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Relative permeability is a crucial input to reservoir simulators for modeling 

reservoir performance. Conventional methods of measuring relative 

permeability rely on either laboratory core-flooding experiments or fine-

scale computer simulations. The former method is expensive and time-

consuming, and the latter often does not represent the complex 

characteristics of existing systems. Data mining algorithms can be 

implemented to estimate relative permeability with reasonable accuracy for 

real applications without running laboratory or computer simulation 

experiments. This paper aims at presenting predictive correlations for 

relative permeability for carbonate rocks using data-driven approaches. To 

achieve this aim, a scatter plot matrix was applied to analyze 225 

experimental datasets, including almost 3800 relative permeability data 

points (observations), for predicting relative permeability. Since relative 

permeability measures are often unavailable exactly at residual oil 

saturation and connate water saturation (known as endpoints); 

consequently, cubic equations were fitted and solved to precisely determine 

these points. Next, a symbolic regression algorithm was developed to 

predict relative permeability in different situations: when endpoints are 

available or unavailable and when the rock wettability is clear or not. For 

this purpose, all 225 datasets were divided into training and testing groups. 

The correlations were tested to predict testing data, which the symbolic 

regression algorithm has never seen before. Finally, the most accurate 

correlations were presented, and a detailed analysis was carried out. The 

results showed a good agreement between the real and the predicted data. 

The developed correlations proved to be very efficient in predicting the 

relative permeability accurately. 

 

Introduction 

Relative permeability is defined as the ratio of effective permeability to a base permeability. 

The base permeability is usually the absolute permeability or oil permeability at irreducible 

water saturation [1-3]. Any mathematical calculation related to the movement of different fluids 

in porous media needs relative permeability data [4]. The most reliable method to obtain relative 
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permeability is special core analysis (SCAL). However, since this method is expensive and 

time-consuming, empirical correlations have been developed for the estimation of relative 

permeability curves which accept basic rock and fluid properties as input parameters  [5]. This 

category of relative permeability correlations is the subject of this study.  

The first step for developing an appropriate correlation for predicting the relative 

permeability is to determine key effective factors on this petrophysical parameter. Several 

works made efforts to recognize crucial parameters on relative permeability. These studies 

investigated the effect of parameters such as temperature [6-8], interfacial tension [9], fluid 

viscosity and displacement rate [10], pore size distribution [11], and capillary number [12]; on 

relative permeability. They showed that some parameters such as fluid rate, viscosity, 

interfacial tension, and temperature have a small effect on predicting relative permeability. 

Conversely, other parameters like saturation (especially at end-points) and wettability 

significantly affect relative permeability values. In the following, a few investigations in this 

domain are brought up in detail. Gates and Lietz [13] developed an expression based on 

Purcell's model for wetting phase relative permeability. Corey et al. [14] observed a linear 

relationship between the relative permeability of oil and effective water saturation in a wide 

range of saturation in the sandstone reservoir. Hereby, considering this observation and more 

simplifications, Corey presented an equation to calculate relative permeability based on 

effective saturations for water-oil and gas-oil systems. Torcaso and Wyllie [15] extended a 

simple expression based on Corey's results to predict the oil phase's relative permeability in a 

gas-oil system. Pirson [16] derived correlations for wetting and non-wetting phase relative 

permeability for both drainage and imbibition processes. Naar and Henderson [17] developed 

a mathematical image (model) of consolidated porous rock for two-phase imbibition relative 

permeability and considered saturation history at predicting relative permeability. It should be 

noted that saturation history focused on end-point data availability. Brooks and Corey combined 

the modified equation with Burdines’s equation for developing the new expression that 

estimates drainage relative permeability for any pore size distribution [18].  

Land calculated imbibition relative permeability for two and three-phase flow based on the 

dependency of relative permeability on pore size distribution [19]. Owen et al. [20] concluded 

that rock wetting has a significant and predictable effect on oil-water relative permeability 

measurements. F.M. Carlson [21] presented a method allowing the calculation of imbibition 

relative permeability at any saturation. Honarpour [22] applied linear regression analysis 

techniques to develop an empirical equation. Timmerman [23] suggested the equations based 

on the water-oil drainage capillary pressure to calculate low values of water-oil relative 

permeability. A few years later, Ertekin et al. [24] investigated the influence of capillary number 

on the two-phase oil-water relative permeability curve. Alpak et al. [25] have exceptional 

attention to surface areas of fluids and rock interfaces, and tortuosity. They claimed that 

acquired results from modified Carman-Kozeny (MCK) expression had shown similar results 

to modified Brooks and Corey (MBC). M. Ibrahim [26] applied a stepwise multiple linear 

regression model to develop correlations for water-oil, gas-oil, gas-water, and gas-condensate 

relative permeability. He presented an improved equation based on formation type and 

wettability. Behrenbruch et al. [27] identified that the pore structure's shortcoming affects 

relative permeability prediction by the MBC model based on the CK equation. Ghanbarian [28] 

experimentally confirmed that providing access to electrical conductivity obtained a more 

accurate estimation of relative permeability.  

