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Abstract 
Different learning methods have been used to recognize seismic facies and reservoir 
characterization using seismic attributes. One of the significant issues in automatic facies analysis 
is to relate the seismic data to facies properties using the well data. According to previous studies, 
the role of attributes is more significant than the learning method for automatic classification. The 
proposed method uses supervised selection of seismic attributes for automatic facies analysis. 
Extended Elastic Impedances (EEI) at different angles as seismic attributes are being increasingly 
utilized in both seismic facies analysis and reservoir characterization. They are representative of 
elastic parameters of rocks appropriately. In the presented method, proper EEI seismic attributes 
are selected after a feasibility study using petro-physical logs, and EEI template analysis of the 
well data. Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied to the fuzzy coded data of 
the well facies to train an automatic model to predict facies from the seismic data. Subsequently, 
the same particular EEI attributes are prepared. The EEI attributes from the seismic data are inputs 
for the trained ANIFIS model to perform seismic facies analysis. In this method, the seismic facies 
and the well facies are compatible. Only one well data can be sufficient for the well analysis stage 
and well facies clustering.  
The proposed method is applied on 3D prestack seismic data located in Abadan plain to 
discriminate hydrocarbon interval of Sarvak Formation. The results reveal that the supervised 
selection of attributes and fuzzy concepts present remarkable ability in dealing with imprecise 
seismic facies analysis and reservoir characterization. 
 

Keywords: Seismic attributes; Extended elastic impedance; Facies analysis; Adaptive neuro- 
fuzzy inference system. 

 

1. Introduction 
Seismic data are used to identify the lateral 
changes of geology layer and reservoir 
properties (Brown, 2011). Seismic attributes 
are representative of elastic and petrophysical 
properties of earth layers. Automatic learning 
techniques can extract the relation between 
seismic facies and seismic attributes 
(Hashemi et al., 2008; Hashemi and de 
Beukelaar, 2017; Hadiloo et al., 2017; Wang 
et al., 2017; Wrona, 2018).  
Automatic seismic facies analysis includes 
two main steps. One is selecting efficient 
seismic attributes, and the other is employing 
an appropriate classification method. 
Different classification methods have been 
applied to seismic attributes to classify the 
seismic facies with various degrees of 
success (Zhao et al., 2015; Wrona et al., 
2018). According to the results, the role of 
seismic attributes in seismic facies analysis is 
more significant than the choice of 
classification method (Barnes and Laughlin, 
2002). Among different seismic attributes, 
prestack ones such as Extended Elastic 

Impedance (EEI) attributes are more 
powerful to discriminate elastic parameters 
of rocks, as they have also knowledge of 
shear velocity inside them. EEI attributes 
play a vital role in quantitative seismic 
interpretation. Each EEI attribute can be 
proportional to a particular reservoir property 
(Whitcombe et al., 2002; Mirzakhanian et al., 
2015, Sharifi et al., 2019; Sharifi and 
Mirzakhanian, 2019).  
Seismic data are inherently infected with a 
degree of uncertainty and imprecision that 
certainly affects the results of seismic facies 
analysis. An approach to tackle this problem 
is the fuzzy logic, as it performs prosperous 
in handling uncertainty (Nikravesh et al., 
2003; Khemchandani et al., 2016; Liu et al., 
2019). A fuzzy clustering algorithm can 
separate the data into overlapping classes by 
assigning membership functions to each data 
sample to indicate the underlying structures 
of data samples. Aminzadeh and de Groot 
(2004 and 2006) discussed the application of 
the fuzzy logic in geosciences. Hashemi et al. 
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(2008) presented a new technique based on 
the unsupervised clustering with a fuzzy 
clustering algorithm to detect the random 
seismic noise. 
Anand et al. (2018) used a fuzzy C-means 
(FCM) clustering to create fuzzy constrained 
inversion to improve the result of the 
resistivity inversion. Hadiloo et al. (2018) 
compared the unsupervised and supervised 
fuzzy clustering in seismic facies 
classification. ANFIS integrates both neural 
networks and fuzzy logic principles. 
Therefore, it has the benefits of the both in a 
single framework. A fuzzy inference system 
by using fuzzy rules in the form of "If-Then 
rules" can promote the result of the seismic 
classification (Zarei and Hashemi, 2019; 
Hadiloo et al., 2018).  
In this study, an innovative method is used 
for supervised selection of seismic attributes 
to analyze the well facies. Supervised 
selection has a traditional meaning based on 
classifiers, but in this paper, the focus is 
finding the most relevant attributes in the 
middle of classification in FIS structure. 
FCM clustering is used to cluster the selected 
EEI attributes and separate the well facies. 
ANFIS uses the fuzzy labeled facies to 
provide a trained classification model based 
on a fuzzy inference system. The trained 
ANFIS model is applied to selected seismic 
EEI attributes to predict seismic facies. 
Supervised selection has a traditional 
meaning based on classifiers, but in this 
paper, the focus is on finding the most 
relevant attributes in the middle of 
classification in FIS structure. 
The method was applied to a small part of 3D 
seismic data located in the Abadan plain to 
delineate the hydrocarbon distribution. The 
studied interval is related to Sarvak 
Formation as a part of Bangestan group. The 
late Albian–early Turonian Sarvak formation 
is the most significant carbonate reservoir of 
the Abadan Plain, southwest of Iran. The 
primitive EEI template analysis, essential to 
select supervised and effective attribute, was 
performed using one well data with shear 
velocity. The results reveal the method 
provided accurate and reliable seismic facies 
analysis. It is due to the efficiency of selected 
attributes and the interpreter's direct 
monitoring of the fuzzy rules to control the 
output facies of the fuzzy system. 

