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Abstract 

This paper presents a nonlocal strain gradient theory for capturing size 

effects in buckling analysis of Euler-Bernoulli nanobeams made of three-

dimensional functionally graded materials. The material properties vary 

according to any function. These models can degenerate to the classical 

models if the material length-scale parameters is assumed to be zero. The 

Hamilton's principle applied to drive the governing equation and 

boundary conditions. Generalized differential quadrature method used to 

solve the governing equation. The effects of some parameters, such as 

small-scale parameters and constant material parameters are studied. 

Keywords: Buckling analysis, Strain gradient elasticity theory, Nano beam, Three-directional 

functionally graded materials (TDFGMs), Generalized differential quadrature method (GDQM). 

 

1. Introduction 

Micro- and nanotechnology have recently found a special place in various sciences such as medicine and 

engineering. So the attention of scientists has focused on this science. With that in mind, mechanical engineers 

have done a lot of research to unravel the ambiguities of nanotechnology [1, 2]. One of the first problems was that 

classical mechanics did not have the ability to examine issues in the nano-scale. In order to solve this problem, 

reinforcement continuum mechanics theories have been proposed, which consider inherent characteristics of 

materials at the nano-scale [3, 4]. In recent decades, with the development of various engineering fields related to 

micro- and nano-systems, much attention has been given to size effects on material behaviors. Some advanced 

methods to address the weaknesses of the conventional theory are; Cosserat continuum mechanics [5], nonlocal 
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elasticity [6-8], strain gradient elasticity  [9], couple stress theory [10] and nonlocal strain gradient theory [11]. 

Among the non-classical continuum mechanics theories, nonlocal elasticity and strain gradient theory have been 

widely used to analyze the nanostructures [12-41]. According to the nonlocal elasticity theory, in contrast to 

classical elasticity, the stress tensor at an arbitrary point x  in the domain of material depends not only on the 

strain tensor at x  but also on strain tensor at all other points in the domain. According to this theory, a stress–

strain relationship for a homogeneous elastic solid is:  

   ,nl l

ij ij

v

x x dv x         

where  is the nonlocal modulus or kernel function. It contains the small-scale effects incorporating into 

constitutive equations the nonlocal effects at the reference point  produced by local strain at the source x . This 

function depends on two variables x x  and  . x x  represents the distance in Euclidean form and 

0e a L   is a material constant that depends on internal and external characteristic length (such as the lattice 

spacing and wavelength). The parameter 0e  is vital for the validity of nonlocal models. This parameter was 

determined by matching the dispersion curves based on atomistic models. Also, nl is the nonlocal stress tensor at 

the reference point and l is the classical stress tensor at local point. In addition, the classical stress tensor is 

defined as follows: 

:l C     

here C  is the fourth order elasticity tensor and ‘:’ denotes the double dot product. Eringen     determined the 

functional form of the kernel numerically. By  appropriate  choice  of  the  kernel  function,  Eringen  showed  that  

the  nonlocal  constitutive equation given in integral form can be represented, for unbounded domains, in an 

equivalent differential form as: 

   
22

01 : ,     nl C e a          

On the contrary, for bounded structural domains, Eq.(1) is equivalent to a differential problem with suitable 

boundary constitutive conditions which are in contrast with equilibrium [42]. Accordingly, the elastostatic 

problem of a continuous nano-structure, formulated  with Eringen’s integral model, admits no solution and hence 

such a theory cannot be adopted in nano-mechanics [43, 44]. The differential form of Eringen’s integral law is not 

adequate to analyze size effects in nano-beams [45]. A mathematically and mechanically well-posed model to 

investigate devices at nanoscale was proposed in [46] by a stress-driven integral methodology. Such an approach 

was successfully applied in [47] to study size-dependent dynamical behavior of a Bernoulli-Euler nano-beam. The 
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stress-driven integral law exhibits, like strain gradient models, a hardening structural response for increasing 

values of the nonlocal parameter. Recently, Lim et al. [48] pointed out the nonlocal strain gradient theory can 

predict both increase and decrease in the structural stiffness, a result confirmed by the experimental data [48]. 

These methods are widely used in modeling of nano structure problems. For example, Li and Hu [49] studied 

buckling behavior of a nonlinear Euler-Bernoulli simply supported beam of nonlocal strain gradient theory. 