Recently, M. Andrew [29] claimed that applying the tunning factor used in Kozeny- 

Carman's based models is subject to enormous challenges for actual conditions. To decline 
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these challenges, he presents a new approach for predicting Stokes flow permeability from pore-

scale images using multivariant statistical regression coupled with pore-scale computational 

simulation. Besides correlations based upon BC and CK, computational methods such as pore 

network models (PNM) and direct numerical simulation (NMS) have been presented recently 

[30, 31]. Although these methods are used as a fast relative permeability data generation, they 

are subject to uncertainties originating from idealization or limited to a rock or special fluid 

[32]. In this respect, Raoof et al. [33] introduced a pore-network model that used complex 

formulations to accurately model transport problems. Nevertheless, gained results of the pore-

network model only applied for theoretical studies and be able to study the qualitative trend of 

relative permeability. Zhao et al. [34] developed a machine learning-based model and applied 

pore network simulation to produce relative permeability data. They stated that the Euler 

number (a parameter for measuring fluid connectivity/distribution) is a first-order predictor for 

relative permeability. They used pore-network simulation to generate requisite data to evaluate 

the Euler number. Another way to obtain requisite data for the Euler number is the displacement 

experiment under micro CT. Also, P.Purswani et al. [4] developed a general equation of state 

approach for relative permeability based on normalized Euler number. They used PNM 

simulations similar to Zhao to acquire vital data for the Euler number. As mentioned, most 

traditional correlations, such as Corey, Alpak, etc., considered some of the influential 

parameters but ignored others.  

On the other hand, as the era of easy-to-find oil and gas comes to an end, oil companies are 

developing new technologies to reduce costs. There are many applications of artificial 

intelligence being used today to enhance oil recovery in the oil industry. In recent years, as we 

pointed out in brief, several studies have been done on the use of machine learning in the oil 

industry, including the production optimization [35], geological studies [36], prediction of PVT 

properties like viscosity [37, 38], permeability and porosity estimation [39], etc. some studies 

have been conducted on relative permeability prediction using computational methods [4] and 

CNM [34], etc. These kinds of correlations either are applicable in theoretical conditions or 

need extra experimental facilities like micro-CT to determine crucial parameters (Euler 

number) to predict relative permeability that caused high experimental costs. Also, several 

studies have been conducted to predict relative permeability only using linear regression while 

the relationship between crucial parameters such as saturation, wettability, and endpoints are 

non-linear. However, machine learning algorithms have the merit of developing correlation by 

considering multiple useful parameters simultaneously [34]. Hereby, along with this growth in 

applying machine learning, a considerable amount of literature has been published on the 

prediction of multi-variant parameter functions like relative permeability. For example, Al-

Fattah [40] utilized ANN (artificial neural network) in characterizing relative permeability in 

two-phase flow. In another attempt to predict the association between porosity, permeability, 

and tortuosity, K.M. Graczyk and M.Matyka [41] have recently implemented CNN 

(convolutional neural networks) to obtain these values. Although they have shown that CNN 

gained good results for predicting permeability, porosity, and tortuosity, they have only focused 

on static, not dynamic parameters. More recently, S. Kalam et al. [42] claimed that presented 

new correlations to predict relative permeability by using ANN and ANFIS (adaptive neuro-

fuzzy inference system) algorithms either in sandstone or in carbonate porous media. Even 

though they urged that their correlation have exceptional attention to wettability, porosity, water 

saturation, and end-point data, in their correlation, however, far too little attention has been paid 

to tortuosity and pore structure's effect on relative permeability.  Investigations of M. Adibifard 

et al. [43] applying GA (genetic algorithm) and EnKf to build the relative permeability curves;  

revealed that cumulative gas and oil production data shows the complex two-phase flow in 

porous media.  

In this study, we considered all points mentioned above and implemented symbolic 

regression to develop proper correlations regarding noted issues. This research consists of 
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several steps. Firstly, we analyzed the datasets from a wide range of Iranian carbonate fields 

and applied a matrix plot to find correlated parameters. Then, we developed a symbolic 

regression algorithm to predict relative permeability. Due to the strong correlation between 

relative permeability and wettability, we took into account this matter and developed new 

correlations both when wettability is known and unknown, and when relative permeability at 

endpoints is available or not. The rest of this paper is organized as follows: in section 2, we 

briefly review the datasets and methodology of this work. Section 3 describes the wettability of 

samples. In section 4, we suggest correlations to predict relative permeability in all possible 

conditions. Finally, the last section presents our conclusions. 