2. Theory and Methods 
Whitcombe (2002) introduced REEI (χ) or  
EEI reflectivity as a modified two-term 
linearized Zoeppritz equation’s (1919) as the 
following: 

                       (1) 

where parameters A and B are intercept and 
gradient. The Chi parameter (i.e. χ) is a 
theoretical incident angle that varies between 
-90 and 90 degrees. By introducing some 
reference constants, he obtained the 
normalized dimensionless impedance values 
for all 181 angles. Therefore, a new-scaled 
formula equivalent of EI (Connolly, 1999) 
was developed to have a new parameter 
called the EEI. 
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where, 
 

𝑎 = cos 𝜒 + sin 𝜒    𝑏 = −8𝐾 sin 𝜒,  and 

𝑐 = 𝑐𝑜𝑠𝜒 − 4𝐾 𝑠𝑖𝑛𝜒 and     

EEI analysis by computing the impedance 
values beyond the physically observed range 
of actual incident angles is beneficial to 
discriminate different lithologies and fluid 
types. 𝑉௉ , 𝑉௦ and 𝜌  are p-wave, s-wave and 
density parameters respectively. Their 
averages are also shown with a bar above. 
EEI attributes are representative of elastic 
and petrophysical properties of rocks 
(Whitcombe et al., 2002; Mirzakhanian et al., 
2015; Yenwongfai et al., 2017; Sharifi et al., 
2019). Sharifi and Mirzakhanian (2019) 
innovated the full-angle extended elastic 
impedance to indicate the fluid type in a 
carbonate reservoir by rock physics 
templates.  
Fuzzy concepts and soft computing have a 
remarkable ability in dealing with the seismic 
and well data uncertainty. The fuzzy 
approach separates the data samples into 
overlapping groups according to their 
membership degrees. The fuzzy version of 
the k-means algorithm is introduced as FCM. 
The method considers membership degrees 
for each sample of the data set. The FCM 
algorithm attempts to cluster samples of the 
data concerning similarities and 
dissimilarities defined by some criterion. The 
FCM algorithm in an iterative scheme 
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improves the sequence steps of clusters 
(Wang and Zheng, 2007). FCM depends 
hardly on the randomly initialized values, 
which are updated iteratively. The FCM 
algorithm differentiates clusters of the same 
size and shape because the distance norm is 
often Euclidean norm. 
ANFIS is a supervised classification method. 
The interpreter can monitor the contribution 
of seismic attributes in fuzzy rules and output 
facies from the aggregation of different rules. 
An ANFIS is a kind of artificial neural 
network that is based on the Sugeno fuzzy 
inference system. It integrates both neural 
networks and fuzzy logic principles. 
Therefore, it has the benefits of both in a 
single framework. Its inference system 
corresponds to a set of fuzzy IF–THEN rules 

that have the learning capability to 
approximate nonlinear functions. The 
architecture of ANFIS is composed of five 
layers. The first layer, fuzzification, takes the 
input values and determines the membership 
functions belonging to them. The second 
layer, as the rule layer, is responsible for 
generating or firing strengths for the rules 
and rule implications. The role of the third 
layer is to normalize the computed firing 
strengths. The fourth layer is aggregation. 
The last layer returns the defuzzified final 
output.  
In this study, the role of supervised selection 
of EEI attributes and a trained ANFIS model 
by the well facies in seismic facies analysis is 
evaluated. Figure 1 presents the flow diagram 
of the study. 

