تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,138 |
تعداد دریافت فایل اصل مقاله | 97,217,001 |
بررسی پتانسیل آلودگی در محدوده معدن مس مزرعه اهر و تعیین منشأ آنها | ||
محیط شناسی | ||
مقاله 6، دوره 47، شماره 4، دی 1400، صفحه 461-479 اصل مقاله (2.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2022.333150.1008243 | ||
نویسندگان | ||
عطا الله ندیری* 1؛ زهرا آذری اسکویی1؛ محمدرضا حسین زاده1؛ رضا فدایی دیزناب2؛ سیاوش حاتم زاده3 | ||
1گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران | ||
2گروه مهندسی محیط زیست، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران | ||
3گروه شیمی کاربردی، دانشکده شیمی، دانشگاه تبریز، مدیرعامل معدن مس مزرعه اهر، اهر، ایران | ||
چکیده | ||
پژوهش حاضر بهمنظور بررسی منشأ احتمالی آلودگی حاصل از عناصر کمیاب و تعیین ویژگیهای هیدروشیمیایی منابع آب موجود در محدوده معدن مس مزرعه اهر انجام شد. بهمنظور دستیابی به اهداف پژوهش در منطقه موردمطالعه، اقدام به نمونهبرداری ماهانه از منابع آب منطقه گردید. پارامترهای اندازهگیری شده شامل pH، هدایت الکتریکی، عناصر اصلی، فرعی و کمیاب بود. نتایج حاصل از تجزیه شیمیایی عناصر، غلظت بیشازحد مجاز شرب عناصر کادمیم، سرب و کبالت را نشان داد و همچنین نمودارهای پایپر و استیف وجود دو تیپ بیکربناته و سولفاته آب منطقه را نشان داد که مطابق با سازندها و شرایط زمینشناسی منطقه بود. یافتههای حاصل از آنالیزهای آماری چند متغیره تحلیل عاملی نیز 4 گروه عاملی را در کیفیت منابع آب منطقه معدن مس مزرعه اهر مؤثر نشان دادند. عامل دوم و سوم زمینزاد و عامل اول و چهارم متأثر از هر دو عامل زمینزاد و انسانزاد است. بهطور کل اکثریت عناصر کمیاب موجود در منابع آبی متأثر از سازندها و اندرکنش آب-سنگ است. برای دستهبندی دادههای هیدروشیمیایی از روش خوشهبندی مرتبهای استفاده شد. میزان EC⸲ سولفات و کلسیم در خوشه اول بسیار بیشتر از خوشه دوم بود که نشان از انحلال کانیهای سولفیدی منطقه است. | ||
کلیدواژهها | ||
آلودگی منابع آب؛ فلزات کمیاب؛ معدن مس مزرعه؛ آمار چندمتغیره | ||
عنوان مقاله [English] | ||
Investigation of Contamination Potential in the Area of Mazraeh Ahar Copper Mine and Determination of Their Origin | ||
نویسندگان [English] | ||
Ata allah Nadiri1؛ Zahra Azari Oskoie1؛ Mohamadreza Hosseinzadeh1؛ Reza Fadaie2؛ Siavosh Hatamzadeh3 | ||
1Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz,, Tabriz, Iran | ||
2Department of Environmental Engineering, Faculty of Agriculture, Islamic Azad University, Tabriz branch, Tabriz, Iran | ||
3Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz,, Tabriz, Iran and Managing Director of Mazraeh Copper Mine, Ahar, Iran | ||
چکیده [English] | ||
Investigation of Contamination Potential in the area of Ahar Mazareh Copper Mine and Determination of their Origin. Introduction Investigating the quality of water resources in an area is one of the most fundamental issues in the study of contamination. The term “trace elements” generally refers to elements that are present in the environment in small concentrations and can be hazardous at concentrations above the permitted standard of drinking. The origin of these elements can be geogenic or anthropogenic. The geogenic origin of these elements is the earth's crust, and the anthropogenic origin can also be due to industrial, agricultural, and mining activities. One of the strategic tasks in the field of water resources is to provide chemical information in a way that it can be visually reconstructed. Mazraeh mine is one of the copper mines in Iran that uses a lot of water daily to concentrate copper through flotation, which along with other contaminates is directed to the tailings dam, Therefore, it is necessary to study the affected factors to the hydrochemical evolution and quality of surface and groundwater resources and to investigate the relationship between elements and contaminates and its impact on the quality of water resources and most importantly the origin of these elements and their relationship with mining and tailings dams. In this study, Hydrochemical study of water resources in the study area has been done by plotting methods such as Piper and Stiff diagrams. Multivariate statistical methods such as factor and cluster analysis were used to evaluate the origin of the trace elements. Materials