Methodology 

The main goal of this study is to suggest new correlation equations that can be used by other 

researchers who may not have access to our dataset and algorithms. So, we used a symbolic 

regression algorithm that provides accurate non-linear correlations. 225 relative permeability 

datasets, including almost 3800 relative permeability data points from Iranian carbonate 

reservoirs, have been used. Therefore, we first describe the available datasets and summarize 

the steps to gain precise correlations in a flowchart. Then, we introduce a symbolic regression 

algorithm. 

Dataset Description 

In SCAL analysis, relative oil permeability (𝑘𝑟𝑜) at connate water saturation (𝑆𝑤𝑐) have a 

maximum value known as 𝑘𝑟𝑜𝑒𝑛𝑑. In addition to that, the maximum value of krw place at 

residual oil saturation (𝑆𝑜𝑟𝑤) is called krwend (Fig. 1).  

 

Fig. 1. Key points of a typical water-oil relative permeability curve 

For illustration purposes, some relative permeability curves of some used samples are shown 

in Figs. 2 and 3.  
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Fig. 2. krw vs. Sw for some samples 

 

Fig. 3. kro vs. Sw for some samples 

As mentioned earlier, 225 datasets consisting of 3800 relative permeability data are 

available. Variables and statistical properties of them are as follows: 

Table 1. Statistical properties of the dataset. 

Statistical 

Characteristics 

Air 

Permeability 

(md) 

Base 

Permeability 

(md) 

Porosity 
Oil Viscosity 

(cp) 

Water Viscosity 

(cp) 
Swc 

Min 0.107 0.0005 0.04284 1.3 1.21 0.0429 

1st Qu 1.32 0.238 0.1138 1.3 1.4 0.1889 

Median 3.012 0.5247 0.15385 1.3 1.5 0.2256 

Mean 7.659 2.2247 0.14976 3.385 1.484 0.227 

3rd Qu 7.977 2.334 0.1847 2.5 1.55 0.259 

Max 122.673 39.5556 0.2569 20 1.55 0.4491 

 

Statistical 

Characteristics 
Sorw Krwend Kroend Krw Kro 

Min 0.0470 0.005126 0.005674 0 0 
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1st Qu 0.2408 0.152051 0.298729 0.045231 0.014154 

Median 0.3014 0.221655 0.490026 0.099053 0.044799 

Mean 0.3080 0.255084 0.503842 0.126844 0.129565 

3rd Qu 0.3935 0.348244 0.694762 0.174266 0.171662 

Max 0.6639 0.815393 0.996777 0.815393 0.996777 

𝐾𝑎𝑖𝑟 and 𝐾𝑤𝑎𝑡𝑒𝑟 are absolute permeability to air and water. Moreover, 𝑆𝑤𝑐 is connate water 

saturation and 𝑆𝑜𝑟𝑤 is residual oil saturation in the water-oil system.  It is remarkable to note 

that the base permeability (𝐾𝑏𝑎𝑠𝑒) can be absolute liquid or air permeability or effective oil 

permeability at Sorw to normalize the relative permeability. In this dataset, the base relative 

permeability is the absolute permeability of water. Also, the exact measure of the endpoint data 

was unavailable in some datasets. Therefore, cubic equations have been fitted and solved for 

each curve of oil and water relative permeability as follows: 

Krw = aSw
3 + bSw

2 + cSw + d (1) 

Kro = eSw
3 + fSw

2 + gSw + h (2) 

An example of obtained coefficients for a relative permeability curve has been shown in Fig. 

4. 

 

Fig. 4. Fitting and determining the coefficients of a cubic equation 

In most cases, the quadratic equation has been fitted adequately with experimental data; 

nevertheless, the cubic equation is used to reach maximum accuracy. All acquired equations 

have been solved, and then the exact value of  𝐾𝑟𝑜𝑒𝑛𝑑 , 𝐾𝑟𝑤𝑒𝑛𝑑 , 𝑆𝑜𝑟𝑤 , 𝑆𝑤𝑐 were calculated. 

A scatter plot matrix was prepared to investigate the relations between parameters (Fig. 5). 

