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Abstract

A popular research topic in Graph Convolutional Networks (GCNs) is to speedup
the training time of the network. The main bottleneck in training GCN is the
exponentially growing of computations. In Cluster-GCN based on this fact that
each node and its neighbors are usually grouped in the same cluster, considers
the clustering structure of the graph, and expand each node’s neighborhood
within each cluster when training GCN. The main assumption of Cluster-GCN
is the weak relation between clusters; which is not correct at all graphs. Here
we extend their approach by overlapped clustering, instead of crisp clustering
which is used in Cluster-GCN. This is achieved by allowing the marginal nodes
to contribute to training in more than one cluster. The evaluation of the pro-
posed method is investigated through the experiments on several benchmark
datasets. The experimental results show that the proposed method is more ef-
ficient than Cluster-GCN, in average.
Keywords: Graph Convolutional Networks, Graph Neural Networks, Cluster-
ing, Spectral Clustering.
AMS subject Classification: 91C20, 68T07, 92B20, 05C90

1. Introduction

Convolutional Neural Networks (CNNs) has been successfully applied to
many computer vision applications [1, 2, 13]. Convolutions and pooling oper-
ator are the main tools of these networks for extracting local features and us-
ing a pyramid structure from the input signal. Graph Convolutional Networks
(GCNs) [15] are similar tools for acting on graphs as input signals. GCNs ex-
tend the convolution operation from regular domains to arbitrary topologies
and unordered structures [4]. As in CNNs, graph pooling is an important op-
eration that allows a GCNs to learn representations of the input graphs, by
summarizing local components. Recently GCNs has been widely used in many
graph-based applications, including community detection [19], semi-supervised
classification [15] and Recommender Systems [24]. GCNs like CNNs have many
layers; in which at each layer, the embedding of a node is obtained by gathering
the embeddings of its neighbors, followed by one or few layers of linear transfor-
mations and activations. With this graph convolution operation, GCN is able
to learn useful node representations via Stochastic Gradient Descent (SGD).

Some emerging research for GCN is focusing on speeding up the training
of GCN. One way to speed up the training is to use mini-batch. While one
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of the computation issue for mini-batch is due to the neighborhood explosion
over layers. GCN training speedup algorithms are thus mainly focusing on how
to perform neighbors sampling so that to avoid heavy neighborhood searching
within each batch. For example, FastGCN[6] samples neighboring nodes within
each layer. GraphSAGE [12] considers sampling only a fixed-size neighborhood
samples for each node in the mini-batch, so only a fixed size of neighborhoods are
expanded for each batch. Stochastic GCN with variance reduction(VRGCN)[9]
reuses the embedding from the previous epoch; however this could increase the
memory usage during training because it needs to store temporary embedding
for each layer for each node. Cluster-GCN [8] considers the clustering structure
of the graph, and expand each node’s neighborhood within each cluster when
training GCN. This can significantly improve the training computation, since
the heavy neighborhood searching outside cluster is dropped.

Among many types of introduced GCNs, in this paper we focus on Cluster-
GCN [8]; In Cluster-GCN training is done on clusters of the graph, which can
make better time and memory complexity, with respect to traditional methods;
in which the gathering information process takes place independently, at the
same time for all the nodes. Here, the main idea is to use overlapped clusters,
in contrast to [8] that uses non-overlapping clusters. The experimental results
showed the efficiency of the proposed method. Before explaining the proposed
method, we first briefly review the theoretical background of GCNs and the
proposed based method Cluster-GCN.

2. Background

Since the paper is related to GCNs, a special type of GCN, named Cluster-
GCN and overlapping clustering, here we review these subjects briefly.

2.1. Graph Convolutional Network

Consider a multi-layer Graph Convolutional Network with the following
layer-wise propagation rule [15]:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
. (2.1)

Where, Ã = A + IN is the adjacency matrix of the undirected graph G with
added self-connections. IN is the identity matrix, D̃ii =

∑
j Ãij and W (l) is a

layer-specific trainable weight matrix. σ(·) denotes an activation function, such
as the ReLU(·) = max(0, ·). H(l) ∈ RN×D is the matrix of activations in the
lth layer; H(0) = X. It has been showed that the form of this propagation rule
can be motivated via a first-order approximation of localized spectral filters on
graphs [15, 5].

