subject to conical loadrdbution @Q(t) = qit/Ro, whereq(t
=0) =0, andj(t = Ro) =)
_ Gt
dQ, = - tdtdd (127)
Ro

The vertical normal stress distribution at any &by depthz under the center of the circular
foundation is obtained as:

2nRy
3dQ,Z
r=t=0z)= [ [ =—2-tdtdo 128
0-ZZ( Z) .c[ .!.) 2TR3 ( )
where R® = (1% + 22) %2 (129)

6=2m Ry 2

L B 3,72 t%dtde

0,,(r=t=0,z)= J. 2R, (@ + 2 (130)
0=0 t=0 0

L 32 L 2dt | 3qf e @ t2dt
Ol 51 =02)=2 - [dof 5—=5= > L6lo [ =3 (131)
™5 % o (t°+2%) o (t7+29)



Journal of Computational Applied Mechanics 2021(432588-618 607

—t = _M%zz 252 3HZ t° o
0,(r=t=0,z)= R, E[t (t°+2z7) 7 dt= Ry {322“2_'_ 2)3? . (132)
3 Ro
0,(r=t=0,2)= qlfj Lz(tzi = 3/2} (133)
0
_4Z ; 0 |_ a? RS
7z~ |]:-\)0 |:(R0 + 22)3/2 (22) 3/2i| RO ZZ(R)Z"' 22)3/2 (134)
: | 7
77 "ﬂf[ﬁ] et (39)
s Rg 23 E (22)3/2 (136)

zz_c}lzzw 22(87._'_ 53/2

3/2

_ (137)

ousa[¥[a) oY)
-3/2 / :

ozz=0a [ ] (138)
(

ouo-on=al[ ][+ |- (Y 59
(2]

Table of values fot2(Ro/Z) is presented in Table 4. The results agree vathtisns presented
by Harr and Lovell [34].

Circular foundation under inverted conical load tisution

Vertical stress (under the center) of circular fdation due to a circular foundation area subject
to load intensity that varies linearly from a maxim at the center to zero at the perimeter as
shown in Figure 4 was also considered and matheabalutions sought.
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2 {e—R,—

Figure 9: Vertical stress field in an elastic half space ttueircular foundation under inverted
conical load distribution (load varies linearly fitca maximum intensity. at the center of the
circular foundation where= 0 to zero intensity at the circumference (petenjewvherer = Ro)

4o

sk

zV
Figure 10: Application of the superposition principle in tbemputation of stress fields in
elastic half-space due to inverted conical loattitistion from the stress fields for uniformly
distributed loads, and stress fields due to comazad distribution.

0,(r=0z)=0,(r=0z) -0 r=02z) (141)
whereo,,(r =0,z) is for the center of a circular foundation undeifarmly distributed loaddp)
and o,,(r =0,z), is for the center of a circular foundation undenical distribution of load

(%)
Hence,

ouron=afs[w(%J |- o (S ((W )] we
our=om=afo-( (Y| (%I [(%)] |
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(144)

1+(R%323/2 “g1| — (145)
(%) (%))
0,(r =0,2)= %{1— 1+(R%jzj_m} N ( F%j (146)

IC(R%j is calculated and presented for various value&otf in Table 5. The results for

0,(r=0,z)=qy1-

o,,(r =0,z) given in Equation (146) are identical with solasopresented by Harr and Lovell

[40].
The distributed load is expressed as:
r
q(r) = qmax(l_gj (147)

The Boussineq point load solution is used as arGiwgction to express the vertical stress under
the center of the circular foundation subject ® ¢bnsidered load in this section as follows:

2o 3 z3 _ r Zrdr
Oy = I J qmax( jmrdfde = 3.([ qmax(l_gjm (148)
0,7 = Omax [BJ. [1_éj(rzz+r—zdgr)5/2 (149)
0
R Zrar A
0,7 = Omax 1B E[ (12 + 222 j (r2+22)5/2} (150)
3 Ro 3 3 Ro
077 = Umax (B |:_Z_(R2 + 22)_3/2:| - Z_|:r—:| } (151)
{ 3 o R 322(r2+ 22)3/2 o
_ I A R
0z, = qmax{ {W 1:| Ro|: 22( %2_'_ f) 3/2:|} (152)

R
z 1- é (153)

02 = Omax _(R§+Zz)3/2+ (R§+ZZJ3/2
z

2
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(5] (%))
onzqm{l—1+(%éjjﬂm}:qmd%(%éj (155)
.%(R%):l_[h(%fj‘”lﬁ (156)

qmax

o 1- (154)

zz = qmax

The results presented in Equation (155) are idehtiith solutions presented by Harr and Lovell
[40], thus validating the research work presenteithis paper.