This plot draws scatter plots between all parameters and calculates the Pearson correlation 

coefficients. The value of the Pearson correlation coefficient represents the linear relations 

between the two parameters. The values range between -1.0 and 1.0. A value of -1.0 shows a 

perfect negative correlation, a value of 1.0 indicates a perfect positive correlation, and 0 shows 

no linear relation between the variables. It is worth mentioning that the Pearson correlation 

coefficient only calculates linear relations, so to investigate non-linear relations, other 

correlation coefficients can be used. Using this plot, some helpful information can be obtained: 

how each parameter is linearly correlated with others? Is there any outlier data? How the data 
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is distributed, and has it normal distribution or not? And so on. As shown in Fig. 5, oil and 

water relative permeabilities are strongly correlated with water saturation and endpoint relative 

permeability. On the other hand, it is also clear that oil and water relative permeabilities have 

poor relations with other parameters. Therefore, in many cases where the 𝐾𝑟𝑒𝑛𝑑 data is 

unavailable, predicting relative permeability will be challenging and complicated. It is worth 

mentioning that endpoint tests provide the values of 𝐾𝑟𝑒𝑛𝑑, 𝑆𝑜𝑟𝑤  and 𝑆𝑤𝑐. These tests are less 

expensive than the SCAL tests; however, they can provide fruitful information. 

 

Fig. 5. Scatter plot matrix for the variables 

Data Mining  

The first phase of data mining projects is preprocessing, which prepares input data for 

machine learning algorithms. The missing values in each variable were filled by mean value, 

and outlier data were identified and deleted. These misleading data are comprised of wrong 

experimental measurements or computational errors.  

As mentioned in this work, symbolic regression is utilized to consider the non-linear 

relations between the dependent and independent parameters. In the first step, 75% of the SCAL 

datasets (i.e., 168 datasets) were used for training, and 25 % (i.e., 57 datasets) for testing to 

evaluate the algorithm's performance. In the following, the accuracy and errors of unseen data 

are presented. It is worth bearing in mind that if the observations are divided randomly into 

training and testing groups since the algorithm has seen a part of a relative permeability curve 

in the training step (i.e., it might have seen 10 points of 15 points of a whole curve), it also 

caused that the accuracy of the predicted value in the testing step to increase dramatically. 

Therefore, the correlations were tested on complete unseen curves. These datasets have been 

held back from training the model, and they have not been seen by the model whatsoever. The 

main steps of this study were drawn in a flowchart, see Fig. 6: 
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Fig. 6. Relative permeability prediction steps by using data mining algorithms 

Nowadays, many powerful algorithms are being used to build predictive models. Symbolic 

regression can suggest non-linear correlation equations, which can use by other researchers in 

their projects. 

Symbolic Regression 

In a general sense, genetic programming (GP) is a method in machine learning for optimizing 

programs to find a plan that performs the given task well. This work uses symbolic regression 

as a method among GP’s tools to find correlations to predict relative permeability. Symbolic 

regression uses a population of operators such as arithmetic, trigonometric, exponential, and 

building the inverted tree (a graph-based representation). The operator set is in the middle and 

top of the tree. In the end, the phenotype is the function created from this tree, see Fig. 7: 
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Fig. 7. An example of a symbolic regression tree 

It should be noted that symbolic regression keeps iterating to achieve the most accurate 

model; therefore, we need to choose criteria to accomplish the procedure so that it neither stops 

early without adequate accuracy nor spend a long time searching to make any improvement. 

Wettability of Samples 

Lak wettability index is a new index to determine wettability just by applying relative 

permeability curves. This index was obtained by combining Graig’s first rule and modified 

Griag’s second rule by A.Mirzaei-Paiaman [44]. This method has been defined as follows: 

Ikr = Ikr1 + Ikr2 = α (
0.3 − Krw@ROS

0.3
) + β (

0.5 − Krw@ROS)

0.5
) + (

CS − RCS

1 − Sor − Swc
)  (3) 

where 𝐾𝑟𝑤@𝑅𝑂𝑆 is the value of water relative permeability at residual oil Saturation (𝐾𝑟𝑤𝑒𝑛𝑑). 

CS is the water saturation value at the crossover point of the relative permeability curve. RCS 

is reference crossover saturation which equals  
1

2
+

𝑆𝑤𝑐−𝑆𝑜𝑟

2
  for water-oil systems.  

In general, 𝐼𝑘𝑟  have a value between -1.0 to +1.0. The values of 1.0 implied a strongly water-

wet system, whereas values approaching -1.0 represent an oil-wet system. Positive measures of 

the Lak index represent water-wet rocks, and negative measures are for oil-wet rocks [44]. 
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Fig. 8. Lak wettability index distribution 

As Fig. 8 illustrates, in most samples, the Lak wettability index is frequently between 0 to -

1; as mentioned earlier, these values implied oil-wet wettability in oil-water systems. It is 

necessary to mention that 172 of the samples are oil-wet, and 53 are water-wet. 