 

 
Figure 1. The workflow of the methodology. Seismic stage starts after the feasibility analysis of the well data. 
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In the well stage, the EEI of the studied 
interval is built using Equation (2). The 
variations of EEI logs versus χ angles (−90° 
to +90°) at certain intervals of the reservoir 
are analyzed using petrophysical logs. Then, 
the EEI of each specific facies is 
demonstrated in a plot in the form of EEI 
amplitude versus χ angles as EEI template. 
Certain χ angles at which EEI values are the 
most differentiated for different facies are 
selected. Selected EEI logs are segmented 
into the significant units where each unit 
represents a unique facies in the studied 
interval, using FCM clustering. ANFIS 
system is applied on the prepared fuzzy 
labeled data to train a classification model to 
predict seismic facies. The seismic EEI 
attributes are extracted from prestack seismic 
data. The Intercept and Gradient from AVO 
analysis are used to calculate the certain EEI 
(χ) reflectivity data sets (Equation 1), 
dictated from the well analysis stage. Then, 
EEI inversion is applied to each EEI 
reflectivity to have a related EEI seismic 
attribute. The prepared EEI seismic attributes 
are input features of the trained ANFIS 
model to analyze seismic facies and reservoir 
characterization. 
 In this work, the clustering of the well data 
is performed using selected EEI logs (based 
on EEI template analysis) in order to label 
the well facies. Then the well facies 
distribute to the seismic data using EEI 
attributes extracted from pre-stack seismic 
data. 
The results of seismic facies using the trained 
ANFIS model provide valid seismic facies 
comparable with log facies. The contribution 
of interpreter knowledge in the whole stages 
of attribute selection, rule implication, and 
facies analysis of the algorithm is the main 
achievement to improve the results of seismic 
facies analysis. According to the flowchart, 
the clustering starts from the well stage 
analysis, and only one well data is available 
for this study. Therefore, the well is required 
to cover all lithology. However, the chance 
of having all lithology columns in a well is 
slim for some cases. For example, the fluid 
content may change in the reservoir. The 
solution to mitigate this problem is the rock 
physics modeling, which provides the 
opportunity to provide different scenarios of  
 

the reservoir. In the proposed method, the 
facies are discriminated at the well according 
to the analysis of petro-physical logs and the 
selected EEI (χ) logs simultaneously to label 
the facies using FCM. Then similar EEI (χ) 
attributes are extracted from the seismic data 
to distribute well facies to seismic data  
using the trained ANFIS system. This 
technique brings a common perspective in 
facies analysis between geologists and 
geophysicist. Geophysicist are familiar  
with seismic attributes while for the 
geologists the well logs and core data are the 
main tools for facies discrimination. In this 
method, at the well analysis stage, the 
connection between the petro-physical well 
logs and seismic attributes is established. In 
previous methods, the facies were separated 
according to the petrophysical well logs, and 
then in a separate phase, the seismic 
attributes were selected to perform seismic 
facies analysis. The selection of appropriate 
attributes was also another challenge. 
However, in this method, the relation 
between facies, the well logs, and seismic 
attributes is determined in the well analysis 
stage, simultaneously. 
 
3. Case study 
The studied area is a carbonate oilfield in the 
Abadan Plain (southwest of Iran). The aim is 
to discriminate the hydrocarbon layer of 
Sarvak formation as a part of Bangestan 
Group. The carbonate reservoirs of the 
Bangestan group include Sarvak and Ilam 
formations. Sarvak is composed of limestone 
with different porosity and thin layers of 
shale. The Laffan shale covers Sarvak. 
Laffan shale is overlaid by carbonates of 
Ilam formation. 
The study is performed on a small section  
of 3D seismic survey that included prestack 
normal move-out-corrected offset gathers. 
The sample rate of data acquisition is 4 ms 
with inline and crossline intervals of 25m and 
a fold coverage of 78. The seismic gathers 
are converted to intercept and gradient data 
sets performing AVO analysis. For this 
study, only one well in oil-bearing zones of 
Sarvak is available for EEI template analysis. 
The check-shot, density, compressional and 
shear velocities logs are available as well as 
petrophysical logs. 
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3-1. EEI template analysis and log data 
clustering 
Seismic data interpreters are interested in 
performing seismic facies analysis 
comparable with the well facies. For this 
reason, we decided to select EEI attributes. 
They are significant representatives of elastic 
parameters of the earth layers, and they can 
be calculated according to the well data and 
extracted from the seismic data. According to 
the workflow (Figure 1), the analysis starts 
from a feasibility study at the well A-1. The 
EEI section is built by measured density, 
compressional and shears velocities logs, 
according to Equation (2) with the sampling 
rate of 0.2 m (Figure 2). 
To determine the appropriate EEI attributes, 
the EEIs belonged to the certain facies 