Despite the superior performance on various tasks, training GCN remains
computational and memory intensive. The main bottleneck in training GCN is
the exponentially growed computations when applying the Stochastic Gradient
Descent (SGD) training algorithm. Due to the graph convolution operator, a
node embedding at the Lth layer depends on the (L− 1)th layer embeddings of
all its neighbors, which again depends on the (L−2)th layer embeddings of all its
neighbors’ neighbors and so on. This leads to exponential grown computations
even when only one or few loss terms are sampled in SGD. For learning an L
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(a) Traditional GCN (b) Cluster-GCN

Figure 1: Figure 1 of [8]. The neighborhood expansion difference between traditional graph
convolution and the cluster approach introduced in [8]. Here it is supposed that the clusters
have weak connection.

layer GCN with a degree-d graph, the computational complexity for updating
the loss function of one node is O(dL), which blows up easily for large graphs
or for deeper GCNs.

Several approaches have been proposed recently to resolve this exponential
growing issue and to speed up GCN training. [12] proposed to speed up graph
convolution operation by only sampling a subset of neighbors for each node, also
known as the Neighborhood Sampling (NS) approach. However, NS requires a
relative large sample size to maintain the performance of GCN. In [7] a variance
reduction technique is proposed that can sample only few neighbors for each
node, while approximating the embeddings of other nodes using the previously
stored embeddings. However, all of these previous attempts still require some
neighborhood samples and still have complexity exponential to number of layers.
In GraphSAGE [12], to allow the mini-batch training, the authors also provide
a variant by uniformly sampling a fixed size of the neighboring nodes for each
node. In Cluster-GCN [8] an efficient algorithm for training GCNs is proposed
by exploiting the graph clustering structure, which explained in the next sub-
section.

2.2. Cluster-GCN

In Cluster-GCN [8] to exploit the local structure in graph, they sample one
or few clusters at each iteration and restrict the neighborhood within selected
clusters to conduct SGD updates. This strategy leads to huge computational
benefits. Figure 1 (from [8]) shows the main idea of Cluster-GCN. As can be
seen the Cluster-GCN can avoid heavy neighborhood search by focusing on the
neighbors within each cluster. In this figure, the clusters have weak dependen-
cies, and ignoring the neighborhoods of some marginal nodes may not affect the
overall embeddings of these nodes. For example in the top left image of figure 1,
an orange node, has four neighbors including two blue neighbors. Since one blue
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node lied in another cluster, cluster-GCN stopped expansion from this node,
hence only this node does not contribute to embedding of the aforementioned
orange node; but what happens if the clusters have more connections and the
number of such blue neighbors, belonging to other clusters were not negligible?
The core idea of this paper is investigation of this situation.

In the proposed method we use an NMF base overlapping clustering method,
the next sub-section is devoted to it.

2.3. Overlapping Clustering

Overlapping clustering is well known in community analysis domain. Com-
munities are densely connected subnetworks; the task of community detection is
to find the community structure of a given network. Many real-world networks
exhibit overlapping community structure in which vertices may belong to more
than one community[18].

Non-negative Matrix Factorization (NMF) has been widely adopted for com-
munity detection due to its great interpret-ability and its natural fitness for
capturing the community membership of nodes. The equivalency of Nonnega-
tive Matrix Factorization and K-means has been shown in [10, 14]. In K-means
clustering, the objective function to be minimized is the sum of squared dis-
tances from each data point to its centroid. With A = [a1, . . . , an] ∈ Rm×n, the
objective function Jk with given integer k can be written as:

Jk =

k∑
j=1

∑
ai∈Cj

‖ai − cj‖2 (2.2)