Results and Discussion 

In this paper, some correlations were developed to predict relative permeability in all 

possible situations, whether the wettability of the sample is known or not, or whether the 

endpoint permeability is available or unavailable. Relative permeability strongly correlates with 

endpoint data, so predicting relative permeability will be associated with remarkable errors 

without these values. On the other hand, these data are unavailable under many conditions; 

therefore, having an acceptable estimate of full relative permeability curves without having 

these parameters appears necessary and useful. So, all the above states will be considered and 

pointed out in the following separately. 

Estimation of Relative Permeability for Oil-Wet Systems 

Wettability can be one of the influential parameters in predicting relative permeability, and 

there is a mutual relation between them. In a case where wettability is clear, two classes of 

correlations are provided: predicting relative permeability either in the existence of endpoint 

data or in its absence. Moreover, several previously developed correlations suffer from the 

inability to predict permeability in the lack of endpoints data, which caused authors to present 

new correlations for this condition. The newly developed correlations for oil and water relative 

permeability when endpoint data is unavailable and also wettability is oil-wet are presented as 

follows: 

(kro)o−w =
7.345φSwIF(φ ≤  (6.7928φ)Kair , 1,0) + maximum(Sw, 0.2363)

e(5.8311Sw
∗ )  

 (4) 

(krw)o−w = minimum(Sweff , 0.0143 + 0.0661Sweff

+ maximum(0.2961Sweff , 0.6521SwcSweffμw
2 )

− 0.0036Kbaseμo@25°Sweff 

(5) 

where 𝐼𝐹(𝜑 ≤  (6.7928𝜑)𝐾𝑎𝑖𝑟 , 1,0) returns 1 if 𝜑 ≤  (6.7928𝜑)𝐾𝑎𝑖𝑟 , otherwise 0. 

Furthermore maximum (Sw, 0.2363) returns 𝑆𝑤 if 𝑆𝑤 >  0.2363, otherwise 0.2363.  

Moreover, 𝑆𝑤𝑒𝑓𝑓 =
(𝑆𝑤−𝑆𝑤𝑐)

(1−𝑆𝑤𝑐)
) and  𝑆𝑤

∗ =
𝑆𝑤−𝑆𝑤𝑐

1−𝑆𝑤𝑐−𝑆𝑜𝑟𝑤
 . It should be noted that the porosity and 

saturations are fractions (between 0 and 1.0).  

Fig. 9 displays the relative impact within this model that a variable has on the target variable. 

As illustrated, water and normalized water saturation greatly impact the relative permeability 

of oil in oil-wet systems, whereas effective water saturation and connate water saturation 

significantly contribute to predicting the relative permeability of water in this system. 
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A B 

Fig. 9. The relative importance of each predictor A)(𝑘𝑟𝑜)𝑜−𝑤, B) (𝑘𝑟𝑤)𝑜−𝑤 

Fig. 10 draws a comparison between actual data and predicted relative permeability obtained 

by Eq. 4 and Eq. 5. It displays that even if we do not have endpoints, acceptable results can be 

obtained by presented correlation.  

 

Fig. 10. Comparison between new correlations and real data, oil-wet system, Krend is unavailable 

The authors, with the respect that endpoint data have a noteworthy effect on the prediction 

of relative permeability, developed new correlations for conditions in which these data are 

available to increase predicted relative permeability accuracy in the following. The developed 

correlations for oil and water relative permeability have been presented for oil-wet systems 

when endpoint data is available in the following: 

((Kro)o−w)e = Kroend + 3.9100 Sw
∗ Kroendminimum( 0.3842 , Sw

∗ ) − 1.6558Sw
∗ Kroend

− 1.9540 Kroendminimum(0.4331 , Sw
∗ ) 

(6) 

((Krw)o−w)e = KrwendSW
∗

maximum(0.8187 ,0.5596+4.6857SwcSW
∗ − 

1.9124Sw
μo@25°

2 +minimum(Kbase,Sorw))
 

(7) 

It is observed in Fig. 11 that the most important parameters that play an essential role in 

determining the relative permeability of oil are normalized water saturation and endpoint data 

while to determine the relative permeability of water other parameters such as connate water, 

oil viscosity, and base permeability show a significant contribution as well. 
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A B 

Fig. 11. The relative importance of each predictor (A)((Kro)o−w)e (B) ((Krw)o−w)e 

Fig. 12 has provided a comparison between acquired relative permeability against actual 

data by applying Eq. 6 and Eq. 7. As expected, the accuracy of the predicted value remarkably 

increased using endpoint data, and obtained results show a close prediction to actual data.  

