تعداد نشریات | 161 |
تعداد شمارهها | 6,507 |
تعداد مقالات | 70,339 |
تعداد مشاهده مقاله | 123,691,471 |
تعداد دریافت فایل اصل مقاله | 96,881,615 |
بررسی تأثیر محلول پاشی کود های مختلف نانو و آمینو اسید بر برخی ویژگی های بیوشیمیایی دانه و عملکرد گیاه ذرت | ||
به زراعی کشاورزی | ||
مقاله 17، دوره 24، شماره 1، فروردین 1401، صفحه 237-252 اصل مقاله (709.58 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2022.332347.2628 | ||
نویسندگان | ||
حسین خوشوقتی1؛ مهدی تاج بخش* 2 | ||
1دانشجوی دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران. | ||
2استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران. | ||
چکیده | ||
بهمنظور بررسی تأثیر کودهای مختلف کلاتشده نانو و آمینواسید بر عملکرد دانه، عملکرد بیولوژیکی، شاخص برداشت، کمیت و کیفیت روغن، محتوای نشاسته و درصد پروتئین در دانه ذرت، دو آزمایش مزرعهای بهصورت طرح بلوکهای کامل تصادفی با 16 تیمار و سه تکرار بهطور همزمان در دو مکان مختلف دانشگاه ارومیه و شهرستان عجبشیر در سال زراعی 1396 به اجرا در آمد. نتایج نشان دادند بیشترین مقدار محتوای نشاسته (66/80 درصد)، پروتئین (70/12 درصد) و شاخص برداشت (60/34 درصد) مربوط به تیمار کودی نانوکلات NPK، بیشترین میزان روغن (98/4 درصد)، عملکر دانه (16596 کیلوگرم در هکتار) و عملکرد بیولوژیکی (52393 کیلوگرم در هکتار) مربوط به آمینوکلات آهن و بیشترین وزن 100 دانه (34/36 گرم) در ذرت مربوط به نانوکلات روی بود که بهترتیب 03/22 درصد، 92/30 درصد، 66/23 درصد، 44/25 درصد، 81/50 درصد، 15/33 درصد و 65/24 درصد بیشتر از تیمار شاهد است. استفاده از آمینوکلات منیزیم، آمینوکلات میکرومیکس، آمینوکلات پتاسیم و نانوکلات NPK مقدار اسیدهای چرب اشباع را بیشتر از سایر کودها افزایش داد، اما کودهای نانوکلات مس، آمینوکلات فسفر، کود کبوتری و سالیسیلیکاسید محتوای اسیدهای چرب غیراشباع را بهترتیب 04/16 درصد، 35/16 درصد، 44/17 درصد و 29/20 درصد نسبت به تیمار شاهد افزایش دادند. | ||
کلیدواژهها | ||
اسیدهای چرب؛ درصد پروتئین؛ کلات شده؛ کیفیت روغن؛ محتوای نشاسته | ||
عنوان مقاله [English] | ||
The Effect of Foliar Application of Nano and Amino Acid Fertilizers on some Biochemical Properties of Grain and Yield of Corn | ||
نویسندگان [English] | ||
hossein khoshvaghti1؛ mahdi taj bakhsh2 | ||
1Ph.D. Student, Department of plant production and genetics, Faculty of Agriculture, Urmia University, Urmia, Iran. | ||
2Professor, Department of plant production and genetics, Faculty of Agriculture, Urmia University, Urmia, Iran. | ||
چکیده [English] | ||
In order to investigate the effect of various chelated nano and amino acid fertilizers on grain yield, biological yield, harvest index, oil quantity and quality, starch content and percentage of protein in corn grain, an experiment has been conducted based on a randomized complete block design with 16 treatments and three replications simultaneously in Urmia University and Ajabshir during the 2017 cropping year. Results show that the highest content of starch (80.66%), protein (12.70%), and harvest index (34.60%) related to NPK nano-chelate fertilizer treatment, the highest amount of oil (4.98%), grain yield (16596 kg / ha), and biological yield (52393 kg / ha) are related to iron amino chelate and the highest weight of 100 grains (36.34 g) is related to zinc nano chelate, which are 22.03%, 30.92%, 23.66%, 25.44%, 50.81%, 33.15%, and 24.65% more than the control treatment, respectively. The use of magnesium amino chelate, micro-mix amino chelate, potassium amino chelate, and NPK nano-chelate increase the amount of saturated fatty acids more than other fertilizers, but Copper nano-chelate, phosphorus amino-chelate, pigeon, and salicylic acid fertilizers increase the content of unsaturated fatty acids by 16.04%, 16.35%, 17.44%, and 20.29%, respectively, compared to the control treatment. | ||
کلیدواژهها [English] | ||
Chelated, Fatty acids, Oil quality, Percentage of protein, Starch content | ||
مراجع | ||
Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C., & Rao A. S. (2012). Effect of copper oxide nano particle on seed germination of selected crops. Journal of Agricultural Science and Technology, 2, 815-823. Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C., & Subba, R. A. (2015). Characterization of Zinc Oxide Nano Particles and its Effect on Growth of Maize (Zea mays L.) Plant. Journal of Plant Nutrition, 38(10), 1505-1515. Ali, N.S., & Al-Juthery, H. W. (2017). The application of nanotechnology for micronutrient in agricultureal production (review article). The Iraqi Journal of Agricultural Sciences, 9(48), 489- 441. Anjum, N. A., Gill S. S., & Gill, R. (2014). Plant adaptation to environmental change: Significance of amino acids and their derivatives. Published by CABI, Oxfordshire, UK. AOAC. (2009). Official methods of analysis of the association of official Analytical Chemists, 16th edn. AOAC International, Gaithersburg, 744-745. Aytac, Z., Gulmezoglu, N., Saglam, T., Kulan, E. G., Selengil, U., & Hosgun, H. L. (2017). Changes in N, K, and fatty acid composition of black cumin seeds affected by nitrogen doses under supplemental potassium application. Journal of Chemistry, Article ID 3162062, 1–7. https://doi.org/10.1155/2017/3162062 Bagrintseva, V. N., & Sukhoyatskaya, G. N. (2011). Economic Efficiency of Mineral Fertilizers on Corn Hybrids. Russian Agricultural Sciences, 37(5), 367-369. Barrera-Arellano, D., Badan-Ribeiro, A. P., & Serna-Saldivar, S. O. (2019). Corn: Chemistry and Technology (Third Edition), Chapter 21 - Corn Oil: Composition, Processing, and Utilization, 593-613 Brankov, M., Simi, M., Dolijanovi, Z., Rajkovi, M., Mandi, V., & Dragicevi, V. (2020). The Response of Maize Lines to Foliar Fertilizing. Agriculture, 10(9), 365. Clegg, K. M. (1956). The application of anthrone reagent to the estimation of starch in cereals. Journal Sciences Food Agriculture, 7(1), 40-44. https://doi.org/10.1002/jsfa.2740070108 Daneshmandi, M. S., & Seyyedi, S. M. (2019). Nutrient availability and saffron corms growth affected by composted pistachio residues and commercial poultry manure in a calcareous soil. Communications in Soil Science and Plant Analysis, 50(12), 1465-1475. Elanchezhiana, R., Kumarb, D., Ramesha, K., Biswasa, A. K., Guheyb, A., & Patra, A. K. (2017). Morpho-physiological and biochemical response of maize (Zea mays L.) plants fertilized with nano-iron (Fe3O4) micronutrient. Journal of Plant Nutrition, 40(14), 1969-1977. Estaji, A., & Niknam, F. (2020). Foliar salicylic acid spraying effect on growth, seed oil content and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management, 234(2), 106116. FAOSTAT. (2020). Statistical databases and data sets of the Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx. Gomaa, M. A., Radwan, F. I., Kandil, E. E., & El-Zweek, S. M. A. (2015). Effect of some macro and micronutrients application methods on productivity and quality of wheat (Triticum aestivum L.). Middle East Journal of Agriculture Research, 4(01), 01-11. Goudarzi, H., Kasraei, P., & Zand, B. (2014). Effect of different concentrations of Fe and Zn salty soils in Qom. International Congress of Oilseeds Research, Gorgan. Gutierrez, F. J., Mussons, M. L., Gatón, P., & Rojo, R. (2012). Nanotechnology and Food Industry. Scientific, Health and Social Aspects of the Food Industry, IntechOpen, Croatia Book Chapter. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Moller, I. S., & White P. (2012). Functions of macronutrients: Potassium. In: Marschner, Petra. (Eds.), Marschner’s Mineral Nutrition of Higher Plants (Third Edition), Elsevier, Adelaide, 178-189. Heshmati, S., Amini Dehaghi, M., & Fathi Amirkhiz, K. (2017). Effects of biological and chemical phosphorous fertilizer on grain yield, oil seed and fatty acids of Spring Safflower in water deficit conditions. Iranian Journal of Field Crop Science (Iranian Journal of Agricultural Sciences), 48(1), 159-169. Ibrahim, E. E., & Mohamed, F. (2012). Combined effect of NPK levels and foliar nutritional compounds on growth and yield parameters of potato plants (Solanum tuberosum L.), African Journal of Microbiology Research. Academic Journals, 6(24), 5100-5109. Irmak, S., Çıl, A. N., Yücel, H., & Kaya. Z. (2012). The effects of iron application to soil and foliarly on agronomic properties and yield of peanut (Arachis hypogaea). Journal of Food, Agriculture and Environment, 10(3/4), 417-422. Janmohammadi, M., Navid, A., Segherloo, A. E., & Sabaghnia, N. (2016). Impact of nanochelated micronutrients and biological fertilizers on growth performance and grain yield of maize under deficit irrigation condition. Biologija, 62(2), 134-147. Kandil, E. E., & Marie, E. A. O. (2017). Response of Some Wheat Cultivars to Nano-Mineral Fertilizers and Amino Acids Foliar Application. Alexandria Science Exchange Journal, 38(1), 