تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,102,627 |
تعداد دریافت فایل اصل مقاله | 97,209,023 |
Waste Orange Peel Adsorbent for Heavy Metal Removal from Water | ||
Pollution | ||
دوره 8، شماره 2، تیر 2022، صفحه 553-566 اصل مقاله (362.9 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2021.331156.1193 | ||
نویسندگان | ||
Awash Yirga1؛ Om Prakash Yadav1؛ Tania Dey* 2 | ||
1Department of Chemistry, Haramaya University, Post Box 138, Dire Dawa, Ethiopia | ||
2College of Engineering, Swansea University, Crymlyn Burrows, Swansea SA1 8EN, Wales | ||
چکیده | ||
Batch adsorption process was employed to remove copper(II) and cadmium(II) ions from contaminated water using dried orange peel powder as a cellulosic adsorbent, which supports circular economy and sustainability. Metal ion concentrations were determined using a flame atomic absorption spectroscopy (FAAS). Effects of pH, sorbate-sorbent contact time, metal ion concentration and adsorbent dose on the removal efficiency of the metal ions was investigated. The adsorption equilibrium was reached at 120 and 150 minutes for Cu(II) ions and Cd(II) ions, respectively. At optimized pH and biosorbent load, 10 mg L-1 of Cu(II) and Cd(II) ions could be removed to the extent 96.9% and 98.1%, respectively, within 2 hrs. However, the percentage removal of metal ions decreased with increasing their initial concentrations. The observed adsorption data was also interpreted in terms of Langmuir and Freundlich adsorption isotherm models. The calculated equilibrium data fitted more adequately with Freundlich model (higher correlation coefficient, R2) than Langmuir model, indicating heterogeneity of adsorption sites due to different functional groups in cellulose. Cd(II) ions showed less binding affinity and less desorption than Cu(II) ions. The maximum adsorption capacity (qmax) of dried orange peel were 2.78 mg/g and 2.57 mg/g for copper(II) and cadmium(II) ions, respectively. | ||
کلیدواژهها | ||
Adsorption؛ waste biomass؛ atomic absorption spectroscopy؛ heavy metal؛ cellulose؛ water pollutant | ||
مراجع | ||
Afolabi, F. O., Musonge, P. and Bakare, B. F. (2021). Bio-sorption of copper and lead ions in single and binary systems onto banana peels. Cogent Engineering, 8(1); 1886730.
Ahluwalia, S. S. and Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12); 2243-2257.
Akesson, A., Julin, B. and Wolk, A. (2008). Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Research, 68(15); 6435-6441.
Ali, H., Khan, E. and Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation Journal of Chemistry, article ID 6730305, 14 pages. DOI: 10.1155/2019/6730305
Annadurai, G., Juang, R. S. and Lee, D. J. (2002). Adsorption of heavy metals from water using banana and orange peels. Water Science and Technology, 47(1); 185-190.
Antunes, W. M., Luna, A. S., Henriques, C. A. and da Costa, A. C. A. (2003). An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electronic J. Biotech., 6(3); 174-184.
Brinchi, L., Cotana, F., Fortunati, E. and Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 94(1); 154-169.
Cao, Z., He, Y., Sun, L. and Cao, X. (2011). Removal of heavy metal ions from aqueous solutions by adsorption using modified orange peel as adsorbent. Advanced Materials Research, 236-238; 237-240.
Chatterjee, A., Dey, T., Sanyal, S. K. and Moulik, S. P. (2001). Thermodynamics of micelle formation and surface chemical behaviour of p-tert-octylphenoxypolyethylene ether (Triton X-100) in aqueous medium. Journal of Surface Science and Technology, 17(1-2); 1-15.
Czikkely, M., Neubauer, E., Fekete, I., Ymeri, P. and Fogarassy, C. (2018). Review of heavy metal adsorption processes by several organic matters from wastewaters. Water, 10(10); 1377-1392.
Dash, S., Chaudhuri, H., Gupta, R., Udayabhanu, G. and Sarkar, A. (2017). Fabrication and application of low-cost thiol functionalized coal fly ash for selective adsorption of heavy toxic metal ions from water. Indust. & Engg. Chem. Res., 56(6); 1461-1470.
Deiana, A. C., Sardella, M. F., Silva, H., Amaya, A. and Tancredi, N. (2009). Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. J. Hazard. Mater., 172(1); 13-19.
Dey, T. (2007). Properties of vinyl ester resins containing methacrylated fatty acid comonomer: the effect of fatty acid chain length. Polymer International, 56(7); 853-859.
Dey, T. (2012). Magnetic nanoparticles and cellulosic nanofibers to remove arsenic and other heavy metals from water. In: Nanotechnology for Water Purification, Universal-Publishers, Florida, pp. 1-28.