Discussion

In this work, the Navier's differential equation$ equilibrium, presented in terms of the
axisymmetric coordinates as a system of two difféag equations were solved in closed form
to obtain the general expressions for the displ@ac¢raomponents. The solutions were sought
for the case when body forces were disregardedfantharmonic displacement field. The
solution for the Navier’'s differential equation efuilibrium in thez coordinate direction was
obtained in general as Equation (30). In Equatadh), (the two unknown constants were obtained
from the equation for the volumetric strain givenkuation (31). The radial component of the
displacement(r, 2) was obtained by solving Equation (31) in closauirf such that singularities
of ur(r, z2) were avoided by implementation of the boundedwesslition that requires that as
— 0, u(r — 0,2 — 0 for anyz By substitution of the expressions for the voltnwestraine
and the verticak component of the displacementr, z), the equation to be solved for
simplified to Equation (36). Integration of Equati¢36) gave Equation (38) which contains
another integration constatgwhich was evaluated from the condition for nonsiag solution

for ur asr — 0.

The enforcement of nonsingular solution tefr, 2 asr — 0, gave the expressions foy as
Equation (44). The radial displacement componerst thvas found in terms of the two unknown
integration constant€: and c; as Equation (45). The general solution to the 8l&wi
displacement equations of equilibrium were thusitbas Equation (30) fav(r, Z) and Equation
(45) foru(r, 2).

The specific classical Boussinesq problem of valrpoint load applied at the origin on an elastic
half space assumed linear elastic, homogeneoussatrdpic was considered. The obtained
solutions for the displacements were used in thesstdisplacement equations expressed as
Equations (46 — 49) to obtain the shear stresd fial thez = 0 plane as Equation (63). The
enforcement of the shear stress free boundary ttondjave the expression for the unknown
integration constant. in terms ofc: as Equation (66). The vertical stress field, otdiby use

of Equation (48) — vertical stress — displacemepiagion — was thus obtained in terms of only
one unknown integration constant as Equation (74).

The requirement of equilibrium of the resultanemnial vertical stress and the applied vertical
point load (at the origin)-expressed as Equati&i)-({vas used to derive the unknown integration
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constant:. This yielded a full determination of the two ctargs, and hence, the vertical stress
distribution and the radial and vertical componeariitthe displacement. The integration problem
expressed in Equation (75) was solved by chang&amsformation of coordinates to the
cylindrical coordinate system using the transfoiaraequations — Equations (76 — 78); yielding
the transformed problem as Equation (79). The requént of equilibrium of resultant internal
vertical stresses and the applied vertical poiadls explicitly given by Equation (81) in the
cylindrical polar coordinate system. The integnatmoblem in Equation (81) was solved using
the change of variables of integration given by &oun (87) to obtain the solutions for the
unknown constants as Equation (95) aned as Equation (97). Thus, the vertical stress fiedd
determined as Equation (96). The stresses weranuetd using the stress displacement
relations as Equation (98 — 100). The displacemaetsrmined by substitution of the obtained
values forc, andc; are Equations (101) and (102). The displacemenponoents on the surfaces
z = 0 were obtained as Equations (103) and (1049.vEmtical stress at any point in the elastic
half-space material due to a uniformly loaded dacdoundation was obtained by using the
Boussinesq point load solution for vertical strassa Green function, thus yielding the vertical
stress field as the complicated double integragtimilem given by Equation (105).

For uniformly distributed loads, the stress fieldsfound to simplify to the integration problem
given after factoring out the constants to obtagudion (107). The vertical stress field was
obtained as Equation (108) using Egorov’s resualt®ims of complete elliptic integrals of the
second kind and complete elliptic integrals of thied kind with a modulus dependent on the
radius of the circular foundation and the radiatace of the arbitrary point in the elastic half-
space. The vertical stress field was presentedalier2 in terms of non-dimensional vertical
stress influence factors (coefficients) which depepon the ratios/Ry andz/Ro.