Where ai ∈ Rm is a data point (or a node of graph) and cj ∈ Rm is the center
of jth cluster Cj . The above objective function can be written as follows:∑

i

∥∥ai − cσj

∥∥2
= ‖A− CH‖2F (2.3)

where σi = j when ith point is assigned to jth cluster (j ∈ {1, . . . , k}), Cm×k
is the clusters’ centers and the column j of Hk×n, demonstrate the membership
degrees of data point ai to each of k clusters. Each data point ai is represented by
a linear combination of cluster centers. Regrading eq. (2.3), objective functions
for K-means and NMF may look the same; however, constraints are different:

• K-means: H ∈ {0, 1}k×n,1TkH = 1Tn

• NMF: W ≥ 0, H ≥ 0

As can be seen, NMF may be considered as a soft clustering, in contrast
to K-means, which is a hard clustering method. NMF is the basis of many
overlapping community detection methods. In community detection, if node
u ∈ V represents a data point, each entry Hc,u represents the weight between
node u ∈ V and community c. The larger Hc,u is, the more possible that u
belongs to c. On the other hand, if Hc,u is 0, u does not belong to c.

Some of the community detection methods that can detect overlapped and
non-overlapped communities are as follows: In [21] the community assignment
has been done by mapping the original network to the community member-
ship space by NMF. Modularized Nonnegative Matrix Factorization (M-NMF)
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model [22] preserves both the microscopic structure (pairwise node similarity)
and community structure for network embedding. The procedure uses joint
non-negative matrix factorization with modularity based regularization in order
to learn a cluster membership distribution over nodes. The method can be used
in an overlapping and non-overlapping way. In [23] a method named DANMF
(Deep Autoencoder-like Nonnegative Matrix Factorization) for community de-
tection is proposed The procedure uses non-negative matrix factorization in
order to learn a cluster membership distribution over nodes. DANMF consists
of an encoder component and a decoder component. This architecture empow-
ers DANMF to learn the hierarchical mappings between the original network
and the final community assignment. [11] uses biased second order random
walks to approximate the point-wise mutual information matrix obtained by
pooling normalized adjacency matrix powers. This matrix is decomposed by an
approximate factorization technique.

Regarding the good performance of the DANMF, we will use this method in
the next section as a tool for overlapping clustering. Note that each clustering
method that support overlapping may be used instead of it.

3. Overlapped Cluster-GCN

We saw that in Cluster-GCN a crisp clustering is performed and whether
between the partitions have weak or strong connections, the neighborhood ex-
pansion will be stopped at clusters’ borders. Here we allow to extend the neigh-
borhood expansion a bit more to near clusters by using Cluster-GCN with over-
lapped clusters, instead of crisp clustering. Consider the crisp clustering showed
in figure 2(a); the crisp clustering produces two non-overlapping clusters. GCN
training is done in every cluster, separately. Hence, although nodes 9 and 10 are
neighbors of node 1, they will not affecting the embedding of node 1, resulting
that node 1, losses 2 of 5 neighbors’ influences. As can be seen, the nodes 1
and 6, that belong to the left cluster, may be also considered as members of
the right cluster, with some degree of membership score. Many clustering al-
gorithms use hard (crisp) partitioning techniques where each object is assigned
to one cluster; but some algorithms utilize overlapping techniques where an ob-
ject may belong to one or more clusters [3]. Figure 2(b), shows an overlapped
clustering of the mentioned graph. Here Nodes 1 and 6 at the same time are
belong to two clusters, hence these nodes and nodes 9 and 10 are contributed to
train procedure of two clusters. With this trick, with preserving the benefit of
clustering technique of Cluster-GCN, the neighborhood expansion will be more
efficient for border nodes.

Based on the H, described in section 2.3, we can extract the community
membership of nodes. For disjoint community detection, each node is assigned
to the community where it gets the largest belonging propensity. For overlapping
community detection, we need to set a threshold δ in order to determine whether
a node belongs to a community or not. IfHc,u ≥ δ, we say that node u belongs to
community c. Suppose that winner indicates the cluster number that node u has
the greatest membership to it, i.e. winner = arg maxcHc,u, c ∈ {1, . . . , k}. For
a crisp (non-overlapping) clustering, these winner index, for each node, indicates
its cluster number; for overlapping clusters, based on a threshold δ the node u
may belongs to some other clusters. Here we set this threshold as a related
value to Hwinner,u. We defined the coefficient WMC (Winner Membership
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(a) Non-overlapped clustering (b) Overlapped clustering

Figure 2: A graph with 12 nodes, and two non-overlapped and overlapped clusters. In contrast
to figure 1 which is supposed that clusters have weak connection, some times as this example,
the clusters may be strong connections. Nodes 1, 6, 9 and 10 are overlapping nodes.