and Methods Mazraeh copper mine is located 5 km from Mazraeh, and 120 km from Tabriz. It is located in the north of East Azarbaijan. Geologically, the study area is part of the Alborz-Azarbaijan structural unit. The geological map of the study area shows that the oldest geological units in the study area belong to the Cretaceous. Mazraeh copper mine reserves are of the iron and copper skarn index type. In general, in this study, on average, about 16 water samples were collected monthly from surface and groundwater resources in the area of the Mazraeh copper mine; The samples include 8 water samples from piezometers in the area, 1 sample from tailings dam, 1 sample from overflow of the tailings dam, 1 sample from water well of the village near the mine, and 5 samples from springs. Discussion of Results The amount of electrical conductivity also varies between 254 and 1774 μS / cm. The amount of the concentrations of the major cations and anions in terms of the median are "potassium Conclusions Based on the results, the Piper and Stiff diagrams plotted for water, the water type was mainly divided into two groups of sulfate and bicarbonate; the resource of water in the area corresponds to the geological formations of the area. The results of chemical analysis of about 290 water samples showed that some trace elements such as cadmium, lead, and cobalt have more concentrations than the standard of drinking water. The results of factor analysis showed that 4-factor groups were effective in the quality of water resources in the Mazraeh copper mine area. The second and the third factors were geogenic and the first and the fourth factors were affected by both geogenic and anthropogenic factors. The majority of trace elements in water resources are affected by the impact of formations and water-rock interaction. In the clustering method, amount of EC, sulfate, and calcium in the first cluster is more than in the second one, which indicates the effect of dissolution of sulfide minerals such as pyrite and chalcopyrite in the area. The amount of zinc and iron in the second cluster is more than the first cluster. | ||
کلیدواژهها [English] | ||
Watercourses contamination, Trace elements, Mazraeh copper mine, Multivariate statistics | ||
مراجع | ||
بینام. (1399). عملکرد مس مزرعه اهر در سال 98 و برنامههای جهش تولید. پایگاه خبری تحلیلی آناج. https://felezatkhavarmianeh.ir/000TMp
جعفری، ف. (1397). مطالعات سنگشناسی- کانیشناسی و منشأ سیالات کانه ساز در اسکارن مزرعه شمال شهرستان اهر، پایاننامه کارشناسی ارشد. گروه زمینشناسی، دانشگاه پیام نور واحد قزوین
ملایی، ح.، V.K.S.Dave، یعقوب پور، ع.، درویش زاده، ع. (1377). توزیع سیالات درگیر و نقش آنها در تشکیل کانسار اسکارنی آهن و مس در معدن مزرعه واقع در شمال اهر (آذربایجان شرقی) دومین همایش انجمن زمینشناسی ایران.
ندیری، ع.، مقدم، ا.، صادقی, ف.، آقایی، ح. (1390). بررسی آنومالی آرسنیک موجود در منابع آب سد سهند. محیطشناسی, 38(3)، 61-74.
نوراللهی، ش.، اصغری مقدم، ا.، فیجانی، ا.، و برزگر، ر. (1397). بررسی عوامل مؤثر بر کیفیت آب زیرزمینی آبخوان دشت مشگین شهر (استان اردبیل) با تأکید بر منشأ احتمالی برخی فلزات سنگین. فصلنامه علمی علوم زمین، 29(114)، 143-152.
Asgharai Moghaddam, A., Nadiri, A. A., & Sadeghi Aghdam, F. (2020). Investigation of hydrogeochemical characteristics of groundwater of Naqadeh plain aquifer and heavy metal pollution index (HPI). Journal of Geoscience, 29(115), 97-110.
Azli, T., Bouhila, Z., Mansouri, A., Messaoudi, M., Zergoug, Z., Boukhadra, D., & Begaa, S. (2021). Application of instumetal neutron activation analysis method for determination of some trace elements in lichens around three sites in Algiers. Radiochimica Acta, 109(9), 719-725.
Barzegar, R., Moghaddam, A. A., Soltani, S., Fijani, E., Tziritis, E., & Kazemian, N. (2019). Heavy metal (loid) s in the groundwater of Shabestar area (NW Iran): source identification and health risk assessment. Exposure and Health, 11(4), 251-265.
Censi, P. A. O. L. O., Spoto, S. E., Saiano, F. I. L. I. P. P. O., Sprovieri, M., Mazzola, S., Nardone, G., ... & Ottonello, D. (2006). Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere, 64(7), 1167-1176.
Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3-4), 294-313.
Colson, R. O. (1992). Solubility of neutral nickel in silicate melts and implications for the Earth's siderophile element budget. Nature, 357(6373), 65-68.
Dalton, M. G., & Upchurch, S. B. (1978). Interpretation of hydrochemical facies by factor analysis. Groundwater, 16(4), 228-233.
Davis, S. N., & DeWiest, R. J. M. (1966). Hydrogeology John Wiley Sons New York NY.
Esmaeili, S., Moghaddam, A. A., Barzegar, R., & Tziritis, E. (2018). Multivariate statistics and hydrogeochemical modeling for source identification of major elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran. Arabian Journal of Geosciences, 11(1), 5.
Fetter, C. W., Boving, T. B., & Kreamer, D. K. (1999). Contaminant hydrogeology (Vol. 500). Upper Saddle River, NJ: Prentice hall.
Freeze, R. A., & Cherry, J. A. (1979). Groundwater Prentice-Hall Inc. Eaglewood Cliffs, NJ.
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407-418.
Guascito, M. R., Malitesta, C., Mazzotta, E., & Turco, A. (2008). Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: study of the effect of hydrogen peroxide decomposition. Sensors and Actuators B: Chemical, 131(2), 394-402.
Guo, Z., Yang, M., & Huang, X. J. (2017). Recent developments in electrochemical determination of arsenic. Current Opinion in Electrochemistry, 3(1), 130-136.
Hossain, M., Karmakar, D., Begum, S. N., Ali, S. Y., & Patra, P. K. (2021). Recent trends in the analysis of trace elements in the field of environmental research: A review. Microchemical Journal, 106086.
Hossain, M., & Patra, P. K. (2020). Water pollution index–A new integrated approach to rank water quality. Ecological Indicators, 117, 106668.
Huang, Y. C., Yang, C. P., Lee, Y. C., Tang, P. K., Hsu, W. M., & Wu, T. N. (2010, August). Variation of groundwater quality in seawater intrusion area using cluster and multivariate factor analysis. In 2010 Sixth International Conference on Natural Computation (Vol. 6, pp. 3021-3025). IEEE.
Ismail, N. A. S., Rhasid, N. N. A., Razali, N. Z. M., & Kairan, O. (2020). Application of Factor Analysis in Identification of Pollution Sources for Pengkalan Chepa River Basin. Journal of Mathematics & Computing Science, 6(1), 1-9.
Johnson, R. (1992). WICHERN, DW-1998-Applied multivariate statistical analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 7632, 594.
Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663.
Klingshirn, C. F., Waag, A., Hoffmann, A., & Geurts, J. (2010). Zinc oxide: from fundamental properties towards novel applications.
Laaksoharju, M., Tullborg, E.-L., Wikberg, P., Wallin, B., & Smellie, J. (1999). Hydrogeochemical conditions and evolution at the Äspö HRL, Sweden. Applied Geochemistry, 14(7), 835-859.
Lescuyer, J., Riuo, R., & Babakhani, A. (1978). Report of Ahar geological map, scale1/250000. Geological Survey of Iran.
Li, L., Wu, J., Lu, J., Min, X., Xu, J., & Yang, L. (2018). Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotoxicology and environmental safety, 166, 345-353.
Li, P., Tian, R., & Liu, R. (2019). Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province, China. Exposure and Health, 11(2), 81-94.
Liu, Z. G., & Huang, X. J. (2014). Voltammetric determination of inorganic arsenic. TrAC Trends in Analytical Chemistry, 60, 25-35.
Lu, J., Lu, H., Lei, K., Wang, W., & Guan, Y. (2019). Trace metal element pollution of soil and water resources caused by small-scale metallic ore mining activities: a case study from a sphalerite mine in North China. Environmental science and pollution research, 26(24), 24630-24644.
Madlala, T., Kanyerere, T., Oberholster, P., & Butler, M. (2021). Assessing the groundwater dependence of valley bottom wetlands in coal-mining environment using multiple environmental tracers, Mpumalanga, South Africa. Sustainable Water Resources Management, 7(4), 1-23.
Mama, A. C., Bodo, W. K. A., Ghepdeu, G. F. Y., Ajonina, G. N., & Ndam, J. R. N. (2021). Understanding Seasonal and Spatial Variation of Water Quality Parameters in Mangrove Estuary of the Nyong River Using Multivariate Analysis (Cameroon Southern Atlantic Coast). Open Journal of Marine Science, 11(3), 103-128.
Matalas, N. C., & Reiher, B. J. (1967). Some comments on the use of factor analyses. Water resources research, 3(1), 213-223.