Hamilton’s principle was used to drive the governing equation and associated boundary conditions. Results show 

that post-buckling deflection has a positive relation to nonlocal parameter and reverse relation to material 

characteristic parameter. Besides, size dependent parameters have a significant effect on the higher-order buckling 

deflection. Li et al. [50]  offered a model to investigate flexural wave propagation in the functionally graded 

beams based on nonlocal strain gradient theory. The effect of some parameters such as nonlocal parameter and 

material characteristic parameter were investigated. Farajpour et al. [51] used a higher-order nonlocal strain 

gradient in order to study thermoelastic buckling behavior of orthotropic size-dependent plate which is resting on 

the elastic foundation. Differential quadrature method was employed to solve the higher-order governing 

differential equation. They studied the effect of scale parameter, temperature and aspects of the plate on the 

buckling behavior of nanoplate. Ebrahimi and Barati [52] analyzed vibration through the thickness functionally 

graded smart nanobeams by using of a new nonlocal higher-order refined magneto-electro-viscoelastic model. 

They considered various boundary conditions for nanobeams. The effects of some parameters such as boundary 

conditions, damping coefficient, magnetic field and electric voltage on the natural frequency of nanobeams were 

studied. Nejad et al. [16-18] studied the bending, buckling and vibration behavior of nano-beams in the framework 

of nonlocal elasticity theory. They used Euler-Bernoulli beam model to analyze the nano-beams and considered 

that the mechanical property in nano-beam changed in the thickness and length directions according to arbitrary 

function. In these studies, the effects of length scale parameter and inhomogeneity parameter were explored. Tuns 

and Kirca [53, 54] presented an exact solution for integral form of Eeingen’s nonlocal theory in order to analyze 

bending and buckling of Euler-Bernoulli and Timoshenko nanobeams. Ebrahimi and Barati [55] studied wave 

propagation in the functionally graded nanobeams using of nonlocal strain gradient theory. Nanobeams were 

resting on an elastic foundation and was subjected to axial magnetic field. Results show that length scale 

parameter, material inhomogeneity parameter, elastic foundation and magnetic field have significant effect on the 

wave propagation behavior. Li et al. [56] investigated free vibration behavior of functionally graded size-

dependent Timoshenko beams on the basis of nonlocal strain gradient theory. They used Hamilton’s principle to 
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drive governing equation and boundary conditions. Li and Hu [57] used nonlinear Euler-Bernoulli and 

Timoshenko beam models along nonlocal strain gradient theory in order to study bending behavior of through the 

thickness functionally graded size-dependent beams. They show that the effect of small-scale parameter and 

material inhomogeneity parameter on the bending deflection and vibration frequency of size-dependent beams. 

Romanoff et al. [58] employed nonlocal sandwich Timoshenko beam theory in order to explain the macro- and 

micro-structural responses. Ebrahimi and Barati [59] investigate the influences of surface and thermal effects on 

the vibration analysis of viscoelastic Euler-Bernoulli nanobeams by using of nonlocal strain gradient theory. The 

nanobeams made of functionally graded material and resting on the viscoelastic foundation. Hamilton’s principle 

was used to drive the governing equation and boundary conditions. They described the effects of damping 

coefficient on the vibration frequency of viscoelastic nanobeams. Based on the nonlocal strain gradient theory, 

Ebrahimi and Barati [60] offered a model for buckling behavior of higher order shear deformable curved 

nanobeams. Nanobeams were made of functionally graded material and mechanical properties varied according to 

power-law model. They investigate the effect of boundary conditions, material inhomogeneity parameter and 

length parameter. Xu et al. [61] investigated bending and buckling behavior of Euler-Bernoulli beams using of 

nonlocal strain gradient theory. Based on the nonlocal strain gradient theory, Li et al. [62] investigated bending, 

buckling and vibration behaviors through the length functionally graded Euler-Bernoulli size-dependent beams. 

They used Hamilton’s principle to obtain the governing equation and associate boundary conditions. Then, 

generalized differential quadrature method was employed to solve these equations. Finally, they studied the effect 

of grading index and size-dependent parameter on the mechanical behaviors of beams. Li and Hu [63] derived 

torsional motion equation of nanotubes in the framework of nonlocal elasticity theory. Nanotubes made of 

functionally graded materials which the mechanical property was varying in the radius and length directions. 

Results show that torsional frequencies have reverse relation to nonlocal parameter.  

Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory presented by Adeli et al. 

[20]. 