53-68. Kaplan, M., Kale, H., Karaman, K., & Unlukara, A. (2017). Influence of different irrigation and nitrogen levels on crude oil and fatty acid composition of maize (Zea mays L.). Grasas y Aceites, 68(3), e207. doi: http://dx.doi.org/10.3989/gya.0222171 Kaur, N., Chugh, V., & Gupta, A. K. (2014). Essential fatty acids as functional components of foods- a review. Journal of Food Science and Technology, 51(10), 2289-2303. Khani Basiri, H., Sedghi, M., & Seyed Sharifi, R. (2017). Effect of salicylic acid on the quality of edible oil and fatty acids composition in different regions of sunflower (Helianthus annuus L.) heads. Iranian Journal of plant physiology, 8(1), 2285-2292. Krueger, K., Goggi, A.S., Mallarino, A.P., & Mullen, R.E. (2013). Phosphorus and Potassium Fertilization Effects on Soybean Seed Quality and Composition. Crop Science, 53(2), 602-610. Mosanna, R., & E. K. Behrozytar (2015). Morpho physiological response of maize (Zea mays L.) to zinc nano-chelate foliar and soil application at different growth stages. Journal on New Biological Reports, 4(1), 46-50. Nadi, E., Aynehband, A., & Mojaddam, M. (2013). Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba bean (Vicia faba L.). International Journal of Biosciences, 3(9), 267-272. Nedovic, V., Raspor, P., Levic, J., Tumbas Saponjac, V., Barbosa-Canovas, G. V. (2016). Emerging and Traditional Technologies for Safe, Healthy and Quality Food (Food Engineering Series). Aqueous Fractionation of Dry-Milled Corn Germ for Food Protein Production, 10(21), 443-461. O’Donovan, J. T., Izydorczyk, M. S., Tidemann, B., Edney, M. J., Turkington, T. K., Grant, C. A., Harker, K. N., & Gan, Y. (2017). Effect of preceding crop and nitrogen application on malting barley quality. Canadian Journal of Plant Science, 97(6), 1014-1023. https://doi.org/10.1139/cjps-2016-0411. Preciado-Ortiz, R. E., García-Lara, S., Ortiz-Islas, S., Ortega-Corona, A., & Serna-Saldivar, S. O. (2013). Response of recurrent selection on yield, kernel oil content and fatty acid composition of subtropical maize populations. Field Crops Research, 142, 27-35. Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences, 7(2), 3325- 3335. Raeisi, M., Farahani, L., & Palashi, M. (2014). Changes of qualitative and quantitative properties of radish (Raphanus sativus L.) under foliar spraying through amino acid. International Journal of Biosciences, 4(1), 463-468. Ray, K., Banerjee, H., Dutta, S., Hazra, A. K., & Majumdar, K. (2019). Macronutrients influence yield and oil quality of hybrid maize (Zea mays L.). Plos One, 14(5), e0216939. https://doi.org/10.1371/journal.pone.0216939 Sanjeev, P., Chaudhary, D. P., Sreevastava, P. S., Saha, A., Rajenderan, J. C., & Sekhar, L. (2014). Comparison of fatty acid profile of specialty maize to normal maize. Journal of the American Oil Chemists' Society, 91(6), 1001-1005. Savadi, S., Lambani, N., Kashyap, P. L., & Bisht, D. S. (2017). Genetic engineering approaches to enhance oil content in oilseed crops. Plant Growth Regulation, 83, 207-222. Sharifi, M. R., Khajali, F., & Hassanpour, H. (2016). Antioxidant supplementation of low-protein diets reduced susceptibility to pulmonary hypertension in broiler chickens raised at high altitude. Journal of Animal Physiology and Animal Nutrition, 100(1), 69-76. Sheshbahreh, M., & Movahedi Dennoudi, M. (2011). Effect of foliar application of iron and zinc on the growth of soybean seed vigor in drought conditions. Electronic Journal of Crop Production, 5, 19-35. (In Persian). Souri, M. K. (2015). Chelates and Aminochelate Fertilizers; and their role in plant nutrition. EATK Press, Tehran-Iran, pp 188. Souri, M. K. (2016). Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture, 1(1), 118-123. Subbaiah, L. V., Prasad, T. N., Krishna, T. G., Sudhakar, P. B., Reddy, R., & Pradeep, T. (2016). Novel effects of nanoparticulate delivery of zinc on Growth, productivity, and zinc biofortification in maize (Zea mays L.). Journal of Agricultural and Food Chemistry, 64(19), 3778-3788. White, A. M., Zipkin, E. F., Manley, P. N., & Schlesinger, M. D. (2013). Conservation of avian diversity in the Sierra Nevada: Moving beyond a single-species management focus. Plos One, 8(5), e63088. https://doi.org/10.1371/journal.pone.0063088
| ||
آمار تعداد مشاهده مقاله: 522 تعداد دریافت فایل اصل مقاله: 522 |