Mirakovski, D., Hadzi-Nikolova, M., Doneva, N., Despodov, Z., & Mijalkovski, S. (2011). Air pollutants emission estimation from mining industry in Macedonia.
Montalván-Olivares, D., Santana, C., Velasco, F., Luzardo, F., Andrade, S., Ticianelli, R., Armelin, M., & Genezini, F. (2021). Multi-element contamination in soils from major mining areas in Northeastern of Brazil. Environmental Geochemistry and Health, 1-24.
Nadiri, A. A., Moghaddam, A. A., Tsai, F. T., & Fijani, E. (2013). Hydrogeochemical analysis for Tasuj plain aquifer, Iran. Journal of earth system science, 122(4), 1091-1105.
Nair, I. S., Rajaveni, S. P., Schneider, M., & Elango, L. (2015). Geochemical and isotopic signatures for the identification of seawater intrusion in an alluvial aquifer. Journal of Earth System Science, 124(6), 1281-1291.
Ogunkunle, C. O., & Fatoba, P. O. (2014). Contamination and spatial distribution of heavy metals in topsoil surrounding a mega cement factory. Atmospheric pollution research, 5(2), 270-282.
Pang, Y. X., Foo, D. C., Yan, Y., Sharmin, N., Lester, E., Wu, T., & Pang, C. H. (2021). Analysis of environmental impacts and energy derivation potential of biomass pyrolysis via Piper diagram. Journal of Analytical and Applied Pyrolysis, 154, 104995.
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928.
Rubalingeswari, N., Thulasimala, D., Giridharan, L., Gopal, V., Magesh, N., & Jayaprakash, M. (2021). Bioaccumulation of heavy metals in water, sediment, and tissues of major fisheries from Adyar estuary, southeast coast of India: An ecotoxicological impact of a metropolitan city. Marine Pollution Bulletin, 163, 111964.
Seifi, A., & Riahi, H. (2020). Zoning and uncertainty analysis of heavy metal pollution risk in surface water resources of copper mine by Bayesian analysis and sequential Gaussian simulation. Environmental Sciences, 18(1), 165-186.
Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals (Vol. 32). Berlin: springer.
Sundaram, B., Feitz, A., Caritat, P. D., Plazinska, A., Brodie, R., Coram, J., & Ransley, T. (2009). Groundwater sampling and analysis—a field guide. Geosci Aust Rec, 27(95), 104.
Stiff, H. A. (1951). The interpretation of chemical water analysis by means of patterns. Journal of petroleum technology, 3(10), 15-3.
Tepanosyan, G., Sahakyan, L., Belyaeva, O., Asmaryan, S., & Saghatelyan, A. (2018). Continuous impact of mining activities on soil heavy metals levels and human health. Science of the Total Environment, 639, 900-909.
Vallee, B. L., & Ulmer, D. D. (1972). Biochemical effects of mercury, cadmium, and lead. Annual review of biochemistry, 41(1), 91-128.
Vishwakarma, A., Shukla, S. K., Tripathi, V. K., Dwivedi, C. S., Jha, S. K., & Tripathi, A. (2021). Effects of Acid Mine Drainage on Hydrochemical Properties of Groundwater and Possible Remediation. Groundwater Geochemistry: Pollution and Remediation Methods, 232-264.
Voudouris, K., Panagopoulos, A., & Koumantakis, J. (2000). Multivariate statistical analysis in the assessment of hydrochemistry of the Northern Korinthia prefecture alluvial aquifer system (Peloponnese, Greece). Natural Resources Research, 9(2), 135-146.
WHO. (2017). Guidelines for drinking-water quality: first addendum to the fourth edition.
Wiley, J., & Jackson, J. E. (1991). User's Guide to Principal Components (Wiley series in probability and mathematical statistics. Applied probability and statistics). John Wiley & Sons Incorporated.
Wu, J., Li, P., Qian, H., Duan, Z., & Zhang, X. (2014). Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences, 7(10), 3973-3982.
Yetis, A. D., & Akyuz, F. (2021). Water quality evaluation by using multivariate statistical techniques and pressure-impact analysis in wetlands: Ahlat Marshes, Turkey. Environment, Development and Sustainability, 23(1), 969-988.
Zharan, K. (2016). Renewable energy (re) for the mining industry: case studies, trends and developments, and business models. In 14 Symposium Energieinnovation (Vol. 31, No. 1, pp. 193-237). | ||
آمار تعداد مشاهده مقاله: 672 تعداد دریافت فایل اصل مقاله: 602 |