Functionally Graded Material (FGM) is one of the newest concepts in composite design. The properties of the 

FGM vary continuously from one point to another. Several articles dealing with different aspects of FGM have 

been published in recent years [12, 19, 22, 64-83]. It need to be cited that maximum of the above-noted analyses 

are associated with FGMs with material properties varying in a single direction only. However, there are practical 

occasions which require tailored grading of properties in two or even three directions. As reported by Steinberg 
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[84], Two-direction materials are needed in spacecraft design. Therefore, it is of great significance to develop 

novel FGMs with properties varying in two or three directions (2D or 3D FGMs) to withstand a more general 

temperature field.  

In this article, using nonlocal strain gradient theory, buckling analysis of TDFGMs Euler-Bernoulli nano-

beams is presented. The effects of changes of some important parameters are investigated. 

2. Analysis 

Consider a nano-beam of length L , width b , and thickness h  made of three-directional functionally graded 

materials. Cartesian coordinates  , ,x y z  are considered. The modulus of elasticity E  are assumed to vary as 

arbitrary functions in axial,  thickness and width directions, as indicated below [85]: 

       , ,E x y z X x Y y Z z  (1) 

where  X x ,  Y y  and  Z z  are arbitrary functions. 

Nonlocal elasticity theory, in contrast to classical elasticity, the stress tensor at an arbitrary point x in the 

domain of the material depends not only on the strain tensor at x but also on strain tensor at all other points in the 

domain. According to this theory, the structural stiffness of nanomaterials is smaller than that of the corresponding 

bulk material. Strain gradient theory in addition to the strain tensor, strain gradients are also considered in writing 

the strain energy density. Unlike to nonlocal elasticity theory, this theory predicts that the structural stiffness of 

nanomaterials is larger than that of the corresponding bulk material. Recently, by considering this problem, Lim et 

al. [11] demonstrate the nonlocal strain gradient theory that can predict both increase and decrease in the structural 

stiffness [85, 86].  

In the nonlocal strain gradient theory, the total stress of Euler-Bernoulli beam are defined as  

 1
t xx
xx xx

d

dx


    (2) 

here xx and  1
xx  are the classical and higher-order nonlocal stress tensors, respectively. The constitutive 

equation of the nonlocal strain gradient theory can be expressed as; 

 2 2 2 21 1t

xx xxE l          
(3) 

where   and l  is the nonlocal and strain gradient material length scale parameter introduced to consider the 

significance of nonlocal strain gradient stress field. 

Components of displacement vector ( 1u , 2u , 3u ) for Nano-beams based on Euler-Bernoulli beam theories can 
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be expressed as 
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Assuming the small deformations, the only nonzero strain of the Euler-Bernoulli beam theory is 

2

2xx

u w
z

x x


 
  
 

 (5) 

The governing equations of the FGM Euler-Bernoulli beam can be obtained, using the concept of minimum 

total potential energy principle. According to the principle of minimum total potential energy, the first variation in 

total potential energy must be zero. 

0U V      (6) 

in which U  and V  represent the variation of strain energy and that of virtual potential energy of axial load 

P , respectively. According to the nonlocal strain gradient theory developed by Lim et al. [48], variation of the 

strain energy density of an isotropic linear elastic material with volume   experiencing an infinitesimal 

displacement is defined as 
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where xx is first-order strain gradient. xxM  and  1
xxM  is defined as follows: 

t

xx xx

A

M z dA   (8) 

   1 1

xx xx

A

M z dA   (9) 

The first variation of the work due to the axial compressive force is given by: 

2

2

0 0

L L
dw d w d w

V P dx P wdx
dx dx dx


       (10) 

By substituting Eqs. (7) and (10) into Eq. (6) and using integration by parts, the motion equation is expressed 

as 
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2 2

2 2

M d w
P

x dx



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 (11) 

The classical boundary conditions is as follows 

0 0

0 0

dM
w or

dx

dw
M or

dx


 


  


 (12) 

and the non-classical boundary conditions 

 
2

1

2
0      or     0

d w
M

dx
   (13) 

By combining constitutive equation of the nonlocal strain gradient theory (3) and the equilibrium equation 

(11), we obtain the size-dependent Navier equation of TDFG beams on the basis of the nonlocal strain gradient 

theory and the Euler–Bernoulli beam theory 

2 4 2 2 3 2 4
2 2

2 2 22 4 2 2 3 2 4
2

d w d w d X d w dX w d X d w
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2
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For convenience, the following nondimensionalizations are used: 

2

2

,       ,       ,       ,     
w x PL l

w x P l
L L I L l


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(15) 

The non-dimensional governing equation expression can be obtained as 

2 22 4 2 3 4
21 1 1
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2

d X dX d Xd w d w d W d W d W
P l X

dxdx dx dx dx dx dx dx

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Solving the obtained governing equation gives the critical buckling load ( P ) of the TDFGM Euler-Bernoulli 

nano-beams based on nonlocal strain gradient elasticity theory using generalized differential quadrature method 

(GDQM). 