The vertical stress distribution under the cenfeciwular foundation subjected to uniformly
distributed load was obtained as a special casleeofieneral solution for vertical stress at any
point (r, 2 in the elastic half-space. This is observed taH® case by setting= 0 in the
expression to obtain Equation (114), which uporwateon of E(0) andIlo(0, 0) and algebraic
simplification yielded Equation (115). The vertisaless distribution under the center of circular
foundation subject to uniformly distributed loadsaalternatively derived in the study by using
the point load solution obtained as an integral n€erfunction to obtain Equation (116).
Evaluation of the double integration problem, afgkhraic simplifications gave the result as
Equation (126).

The work also considered the vertical stress fi@lciny depth under the center) in an elastic half
space due to a circular foundation area subjeztctmical load distribution which varies linearly
from an intensitygo(r = 0) = 0 at the center @(r = Ro) = go at the radiuso. The integration
problem derived from the use of the point load gofuobtained in this work was shown in
Equation (128). The evaluation of the double irdéign problem over the two-dimensional
domain of the circular plate yields, after algebisimplifications, the solution farzAr = 0,2) as
Equation (139), which is expressed in terms of disnenless influence coefficients for vertical
stresd2(Ro/2) given by Equation (140) and presented in Talded Figure 12.

The vertical stress field under the center of dactoundation of radiuBy subject to an inverted

conical load distribution (in Figure 9) was obtalriey the application of superposition from the
vertical stress field results for the uniformly tdisuted load and the conical load distribution.
They are presented in terms of non-dimensional@mite factors (coefficients) of vertical stress
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l3(Ro/2) as Equation (146). The same results were aligahatderived by the application of the
principles of superposition from the point loadwmn by solving the double integration problem
given in Equation (149) over the two dimensiondD)2egion of the circular plate, to obtain

Equation (155).

Table 4:1,, [%j _ ( %0 jz [1+ [ %)2]_3/2

Vertical stress influence coefficients(Ro/2) for vertical stress at any depthinder the
center of a circular foundation of radiBscarrying a conical load distributiog(r) = ql%%

Ro/z lc2(Ro/2) Ro/z lc2(Ro/2)
0.2( 0.03771! 5 0.1885
0.4C 0.12806! 6 0.15995I
0.50 0.178885 8 0.12213
0.75 0.288 10 0.09852
1.0 0.353553 20 0.04981
1.2 0.377814 50 0.019988
1.5C 0.38402. 10C 0.0099985
2 0.35777. 0 0
2.5 0.3201644
3 0.284605
3.E 0.253987
4 0.228268

2 -1/2
Table 5:1, (&j =1—[1+[&j J
4 4

Vertical stress influence coefficients for vertistless at any dep#under the center of a
circular foundation of radiuBo subject to an inverted conical load distribution

q(r) = qmax(l— VRoj
Ro/z | 2(Ro/2) Ro/z l2(Ro/2)
0.20 0.01942 5 0.803884
0.40 0.071523 6 0.83560
0.50 0.105573 7 0.858579
0.7%5 0.2C 8 0.87596!
1.0C 0.2928t¢ 9 0.8895°
1.2 0.3598156 10 0.900496
1.5 0.44530 12.5 0.920255
2 0.552786 15 0.933481]
2.5 0.628609 20 0.95006
3 0.68377 50 0.98000
3.E 0.7252¢ 00 1.0000(
4 0.75746
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Figure 11: Variation ofK(r/z) with (r/z) for the Boussinesq problem
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Figure 12: Variation oflc2(Ro/2) with (Ro/2)

()& [

Conclusion
The following conclusions are made from the study:

0] Navier’s differential equations of equilibriufor elastostatic axisymmetric problems of
the half-space which are two partial differentiguations in terms of the radial and
vertical displacement components have been inegj@bolved) in general. The general
solution gave the displacement components in tesmsvo unknown constants of
integration c; and c;, with the third integration constant obtained (fdy by the

appropriation of the boundedness conditionuér — 0, 2) asr — 0.
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(ii)

(iif)

(iv)

v)

(vi)

(vii)

(vii)

Closed form expressions were obtained forgpecific classical elasticity problem of a
vertical point load applied at the origin of thedffgpace by the enforcement of the shear
stress free boundary conditions. This helped terdghe the one unknown integration
constant: in terms of the othexc(). The requirement of the equilibrium of the reantt
internal vertical stresses and the applied verpoaht load was used to determine the
unknown constant;, thus leading to the full determination of thetieg displacement
and radial displacement components as well asdheal and shear stress fields.