(according to Gamma-ray, density,  
water-saturation and neutron porosity  
logs, considering the knowledge of geologist 
and oil engineer experts) are selected  
and plotted in the same chart. Figure 3  
shows the EEIs related to shale, hydrocarbon 
limestone, and brine limestone with different 
porosity. According to the figure the trend  
of EEI values for each lithology is different 
from the others. This difference is more 
significant in some angles. For instance, 
shale and oil-bearing layers with lower 
porosity are of high contrast. However, EEIs 
of carbonate intervals with higher porosity 
for oil and water content are the same. 
Therefore, the separation of these two 
intervals is more challenging than the others 
are.  

 

 
Figure 2. The EEI at the studied interval of Bangestan group, for χ angles ranging from -90 to +90 degree at the well  

A-1. The color scale shows EEI value in (ft/s.g/cm3). The black log at 0 degree is water saturation. 
 

 
Figure 3. EEI values changes from -90 to +90 degree of χ angle for different lithologies and fluid contents at well A-1. 
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Finally, EEI logs related to χ angles of (-40) 
and (+90) degrees are selected as the 
optimum attributes. Selected EEI logs in the 
EEI analysis stage are input features for 
fuzzy k-means clustering of the well data. 
The number of cluster is an essential input of 
the clustering algorithm that must be 
identified in advance. According to geology 
knowledge about the main lithology of 
Sarvak, the numbers six to four are selected 
for the number of clusters. Finally, according 
to the EEI template analysis and results of 
each clustering run, the number four is 
chosen as the optimum number of clusters. 
The result of FCM clustering of selected EEI 
logs from the well analysis stage is presented 
in Figure 5. For example, the shale with high 
values of water saturation and CGR and low 
values of effective porosity is indicated by 
green color. 
 
3-2. FIS generation using ANFIS 
In this stage, the fuzzy segmented data from 
the previous stage is used as input to train an 
ANFIS system. To assess the algorithm’s 
accuracy, the database is subdivided into 
70% and 30% training and test datasets, 
respectively. In the learning algorithms, the 
training data is used to construct the 
classifier, while the testing data is employed 
for its evaluation. Then, the algorithm is 
developed based on Fuzzy Inference Systems 

(FIS), by using fuzzy rules in the form of If-
Then to perform seismic facies analysis 
automatically (Table 1). The table indicates 
the contribution of each attribute for each 
rule that resulted in certain facies. 
The output of this step is the appropriate FIS 
for seismic facies identification. For this step, 
the number of rules is selected more than the 
number of clusters from well segmentation. 
Initially, the FIS generation started from six 
clusters. Then after monitoring the effect of 
different rules, according to the interpreter’s 
recognition, the redundant rules were 
gradually removed. Eventually, the optimum 
FIS, with four clusters/rules, is obtained with 
the best performance for seismic facies 
recognition (Figure 4). In another word, the 
ANFIS creates a new opportunity to 
investigate the application of rules and 
attributes for seismic facies analysis, in 
which the interpreter can select helpful rules.  
In Figure 4, the red line indicates the value of 
each attribute and the resulted output is facies 
3. The Gaussian curves show the 
membership functions. It should be noted 
that the geometry and position of each 
membership function is also optimized 
during the rule generation process. Other 
parameters of the solution are also updated 
by using an adaptive neuro network. The 
output of this step is the appropriate FIS for 
seismic facies analysis. 

 
Table 1. Asymptotic relevant Fuzzy if-then rules comes from EEI template analysis. 

If and then 

EEI (-40) is low EEI (+90) is high The facies is shale 

EEI (-40) is high EEI (+90) is low 
The facies is oil carbonate 

with medium porosity 

EEI (-40) is medium, 
higher than shale range 

EEI(+90) is medium, lower than 
shale range 

The facies is oil carbonate 
with higher  porosity 

EEI (-40) is medium, the same as oil 
carbonate with higher porosity 

EEI (+90) is medium, the same as 
oil carbonate with higher porosity 

The facies is brine carbonate 
with higher porosity 

EEI (-40) is medium, but higher  
than brine / oil carbonate with higher 

porosity 

EEI (+90) is medium, 
but lower than brine /oil carbonate 

with higher porosity 

The facies is brine carbonate 
with medium   porosity 
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Figure 4. The rule generation with four clusters using ANFIS. The system-generated rules from two selected input 

attributes for FCM clustering. 
 