 

3. Results and discussion 

It is proposed that the modulus of elasticity and density of the nano-beam vary in the x , y  and z directions, 

as follows [87] 
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where, ,k 1,n  2 ,n  3 ,n 4 ,n 5n and 6n  are constant material parameters.  

To verify the results, the results of this paper are compared with the results of previous work. To compare the 

results, strain gradient material length scale parameter and constant material parameters are considered zero. A 

comparison of the results is given in Table 1. Comparison of the results showed that the results of this study have 

acceptable accuracy. 

Table 1. Comparison of the results of this work with other works. 

  Ref.  

0 

Present work 39.4783 

(Ghannadpour et al., 2013) 39.4784 

(Wang et al., 2006) 39.4786 

(Pradhan & Phadikar, 2009) 39.4784 

(Nejad et al., 2016) 39.4784 

0.2 

Present work 15.3068 

(Ghannadpour et al., 2013) 15.3068 

(Wang et al., 2006) 15.3068 

(Nejad et al., 2016) 15.3068 

1 

Present work 0.9753 

(Ghannadpour et al., 2013) 0.9753 

(Pradhan & Phadikar, 2009) 0.9753 

(Nejad et al., 2016) 0.9753 
 

In Figure 1, the convergence of the buckling load calculated by the GDQ method is investigated. According to 

this figure, it can be concluded that with increasing nodes, the response converges. Considering 15 nodes ensures 

convergence. 
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Fig. 1. The convergence of the buckling load calculated by the GDQ method for 12, 2, 2l n     

 

Figure 2 shows the changes in dimensionless buckling load in terms of nonlocal length scale parameter for 

different strain gradient length scale parameter. The results show that with increasing , the buckling load 

decreases, which shows that in the theory of nonlocal elasticity, the buckling load is lower than in the classical 

theory. In other words, the theory of non-local elasticity expresses the softening for a nanoscale material. In 

addition, with increasing strain gradient, the buckling load increases. This shows that by increasing the strain 

gradient length scale parameter, the material is more stable in nanoscale than in macro. 
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Fig. 2. changes in dimensionless buckling load in terms of nonlocal length scale parameter for different strain gradient length 

scale parameter and 1 0n   
 

 

 

Dimensionless buckling load changes in terms of material parameter are shown in Figure 

3. This figure shows that the buckling load increases with increasing . The reason for the 

increase in buckling load is the increase in modulus of elasticity with increasing . 

 

 
Fig. 3. Dimensionless buckling load changes in terms of 1n material parameter for 0.2, 0.2l    
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The buckling load changes in terms of material parameter for different bouckling modes 

are shown in Figure 4. This figure shows that the buckling load for all modes decreases with 

increasing size. The reason for the decrease in buckling load is the decrease in modulus of 

elasticity with increasing . 

Dimensional buckling load changes according to the material parameter for 4 buckling 

modes are shown in Figure 5. This figure shows that with increasing size, the buckling load 

increases for 4 buckling modes. The reason for increasing the buckling load is the increase in 

modulus of elasticity with increasing . 

Figure 6 shows the buckling in terms of beam length for 3 states  , 

 and  . The results show that for the case that  softening is 

predicted for the material but for the case that  the hardening is predicted. 

 

 
Fig. 4. The buckling load changes in terms of 2n material parameter for different bouckling modes for 

1 30.2, 0.2, 0, 0l n n      
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Fig 5. The buckling load changes in terms of 3n material parameter for different buckling modes for 

1 20.2, 0.2, 0, 0l n n      

 

 

 
Fig. 6.  The buckling load in terms of beam length for 3 states  ,  and  

 

 

 

 

4. Conclusion 

    In this paper, the effect of size for Bernoulli Euler nano beam made of three-dimensional functionally graded 

material is investigated using a combination of strain gradient theory and non-local elasticity. The results of this 

study showed that the strain gradient theory predicts hardening of the material at the nanoscale but the theory of 

non-local elasticity predicts the softening at the nanoscale. The combination of these two theories is able to predict 

both the hardening and softening effects at the nanoscale. In addition, the three-dimensional functionally graded 
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material in this paper has been investigated that the types of material changes in all directions of the beam have 

been considered with an arbitrary mathematical model. This model can be extended to a variety of nanostructures 

with different molecular structures. 
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