 

Fig. 12. Comparison between new correlations and real data, oil-wet system, Krend is available 

Estimation of Relative Permeability for Water-Wet Systems 

The previous section is repeated for water-wet wettability samples to predict relative 

permeability. In this step, we presented new correlations in conditions where endpoint data is 

unavailable .Besides, the accuracy of newly developed correlations was strengthened by 

considering endpoint data. New correlations for water-wet systems, for oil and water, are 

presented as follows: 

(Kro)w−w = 8.3634 × 10−16 × 0.0004SW
∗

Sweff
2  Factorial(μo@25°) +

minimum (0.7050 , minimum(Kair, 4.4751Sw(0.0011Sweff)
SW

∗
))  

(8) 

(Krw)w−w = 0.0029 +
0.9132 minimum (SwcSW

∗  , minimum(0.4982Sweff , φ Sweff +

0.0597SwcKair
2 )) − 0.0141 KbaseSW

∗   

(9) 

As explained in the previous section, the author determined the relative impact of parameters 

for predicting relative permeability in water-wet systems, see Fig. 13.       
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A B 

Fig. 13. The relative importance of each predictor A)(Kro)w−w, B)(Krw)w−w 

As shown in Fig. 14, the presented correlations almost show close prediction to actual data. 

These correlations were presented without endpoint data and demonstrated reasonable accuracy 

for the water-wet system. 

 

Fig. 14. Comparison between new correlations and real data, water-wet system, Krend is unavailable 

However, new correlations when endpoint data is available are: 

((Kro)w−w)e = 0.0057 + 1.0646Kroend(0.0052μo@25°)
SW

∗

− 0.0055μo@25°Kroend 

(10) 

 

((Krw)w−w)e = minimum(0.0691φKroend + 0.596μwSW
∗ Krwend  , SW

∗ ) 
(11) 

 

Also, the importance of diverse parameters for predicting relative permeability when 

endpoint data is available can be seen in Fig. 15. 

  

A B 

Fig. 15. The relative importance of each predictor A)((𝐊𝐫𝐨)𝐰−𝐰)𝐞. , B)((𝐊𝐫𝐰)𝐰−𝐰)𝐞 

By comparing Fig. 16 and Fig. 14, we realize when endpoint data is available, the accuracy 

of the predicted value increased, most especially for the predicted relative permeability of water 
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that shows a remarkable adaption with actual data. It is also expected from Fig. 15, which 

showed the endpoint data have a great contribution to relative permeability of water, therefore; 

considering this parameter gives rise to an increase in the accuracy of relative permeability of 

water. 

 

Fig. 16. Comparison between new correlations and real data, water-wet system, Krend is available 

Although access to wettability type led to increasing predicted accuracy in most cases, 

sometimes this parameter is unknown. Alternatively, previously developed correlations 

suffered from this shortcoming inspired the authors to present new correlations in the absence 

of wettability. 

Estimation of Relative Permeability when Wettability Type is Unknown 

Finally, general correlations by paying attention to unknowing wettability conditions have 

been developed. New correlations to predict relative permeability in the absence of endpoint 

data are as follows: 

Kro = 0.0047 +

minimum ( Kair , 1.2035
1

1+e−(18.9880 φSw− IF(596 φ2>μo@25°,1,0)−7.3786Sw
∗ )

)  
(12) 

Krw = 0.7428SwcSweff minimum (1.8057 , Kair) +

minimum (0.3534Sweff , minimum (
0.0159Kair

Kbase
, minimum (

Swc

Kbase
, Sorw

μo@25°  )))  
 

Quite similar to the early section, Fig. 17 displays the relative feature importance of each 

predictor in these correlations. 
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A B 

Fig. 17. The relative importance of each predictor (A) Kro, (B) Krw 

Observation in Fig. 17 goes to show that among the main parameter for predicting relative 

water permeability, the 𝐾𝑎𝑖𝑟 has a massive contribution than to other parameters like Effective 

water saturation. Whereas normalized water saturation, in addition to 𝐾𝑎𝑖𝑟, plays a major role 

in predicting the relative permeability of oil. Fig. 18 plotted the predicted relative permeability 

using Eq. 12 and Eq. 13 versus actual data when both endpoint data and wettability type is 

unclear. As shown, although we access limited data in this condition, it is certified predicted 

relative permeability by new correlations has acceptable results. 