3-3. Seismic EEI attribute preparation and 
seismic facies analysis 
According to the EEI template analysis 
performed in the well stage, two χ angles  
(-40° and +90°) are chosen. The EEI 
reflectivity data sets related to these certain 
angles are built, having intercept and gradient 
from AVO analysis (Equation 1). To invert 
EEI reflectivity data to elastic impedance 
data, well to seismic correlation, making a 
Low-Frequency Model (LFM) and extracting 
related wavelets have been performed. 
Finally, EEI inversion is conducted on each 
EEI reflectivity (for EEI inversion, readers 
are recommended to study Sharifi and 
Mirzakhanian, 2019). The output of each 
inversion run is EEI data for a certain angle 
(EEI (-40) or EEI (+90)). Then, seismic 
facies analysis is performed by using the 
ANFIS model generated from the previous 
stage. Figure 5 shows the seismic facies 
resulted from the algorithm. The similarity of 
the well facies and seismic facies is 
addressed in this figure. The oil-bearing layer 
is clearly identified in the facies section by 
red color. The shale intervals in the section 
are also indicated by green color and 
correlated with the well facies. 
 

4. Discussion 
The algorithm starts from the well  
facies analysis and distributes the well facies 
to the seismic data. The EEI logs  
are calculated directly from measured  
logs (Vp, Vs and rho) and χ angles (Equation 
2). Then, the more efficient ones are selected 
by EEI template analysis. However,  
EEI seismic attributes are extracted from 
prestack seismic data, using AVO attributes 
(Intercept and Gradient) to calculate  
EEI reflectivity (Equation 1) and EEI 
inversion. As the methods of EEI calculation 
from the well data and seismic data were 
different, the high degree of correlation 
between the well and seismic facies indicates 
the potential of the proposed method in 
seismic facies analysis comparable with the 
well facies.  
According to the EEI template, the EEIs of 
higher porosity carbonate for oil and water 
content are highly similar. This similarity 
caused difficulty in discriminating between 
these two facies in the well. In addition, the 
seismic resolution could not distinguish oil-
bearing carbonate interval with higher 
porosity, as the thickness of this layer is 
about 10 m. 
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Figure 5. From left to right there are facies log resulted from FCM clustering of EEI logs, water saturation log, CGR log, 

effective porosity log, and finally, the seismic facies section resulted from proposed algorithm. The seismic 
facies is comparable with the well facies and core data. 

 

5. Conclusion 
The seismic facies analysis is an 
unsupervised learning method. In previous 
works, the physical relationship between the 
well facies and seismic facies was 
challenging. On the other hand, the selection 
of efficient seismic attributes has an essential 
role in facies recognition. This paper presents 
an innovative method for supervised 
selection of seismic attributes. The EEI 
attributes are representative of elastic and 
petro-elastic properties of earth layers. They 
are prestack seismic attributes with 
knowledge of shear velocity inside them. The 
analysis of the EEI template using only one 
well with shear information leads to selecting 
efficient attributes. In the presented method, 
the selected EEI logs/attributes are 
segmented to recognize different facies of the 
well data using FCM. An adaptive neuro-
fuzzy system uses the fuzzy labeled data 
from the well analysis stage to generate FIS 
and train an ANFIS model. The trained 
ANFIS model classifies different seismic 
facies by extracting specific EEI attributes 
from prestack seismic data. Fuzzy concepts 
present an appropriate tool to mitigate the 
uncertainty integrated with the well and 
seismic data. The seismic facies analysis 
from this workflow is comparable with 
segmented facies of the well data. It is a 
valuable achievement in comprehensive and 
interpretable seismic facies analysis 
according to the well facies. In this method, 
only one well data can be sufficient for 
seismic facies analysis. This approach is of 
high importance in exploration fields with a 
limited number of wells. The method can be 

applicable for different reservoirs and 
lithologies after a feasibility study of EEI 
template analysis.  
 
6. Data and materials availability  
The National Iranian oil company provided 
data associated with this research. It is 
confidential and cannot be released. Only one 
well data and a small section of prestack 
seismic data are available. 
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