Algorithm 1: Overlapped Cluster-GCN

Input: Graph A, feature X, label Y ;
Output: Node representation X̄, Learned Weights W .

1 Partition graph nodes into c Overlapped clusters V1,V2, · · · ,Vc by
DANMF [23];

2 for iter = 1, · · · ,max iter do
3 Randomly choose q clusters, t1, · · · , tq from V without replacement;
4 Form the subgraph Ḡ with nodes V̄ = [Vt1 ,Vt2 , · · · ,Vtq ] and links

AV̄,V̄ ;

5 Compute g ← ∇LAV̄,V̄ (loss on the subgraph AV̄,V̄) ;

6 Conduct Adam update using gradient estimator g

7 Output: {Wl}Ll=1

Closeness) as the percentage that another cluster membership value, is closed
to the winner cluster. With this coefficient, node u is belongs to all clusters
c, that Hc,u ≥ WMC × Hwinner,u. If WMC = 0, node u is belongs to all
clusters, and if WMC = 1, u belongs only to the winner class, which is the
crisp clustering.

Here the DANMF[23] method is used as the overlapping communities detec-
tion approach. Although DANMF was the best method among 12 community
detection compared in [23], but note that here the goal is neither selecting the
best non-overlapping clustering method nor the best number of clusters or some
other related parameters. The main idea is the improvement Cluster-GCN by
allowing to clusters to overlap with each other which causes better embeddings
expansion. With this idea the Cluster-GCN algorithm is modified and showed
in algorithm 1. The experimental results in the next section verified this idea.
Although theoretical discussion of Cluster-GCN algorithm in [8] is based on the
non-overlapped clusters, but it is not necessary for implementation; training can
be done in every cluster, separately.

4. Experimental Results

In [8] the superior performance of Cluster-GCN against some STOA methods
including FastGCN [6], GraphSAGE [12], VR-GCN [7], GaAN [25], GAT [20]
and GeniePath [16] is shown, hence we compare our proposed approach only
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with the Cluster-GCN method. Some the citation network datasets are used
here which are accessible from PyTorch-geometric site1. Table 1 shows the
specifications of the used datasets.

The implementation here2 is with PyTorch3 and is based on KarateClub4

library [17] and a PyTorch implementation of Cluster-GCN which is accessible
from Github5 repository. The parameters of GCN in all experiments are as
follows:

Number of Layers: 3,

Shape of Layers: [Number of features, 16, 16 ,16 , Number of labels]

Optimization Method: Adam Optimizer

Clustering Method: DANMF [23], with number of pre-iterations equal 500

Number of Clusters: 2×Number of labels

Number of Epochs: or max iter in Algorithm 1 is 10

Number of random clusters in each run: It is equal to number of total
clusters (q = c in Algorithm 1)

Train-Test split: 30%, 70%

Dropout: 50%

In [15], the authors conducted some experiments with shallow and deep
GCNs on first 3 datasets of tables 1. From the figure 5 of [15], we see that the
best results are obtained with a 2- or 3-layer model. Hence here for all datasets
a 3 layer model is utilized. All the experiments are executed on Google Colab
machine with a NVIDIA Tesla K80 GPU (11.5 GB memory), Intel Xeon CPU
(2.20 GHz), and 13.3 GB of RAM.

As mentioned in section 3, WMC (Winner Membership Closeness), is de-
fined as a coefficient that indicates whether other clusters memberships of this
node are close enough to the winner cluster or not. If WMC = 0, the node is
belongs to all cluster and if WMC = 1, the node is only belongs to the winner
cluster (i.e. non-overlapping clustering). In the following experiments, we run
the proposed method on WMC = 0.1, 0.2, . . . , 0.9, 1. WMC = 1 corresponds
to Cluster-GCN approach[8] which uses crisp clustering.