 

Fig. 18. Comparison between new correlations and real data, unknown wettability, Krend is unavailable 

After all, provided correlations when endpoint data is available while wettability is unknown 

are presented for oil and water relative permeability as follows: 

(Kro)e = Kroend0.05290SW
∗

− Kroendminimum(2.4952Kroend
2 , 0.0975SW

∗
) ×

minimum(SW
∗ (IF(0.1491kroend < Krwend,, 1,0), 0.4582)  

(12) 

(Krw)e = KrwendSW
∗ 0.6277

− Krwendminimum(SW
∗ −

SW
∗ 2.2473

, minimum(0.0317μoil
2 × eIF(Kabs> Krwend,1,o), Krwend) , Krwend)  

(13) 

We assessed to recognize the most influential parameter on the measure of relative 

permeability when endpoint data is available similar to previous sections, see Fig. 19. 

  
A B 

Fig. 19. The relative importance of each predictor (A)(Kro)e , (B)(Krw)e 
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We checked the correlation’s accuracy versus actual data on two full relative permeability 

curves. As seen in Fig. 20, the predicted value compared with actual data showed a noteworthy 

accuracy despite the absence of wettability. 

 

Fig. 20. Comparison between new correlations and real data, unknown wettability, Krend is available 

To compare all presented correlations' accuracy, the R2, MAE, MSE, and MAPE were 

calculated for testing (unseen) data, and the results are shown in Table 2.  

Table 2. The accuracy and errors of presented correlations 

Relative Permeability Wettability Krend R2 MAE MSE MAPE 

Krw Oil Wet Unavailable 0.6615 0.0442 0.0054 0.8909 

Krw Oil Wet Available 0.9607 0.0155 0.0005 0.1925 

Kro Oil Wet Unavailable 0.82147 0.0385 0.0061 0.9326 

Kro Oil Wet Available 0.9906 0.0123 0.0003 0.5138 

Krw Water Wet Unavailable 0.8651 0.0119 0.0003 1.6505 

Krw Water Wet Available 0.9311 0.0078 0.0003 0.2289 

Kro Water Wet Unavailable 0.9232 0.0326 0.0036 0.7210 

Kro Water Wet Available 0.9697 0.02487 0.0014 0.4521 

Krw Unknown Unavailable 0.6524 0.0402 0.0041 1.7889 

Krw Unknown Available 0.9556 0.0151 0.0005 0.2734 

Kro Unknown Unavailable 0.8212 0.0441 0.0066 1.0413 

Kro Unknown Available 0.9799 0.0164 0.0007 0.4921 

In summary, the correlations presented in this study for all possible situations are as follows: 

Oil-wet wettability, Krend is unavailable: 

(kro)o−w =
7.345φSwIF(φ ≤  (6.7928φ)Kair , 1,0) + maximum(Sw, 0.2363)

e(5.8311Sw
∗ )  

 

(krw)o−w = minimum(Sweff , 0.0143 + 0.0661Sweff +

maximum(0.2961Sweff , 0.6521SwcSweffμw
2 ) − 0.0036Kbaseμo@25°Sweff  

Oil-wet wettability, Krend is available: 
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((Kro)o−w)e = Kroend + 3.9100 Sw
∗ Kroendminimum( 0.3842 , Sw

∗ ) − 1.6558Sw
∗ Kroend −

1.9540 Kroendminimum(0.4331 , Sw
∗ )  

((Krw)o−w)e = KrwendSW
∗

maximum(0.8187 ,0.5596+4.6857SwcSW
∗ − 

1.9124Sw
μo@25°

2 +minimum(Kbase,Sorw))

 

Water-wet wettability, Krend is unavailable: 

(Kro)w−w = 8.3634 × 10−16 × 0.0004SW
∗

Sweff
2  Factorial(μo@25°) +

minimum(0.7050 , minimum(Kair, 4.4751Sw(0.0011Sweff)
SW

∗
))  

(Krw)w−w = 0.0029 + 0.9132 minimum(SwcSW
∗  , minimum(0.4982Sweff , φ Sweff +

0.0597SwcKair
2 )) − 0.0141 KbaseSW

∗   

Water-wet wettability, Krend is available: 

((Kro)w−w)e = 0.0057 + 1.0646Kroend(0.0052μo@25°)
SW

∗
− 0.0055μo@25°Kroend 

((Krw)w−w)e = minimum(0.0691φKroend + 0.596μwSW
∗ Krwend  , SW

∗ ) 

Unknown wettability, Krend is unavailable: 

Kro = 0.0047 + minimum ( Kair , 1.2035
1

1 + e−(18.9880 φSw− IF(596 φ2>μo@25°,1,0)−7.3786Sw
∗ )

) 

Krw = 0.7428SwcSweff minimum (1.8057 , Kair) +

minimum (0.3534Sweff , minimum (
0.0159Kair

Kbase
, minimum (

Swc

Kbase
, Sorw

μo@25°  )))  