Vertical stress distribution for the pointdd solution, being the most useful of the stress
field expressions consequent to its significantingdastic settlement analysis, was used
as integral Kernels to determine the vertical stadistributions for distributed loads that
produce axisymmetric stresses, strains and digplacts.

Expressions for vertical stress fields in #lastic half- space due to circular foundation
areas subject to uniformly distributed load weréoted by considering the point load

solutions as integral kernels and performing appabte integrations over the circular

foundation domain. Expressions obtained by theuatin of the resulting complicated

double integration problems in general involvepeiti integrals of the second and third
kind, and were presented as tables.

Closed form expressions were obtained for #gecof points in the elastic half-space
under the center of circular foundation areas sligeuniform loads by putting= 0 in
the general solution faszAr, z). Consequently, simpler expression for the verst@ss
influence coefficients were found in terms of théia of the radius of the foundatiét
and the depttg (Ro/2).

The vertical stress fields (distributions) @ndhe center of circular foundation areas due
to conical distribution of loads were similarly dexd by considering the point load
solution obtained as a Green function, resultingha evaluation of double integration
problem over the two dimensional domain of theudacfoundation.

The vertical stress distribution under thent of circular foundation areas due to
inverted conical distribution of load were alsoided by considering the point load
solution obtained as a Green function in a doubtegration problem over the two
dimensional domain of the circular foundation.

The closed form expressions obtained forvketical stress distributions under the center
of the circular foundation for all the axisymmeaiidoad distributions considered were
radially symmetrical functions with respect to tregtical axis of symmetryr (= 0) of the
problem which is the vertical axis directly undee tcenter of the circular foundation.
This agrees with the symmetrical character of thestestatic half-space problem
considered and the symmetrical nature of the agpplistributed loads about the vertical
axis of symmetryr(= 0).

Nomenclature

X, ¥,z three dimensional Cartesian coordinates

r, z, 6 cylindrical polar coordinates

2D

two-dimensional
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3D three-dimensional

00 infinity

v displacement field

u(r, 2 radial component of displacement field

Ug(r, 2) tangential component of displacement field

ir unit vector in the radial coordinate direction

iz unit vector in the coordinate direction
r radial coordinate
0 tangential coordinate

depth (transverse) coordinate
Poisson’s ratio

shear modulus or modulus of rigidity

> @ M N

Lamé constant

F body force vector

ihj, k unit vectors of the 3D Cartesian coordinate syste
O vector differential operator

02 Laplacian operator

v Poisson’s ratio

PDE Partial Differential Equation

& radial strain

€00 circumferential strain

£, strain in the coordinate direction

Vs shear strain

o, radial stress

Ogg circumferential stress

o normal stress in thecoordinate direction

o,(ort,)  shear stress

F, body force component in tlzadirection
F(r.z) radial component of body force vector
F,(r,z) z-component of body force vector

C1, C2, C3 constants

- tend to



616 ke

[ J] Jacobian of the coordinate transformation froant€sian to polar coordinates
Qo point load acting at the origin of an elasticffsgace
o intensity of uniformly distributed load acting ove circular area on the surface of an

elastic half-space

radius of circular foundation

ai partial derivative with respect o
z
integration sign or integral sign
I} double integration
| ] determinant
k(yz) Boussinesq vertical stress influence coefficexressed in terms ok
E(K) complete elliptic integral of the second kindiwa modulus ok, and parametem
Mok, M) complete elliptical integral of the third kindtlvia modulus ok, and parametem
a dimensionless parameter defined in termsardR,
n dimensionless parameter defined in termsadfdRy
k parameter defined in termsmand a
m parameter defined in terms af
F1 parameter defined in termsmoéndRy

Ire, 2 j dimensionless vertical stress influence factoas tliepend uporR, andz/
(/Ro 7R pend uporR, andzke
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