Dey, T. (2013). Cellulosic oleogel as trans-fat substitute: Viscoelastic and structural properties. LWT - Food Science and Technology. DOI: 10.1016/j.lwt.2013.07.015
Dey, T. (2014). Thermal properties of a sustainable cement material: Effect of cure conditions. Ceramics – Silikáty, 58(4); 275-281.
Dey, T. and Naughton, D. (2017). Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements. Environmental Science and Pollution Research, 24(15); 13373-13383.
El-Araby, H. A., Ibrahim, A. M. M. A., Mangood, A. H. and Abdel-Rahman, A. A-H. (2017). Sesame husk as adsorbent for copper(II) ions removal from aqueous solution. Journal of Geoscience and Environment Protection, 5(7); 109-152.
El-Moselhy, K. M., Azzem, M. A., Amer, A. and Al-Prol, A. E. (2017). Adsorption of Cu(II) and Cd(II) from aqueous solution by using rice husk adsorbent. Phys Chem Ind J., 12(2); 109.
Esposito, A., Pagnanelli, F., Lodi, A., Solisio, C. and Veglio, F. (2001). Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy, 60(2); 129-141.
Farhan, A. M., Al-Dujaili, A. H. and Awwad, A. M. (2013). Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves. International Journal of Industrial Chemistry, 4; 24.
Feng, N-C., Guo, X-Y. and Liang, S. (2009). Kinetic and thermodynamic studies on biosorption of Cu(II) by chemically modified orange peel. Transactions of Nonferrous Metals Society of China, 19(5); 1365-1370.
Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57(1); 385-470.
Ghodbane, I., Nouri, L., Hamdaoui, O. and Chiha, M. (2008). Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark. J. Hazard. Mater., 152(1); 148-158.
Ghoneim, M. M., El-Desoky, H. S., El-Moselhy, K. L., Amer, A., El-Naga, E. H. A., Mohamedein, L. I. and Al-Prol, A. E. (2014). Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egyptian Journal of Aquatic Research, 40(3); 235-242.
Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A. and Gronenberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol., 1; 22.
Guo, H., Tang, S., Song, Y. and Nan, J. (2018). Adsorptive removal of Ni2+ and Cd2+ from wastewater using a green longan hull adsorbent. Adsorption Science & Technology, 36(1-2); 762-773.
Hamdaoui, O. (2009). Removal of cadmium from aqueous medium under ultrasound assistance using olive leaves as sorbent. Chemical Engineering and Processing, 48(6); 1157-1166.
Haydar, S., Farooq, M. U. and Gull, S. (2020). Use of grape vine bark as an effective biosorbent for the removal of heavy metals (copper and lead) from aqueous solutions. Desalination and Water Treatment, 183; 307-314.
Ho, Y. S. and Mckay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res., 34(3); 735-742.
Ho, Y-S. and Ofomaja, A. E. (2006). Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochemical Engineering Journal, 30(2); 117-123.
Iqbal, M. and Edyvean, R. G. J. (2005). Loofa sponge immobilized fungal biosorbent: a robust system for cadmium and other dissolved metal removal from aqueous solution. Chemosphere, 61(4); 510-518.
Iqbal, M., Saeed, A. and Zafar, S. I. (2007). Hybrid biosorbent: an innovative matrix to enhance the biosorption of Cd(II) from aqueous solution. J. Hazard. Mater., 148(1-2); 47-55.
Jak, R. G., Maas, J. L. and Scholten, M. C. Th. (1996). Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing freshwater plankton communities in enclosure. Water Res., 30(5); 1215-1227.
Jaramillo, J., Gómez-Serrano, V. and Álvarez, P. M. (2009). Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones. J. Hazard Mater., 161(2-3); 670-676.
Juang, R. S., Wu, F. C. and Tseng, R. L. (1997). The ability of activated clay for the adsorption of dyes from aqueous solutions. Environmental Technology, 18(5); 525-531.
Karlsen, V., Heggset, E. B. and Sorlie, M. (2010). The use of isothermal titration calorimetry to determine the thermodynamics of metal ion binding to low-cost sorbents. Thermochimica Acta, 501(1-2); 119-121.
Kumar, U. and Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solutions using pretreated rice husk. Bioresour. Technol., 97(1); 104-109.
Langmuir, I. (1918). The adsorption of gases on plane surface of glass, mica and platinum. J. Amer. Chem. Soc., 40(9); 1361-1403.
Larous, S., Meniai, A-H. and Bencheikh Lehocine, M. (2005). Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination, 185(1-3); 483-490.