DANMF[23], in which has the best performance on first 3 datasets in ta-
ble 1 is used here for community detection. This algorithm can be used for
overlapping and non-overlapping community detection. Any other community
detection approach also may be used here instead of DANMF, which is not the
main concern of this paper.

F1 score, which is the common metric uses in the field is selected for quanti-
tative comparison. The results on test nodes with WMC = 0.2 are summarized
in Table 2. As can be seen the proposed overlapping Cluster-GCN achieved the
best accuracy for these datasets.

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
2https://github.com/mamintoosi/Overlapping-Cluster-GCN
3https://pytorch.org/
4https://karateclub.readthedocs.io/
5https://github.com/benedekrozemberczki/ClusterGCN
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Table 1: Data statistics

Datasets #Nodes #Edges #Labels #Features
CiteSeer 3,327 9,104 6 3,703
Cora 2,708 10,556 7 1,433
PubMed 19,717 88,648 3 500
WikiCS 11,701 297,110 10 300

Table 2: Non-overlapped (crisp) clustering [8] versus overlapped clustering (The proposed
method). The proposed method leads to better performance (in terms of test F1 score),
WMC = 0.2.

Dataset Crisp Clustering [8] Overlapping Clustering
CiteSeer 0.68 0.7

Cora 0.80 0.82
Pubmed 0.53 0.82
WikiCS 0.51 0.64

Figure 3 shows the F1 score, when WMC varies from 0.1 to 1. As can be
seen, in average, increasing WMC, reduces F1-score, which means that less
overlapping, gains lower score. Note that in all situations, more overlapping,
does not equal to higher F1-score; for example in 3(a), for PubMed dataset,
overlapped cluster in WMC = 0.8 produced lower F1 score than WMC = 0.9;
hence the efficiency of the proposed method is related to the data and the
overlapping rate. For an instance graph data that varies over time, a good
overlapping rate can be found once and used many times.

Figure 4(a) shows the rate of overlapping nodes in various rate of overlapping.
WMC = 1 represents crisp clustering i.e. zero overlapping. In non-overlapping
clustering (WMC = 1) the total number of clusters’ nodes is equal to the
number of graph nodes, hence this rate is equal zero. As expected, lower WMC,
yields higher rate. In PubMed dataset and WMC = 0.1, this rate is equal 0.5,
which means, in average about 50% of nodes, were appeared in more than one
cluster. But this increasing the total number of nodes contributing in training
procedure, did not affected the run time. Figure 4(b) shows the running times.
As can be seen, run times on various WMC’s are almost identical in each
dataset; note that WMC = 1 is crisp clustering.

5. Conclusion

In this paper a modified version of cluster-GCN [8] was proposed. In con-
trast to [8] that the clusters were non overlapped, here it is allowed to clusters
to overlapped to each other, resulting that the neighborhood expansion may be
extended beyond the crisp non overlapped clusters. The experimental results
showed the superior efficiency of the proposed approach. Although in the pro-
posed approach –as like as the base method and many other GCNs – various
parameters and sub modules such as number of intermediate layers, activation
functions, clustering methods and so on may be investigated, but these subjects
are not lie in the main scope of this paper; the main claim of this paper is that
this modification of Cluster-GCN, may improve it, which experimental results
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Overlapping decreases, WMC = 1, means crisp clustering

Figure 3: The effect of overlapping clusters in F1-score, related to Winner Membership Close-
ness (WMC). WMC less than 1, show the proposed approach. WMC equal 1, is corresponds
to non-overlapping clusters. In average, increasing WMC, reduced F1-score. Sub-figure (a),
shows the results for each dataset, separately, (b), shows the average.

(a) Percentage of overlapped (b) Run Times

Figure 4: Rate of overlapped nodes and run times.
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verified it. The superior performance of Cluster-GCN against some STOA ap-
proach were shown previously in [8], and hence the performance of the proposed
method is compared only with the Cluster-GCN.
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