Unknown wettability, Krend is available: 

(Kro)e = Kroend0.05290SW
∗

− Kroendminimum(2.4952Kroend
2 , 0.0975SW

∗
) ×

minimum(SW
∗ (IF(0.1491kroend < Krwend,, 1,0), 0.4582)  

(Krw)e = KrwendSW
∗ 0.6277

− Krwendminimum(SW
∗ − SW

∗ 2.2473
, minimum(0.0317μoil

2 ×

eIF(Kabs> Krwend,1,o), Krwend) , Krwend)  

Conclusion 

Twelve utterly new prediction equations for two-phase (water-oil) relative permeability have 

been developed successfully through data mining modeling using a symbolic regression 

algorithm for twelve possible situations that commonly exist in petroleum engineering. 

Prediction correlations for oil-wet, water-wet, and unknown wettability in addition to the 

availability of endpoint data or not were provided by using 225 SCAL datasets and almost 3800 

observations from Iranian carbonated reservoirs. The scatter matrix plot is applied to analyze 

all variables. Moreover, the relative impact within these correlations that a variable has on the 

relative permeability has been investigated. It was concluded that the availability of endpoint 

values has much impact on the accuracy of correlations. Although it is advantageous to have 

endpoints, without them, an acceptable prediction can be made. Overall, this approach showed 

precise results to predict relative permeability curves, so that it can be a good candidate for 

usage in any petroleum engineering software. 
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Nomenclature 

Krw Relative permeability to water 

Kro  Relative permeability to oil 

Kabs  Absolute permeability 

Krwend  End point relative permeability to water 

Kroend  End point relative permeability to oil 

Krend  End point relative permeability 

Kair  Absolute permeability to air 

Kwater  Absolute permeability to water 

Kbase  Base permeability, in this study Kwater used as Kbase 

(kro)o−w  Relative permeability to oil, oil-wet system, and end point data is unavailable 

(krw)o−w  
Relative permeability to water, oil-wet system, and end point data is 

unavailable 

((Kro)o−w)e  Relative permeability to oil, oil-wet system, and end point data is available 

((Krw)o−w)e  Relative permeability to water, oil-wet system, and end point data is available 

(Kro)w−w  
Relative permeability to oil, water-wet system, and end point data is 

unavailable 

(Krw)w−w  
Relative permeability to water, water-wet system, and end point data is 

unavailable 

((Kro)w−w)e  Relative permeability to oil, water-wet system, and end point data is available 

((Krw)w−w)e  
Relative permeability to water, water-wet system, and end point data is 

available 

(Kro)e  
Relative permeability to oil, wettability is unknown, and end point data is 

available 

(Krw)e  
Relative permeability to water, wettability is unknown, and end point data is 

available 

Swc  Connate (irreducible) water saturation 

Sorw  Residual oil saturation in the water-oil system 

Sw
∗ = Normalized water saturation 

Sweff  Effective water saturation 

μw Water viscosity (cp) 

μo  Oil viscosity (cp) 

SVM  Support vector machine 

ANN  Artificial neural network 

MLP: Multilayer perceptron 

R2 R squared (coefficient of determination in statistics) 

MAE  Mean absolute error 

MAPE  Mean absolute percent error 

MSE Mean squared error 
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Appendices 

Definition of Statistical Parameters: 

Pearson Correlation Coefficient 

r =
∑(xi − x̅)(yi − y̅)

√∑(xi − x̅)2 ∑(yi − y̅)2
 

r = correlation coefficient 

xi = variable values in x axis 

x̅ = mean values of variable in x axis 

yi = variable values in y axis 

y̅ = mean values of varible in y axis 

Coefficient of Determination 𝐑𝟐 (Graphically) 

R2 = 1 −
SSE

SSyy
 

SSE:  Deviation of experimental data from predicted viscosity 

SSE =  ∑ (μexperimental − μest)
2n

i−1
 

SSyy : Deviation of experimental data from mean value of viscosity that defines as follows: 

SSyy = ∑ (μexperimental − μmean)
2n

i−1
 

Mean Absolute Error (MAE) 

MAE =
∑ |yi − xi|

n
i=1

n
=

∑ |ei|
n
i=1

n
 

Mean Squared Error (MSE)  

MSE =
1

n
∑(yi − y)2

n

i=1

 

yi = actual value 

y = predicted value 

N = number of data points 

Absolute Percentage Error (APE) 

Ei = |
μexp − μest

μexp
| 

Mean Absolute Percentage Error (MAPE) 

Er =
1

n
∑ Ei

n

i=1

 