Li, X., Tang, Y., Xuan, Z., Liu, Y. and Luo, F. (2007). Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Sep. Puri. Technol., 55(1); 69–75.
Li, Z. and Ge, Y. (2018). Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustainable Chemistry & Engineering, 6(5); 7181-7192.
Liu, X., Xu, X., Dong, X. and Park, J. (2019). Adsorption characteristics of cadmium ions from aqueous solution onto pine sawdust biomass and biochar. BioResources, 14(2); 4270-4283.
Lucaci, A. R., Bulgariu, D., Popescu, M-C. and Bulgariu, L. (2020). Adsorption of Cu(II) ions on adsorbent materials obtained from marine red algae Callithamnion corymbosum sp. Water, 12(2); 372.
Machado, R., Santos, C., Correia, M. J. N. and Carvalho, J. R. (2003). Biosorption of copper by grape stalks and pine bark biomasses. European Journal of Mineral Processing and Environmental Protection, 3(1); 108-118.
Nacke, H., Goncalves Jr, A. C., Campagnolo, M. A., Coelho, G. F., Schwantes, D., dos Santos, M. G., Briesch Jr, D. L. and Zimmermann, J. (2016). Adsorption of Cu (II) and Zn (II) from water by Jatropha curcas L. as biosorbent. Open Chem., 14(1); 103-117.
Naeem, M. A., Imran, M., Amjad, M., Abbas, G., Tahir, M., Murtaza, B., Zakir, A., Shahid, M., Bulgariu, L. and Ahmad, I. (2019). Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water, 11(7); 1438.
Naiya, T. K., Chowdhury, P., Bhattacharya, A. K. and Das, S. K. (2009). Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chemical Engineering Journal, 148(1); 68-79.
Naseem, K., Huma, R., Shahbaz, A., Jamal, J., Rehman, M. Z. U., Sharif, A., Ahmed, E., Begum, R., Irfan, A., Al-Sehemi, A. G. and Farooqi, Z. H. (2018). Extraction of heavy metals from aqueous medium by husk biomass: adsorption isotherm, kinetic and thermodynamic study. Zeitschrift für Physikalische Chemie, 233(2); 201-223.
do Nascimento, K. K. R., Vieira, F. F., de Almeida, M. M., da S Buriti, J., Barros, A. J. M. and de Oliveira, R. J. (2019). Use of sweet ‘Pêra’ peel as an adsorbent in the treatment of textile effluents. R. Bras. Eng. Agríc. Ambiental, 23(9); 716-722.
Obike, A. I., Igwe, J. C., Emeruwa, C. N. and Uwakwe, K. J. (2018). Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk. J. Appl. Sci. Environ. Manage., 22(2); 182-190.
Ricou-Hoeffer, P., Lecuyer, I. and Le Cloirec, P. (2001). Experimental design methodology applied to adsorption of metallic ions onto fly ash. Water Research, 35(4); 965-976.
Saravanan, R. and Ravikumar, L. (2015). The use of new chemically modified cellulose for heavy metal ion adsorption and antimicrobial activities. Journal of Water Resource and Protection, 7(6); 530-545.
Stylianou, M. A., Hadjiconstantinou, M. P., Inglezakis, V. J., Moustakas, K. G. and Loizidou, M. D. (2007). Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column. J. Hazard. Mater., 143(1-2); 575-581.
Vieira, M. G. A., de Almeida Neto, A. F., Carlos da Silva, M. G., Nóbrega, C. C. and Melo Filho, A. A. (2012). Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous effluents. Braz. J. Chem. Eng., 29(3); 619–634.
Wang, F., Pan, Y., Cai, P., Guo, T. and Xiao, H. (2017). Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour. Technol., 241; 482-490.
Xie, Z., Guan, W., Ji, F., Song, Z. and Zhao, Y. (2014). Production of biologically activated carbon from orange peel and landfill leachate Subsequent treatment technology. Journal of Chemistry, article ID 491912, 9 pages.
Yu, L. J., Shukla, S. S., Dorris, K. L., Shukla, A. and Margrave, J. L. (2003). Adsorption of chromium from aqueous solutions by maple sawdust. J. Hazard. Mater., 100(1-3); 53-63.
Yuvaraja, G., Subbaiah, M. V. and Krishnaiah, A. (2012). Caesalpinia bonducella leaf powder as biosorbent for Cu(II) removal from aqueous environment: kinetics and isotherms. Indust. & Engg. Chem. Res., 51(34); 11218-11225.
Zhang, F., Wang, B., He, S. and Man, R. (2014). Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J. Chem. & Engg. Data, 59(5); 1719-1726. | ||
آمار تعداد مشاهده مقاله: 1,462 تعداد دریافت فایل اصل مقاله: 2,608 |